
Isabelle/HOL and the UTP
Part 1: Isabelle basics

Simon Foster

University of York

January 29, 2013



Isabelle/HOL

I Isabelle – a generic proof assistant
I proof checking (decidable)
I proof automation (undecidable)

I HOL – Higher Order Logic
I Functional Programming: f = reverse · map g
I Logic: ∀ xs. map f (map g xs) = map (f · g) xs
I similar syntax to ML and Haskell

I LCF-style: proofs correct by construction wrt. a small core

I Large library of theories (Sets, Lists, Lattices, Automata etc.)

I Robust technology (> 25 years in the making)



Logics

I Two levels of logic
I Meta-logic (Pure):

I Types: σ, ρ, σ ⇒ ρ
I λ-calculus: λ f. λ x. g f x
I Propositions:

∧
, =⇒, ≡

I Object-logic (HOL): ∧, ∨, →, ∀, ∃, = · · ·

I Two levels of syntax

I Outer-syntax: Isabelle language stuctural elements

I Inner-syntax: Terms of the logic (types, propositions etc.)
(usually quoted)

I Unicode syntax; e.g. type “=>” for ⇒ (or type LATEX)



Use of Isabelle

I Two components: the proof engine and user interface
I Several interfaces available:

I Proof General (emacs) [included]
I PIDE (jEdit) [included]
I I3P (Netbeans)

I User interacts with a proof-state, targetting a goal

I Proofs take the form of scripts which manipulate this state

I Commands update the global state with new facts



Useful references

Isabelle Documentation:
http://isabelle.in.tum.de/documentation.html

I Tutorial on Isabelle/HOL

I Isabelle/Isar Reference Manual

I What’s in Main - useful resource for contents of HOL

Course material:
http://www-users.cs.york.ac.uk/~simonf/Isabelle/

http://isabelle.in.tum.de/documentation.html
http://www-users.cs.york.ac.uk/~simonf/Isabelle/


A functional programming language

I HOL contains a ML/Haskell style programming language

I Allows usual functional programming constructs
I Functions - which are always pure (mathematical)

I should be total
I can be recursive (when a suitable termination order exists)

I Datatypes
I synonyms, algebraic datatypes, records, subtypes
I algebraic datatypes support induction as usual
I subtypes must be accompanied by a membership proof
I types in Isabelle must be non-empty

I Tree Example



Isabelle as Proof Checker

I proof in Isabelle is goal-directed

I user proposes a logical goal and then must provide a proof

I a proof is a sequence of commands acting on the proof-state

I these proof scripts are like Isabelle machine-code

I invalid commands are rejected by Isabelle

I user variously splits and simplifies goal (divide & conquer)

I when no more goals remain - QED

I results is then added to Isabelle’s properties

I proofs can use properties already established

I HOL contains a large library of existing proofs



Isabelle as Theorem Prover

I manual application of rules very tedious

I Isabelle contains various automated proof tools

I the most important is the simplifier

I at its simplest performs recursive equational rewriting

I can also solve simple statements of logic

I driven by Isabelle’s powerful higher-order unifier

I has a database of verified rewrite rules, which can be extended

if we know that x + 0 = x for any x then

x ∗ (y + 0) =⇒ x ∗ y



Isabelle Syntax

I Most statements of logic (inner-syntax) should be places in
speech-marks

I Isabelle employs LATEX-like tags for unicode syntax

I e.g. ∀x .∃y .y > x is written as per LATEX.

I see the cheatsheet for codes



Practical: Dates

I A date at its most basic, is a triple of natural number

I But this allows invalid combinations

I We are going to build an Isabelle type which represents only
valid ones

I This includes leap-years



Summary

I Getting started with Isabelle/HOL

I Isabelle/HOL functional programming

I basic proof scripts

I the simplifier



Next time

I Deductive reasoning

I Inductive proofs

I The Isar natural proof scripting language

I Automating proofs (auto, blast, sledgehammer etc.)


	Preliminaries
	Programming and Proof in Isabelle

