MC-Fluid: rate assignment strategies

Saravanan Ramanathan and Arvind Easwaran

Nanyang Technological University, Singapore

December 1, 2015
Outline

1. Introduction and Background
 - Mixed-Criticality (MC) System
 - Fluid Scheduling
 - Dual-rate MC Fluid Scheduling

2. Motivation
 - Challenges in Dual-rate MC Fluid Model

3. Proposed Strategy
 - MC-Sort algorithm
 - MC-Slope algorithm

4. Evaluation
 - Schedulability

5. Future Work
 - Multi-rate model
Outline

1. Introduction and Background
 - Mixed-Criticality (MC) System
 - Fluid Scheduling
 - Dual-rate MC Fluid Scheduling

2. Motivation
 - Challenges in Dual-rate MC Fluid Model

3. Proposed Strategy
 - MC-Sort algorithm
 - MC-Slope algorithm

4. Evaluation
 - Schedulability

5. Future Work
 - Multi-rate model
Mixed-Criticality (MC) Task Model

Implicit Deadline Sporadic Task: \(\tau_i = (T_i, L_i, C_i) \)

- \(T_i \) is the minimum separation between successive job releases
 - Since we consider implicit deadline tasks, deadline = \(T_i \)
- \(L_i \) denotes the criticality level of task (assume 2 levels)
 - LO denoting low-criticality and HI denoting high-criticality
- \(C_i = \{C_i^L, C_i^H\} : C_i^L \) denotes LO worst-case execution time (WCET), and \(C_i^H (\geq C_i^L) \) denotes HI WCET
 - \(C_i^H = C_i^L \) if \(L_i = LC \)
Task system behaviours: A MC task system with two criticality levels can exhibit the following behaviours

- **LO mode**: The system is in this behaviour as long as no task has executed beyond its LO WCET
- **HI mode**: The system switches to this behaviour when any HI task executes beyond its LO WCET

MC Correctness: A MC system is said to be correct if

- In LO mode: All tasks with LO WCETs are schedulable
- In HI mode: Only HI tasks with HI WCETs are schedulable
 - All LO tasks are dropped
Fluid Scheduling: Each task is assigned a fractional processing capacity at each time instant

- **Schedulability**: A task τ_i can meet its deadline if
 - Rate $(\theta_i) \times \text{Period } (T_i) \geq \text{WCET}$

- **Feasibility**: A task rate θ_i is valid under a m core system if
 - $\theta_i \leq 1$
 - $\sum_{\tau_i \in \tau} \theta_i \leq m$

Figure: Fluid scheduling
MC-Fluid Scheduling

MC-Fluid Platform: Each task is executed with LO-rate (θ_i^L) in LO mode and HI-rate (θ_i^H) in HI mode

- At mode switch, execution requirement is **changed**
- Execution rate is **changed**
- **Carry-over job**: A job released in LO mode and finished in HI mode

Figure: Carry-over job
MC-Fluid Scheduling

Rate Assignment:

- **Worst-case mode switch pattern**
 - Minimum \(\theta^L_i - u^L_i \)
- Construct an optimization problem
 - Solve it by convex optimization
- **Optimal** rate assignment algorithm
 - Schedulable rate assignment for all feasible task sets
- Has polynomial complexity
MC-Fluid Scheduling

- θ_i^H is determined by solving the convex optimization problem

\[
\begin{align*}
\text{minimize} & \quad \sum_{\tau_i \in \tau_H} (\theta_i^L - u_i^L) \\
\text{subject to} & \quad \sum_{\tau_i \in \tau_H} \theta_i^H \leq m \\
& \forall \tau_i \in \tau_H, \quad \theta_i^H \geq u_i^H \\
& \forall \tau_i \in \tau_H, \quad \theta_i^H \leq 1
\end{align*}
\]

- $\theta_i^L = \frac{u_i^L \cdot \theta_i^H}{\theta_i^H - u_i^H + u_i^L}$
MCF Scheduling

MCF: Simplified variant of MC-Fluid algorithm

- **Rate Assignment:**
 - For all HI tasks θ_i^H is given by $\frac{u_i^H}{\rho}$
 - $\rho = \max \{\text{normalized utilization}, \max \{u_i^H\}\}$
 - θ_i^L is computed same way as MC-Fluid
 - **Linear** run-time complexity
 - Compensates on schedulability
Outline

1. Introduction and Background
 - Mixed-Criticality (MC) System
 - Fluid Scheduling
 - Dual-rate MC Fluid Scheduling

2. Motivation
 - Challenges in Dual-rate MC Fluid Model

3. Proposed Strategy
 - MC-Sort algorithm
 - MC-Slope algorithm

4. Evaluation
 - Schedulability

5. Future Work
 - Multi-rate model
Challenges in Dual-rate MC Fluid Model

Non-optimality: Dual-rate fluid scheduling of MC task systems on multi-core is *not optimal*

- **Feasible** task sets are deemed to be *not schedulable*
 - Example: Multi-rate model
- We cannot extend MC-Fluid or MCF to multi-rate model
 - **Complexity** of MC-Fluid is high
 - MCF compromises on the schedulability
- **Solution**: Algorithm with better schedulability and reduced complexity
Outline

1. Introduction and Background
 - Mixed-Criticality (MC) System
 - Fluid Scheduling
 - Dual-rate MC Fluid Scheduling

2. Motivation
 - Challenges in Dual-rate MC Fluid Model

3. Proposed Strategy
 - MC-Sort algorithm
 - MC-Slope algorithm

4. Evaluation
 - Schedulability

5. Future Work
 - Multi-rate model
MC-Sort algorithm

MC-Sort:
- Maximum rate to a task with a larger HI utilization
- MC-Sort HI rate assignment
 - Assign initial rate of $\frac{u_i^H}{\rho_i}$
 - $\rho_i = \max \left\{ \left(\frac{u_i^H}{m} \right), u_i^H \right\}$
 - Sorts all HI tasks in decreasing HI utilization
 - Assigns maximum rate to tasks in the sorted order until slack remains
- **Linearithmic** complexity (i.e., $n \log n$)
MC-Sort algorithm

Example: $m = 2$

<table>
<thead>
<tr>
<th>Task</th>
<th>T_i</th>
<th>u_i^L</th>
<th>u_i^H</th>
<th>MC-Sort</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>θ_i^L</td>
</tr>
<tr>
<td>τ_1</td>
<td>5</td>
<td>0.3</td>
<td>0.9</td>
<td>-</td>
</tr>
<tr>
<td>τ_2</td>
<td>7</td>
<td>0.4</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>τ_3</td>
<td>35</td>
<td>0.1</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>τ_4</td>
<td>35</td>
<td>0.45</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>\sum</td>
<td></td>
<td>1.25</td>
<td>1.7</td>
<td>-</td>
</tr>
</tbody>
</table>
MC-Sort algorithm

Example: \(m = 2 \)

<table>
<thead>
<tr>
<th>Task</th>
<th>(T_i)</th>
<th>(u_i^L)</th>
<th>(u_i^H)</th>
<th>(\theta_i^L)</th>
<th>(\theta_i^H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau_1)</td>
<td>5</td>
<td>0.3</td>
<td>0.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(\tau_2)</td>
<td>7</td>
<td>0.4</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(\tau_3)</td>
<td>35</td>
<td>0.1</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(\tau_4)</td>
<td>35</td>
<td>0.45</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(\sum)</td>
<td>1.25</td>
<td>1.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- Sort all tasks with \(u_i^H \)
MC-Sort algorithm

Example: m = 2

<table>
<thead>
<tr>
<th>Task</th>
<th>T_i</th>
<th>u_i^L</th>
<th>u_i^H</th>
<th>MC-Sort</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_1</td>
<td>5</td>
<td>0.3</td>
<td>0.9</td>
<td>- -</td>
</tr>
<tr>
<td>τ_2</td>
<td>7</td>
<td>0.4</td>
<td>0.5</td>
<td>- -</td>
</tr>
<tr>
<td>τ_3</td>
<td>35</td>
<td>0.1</td>
<td>0.3</td>
<td>- -</td>
</tr>
<tr>
<td>τ_4</td>
<td>35</td>
<td>0.45</td>
<td>-</td>
<td>- -</td>
</tr>
<tr>
<td>\sum</td>
<td>1.25</td>
<td>1.7</td>
<td>-</td>
<td>- -</td>
</tr>
</tbody>
</table>

- Compute $\rho_i = \max \left\{ \left(\frac{u_i^H}{m} \right), u_i^H \right\}$
- $\rho_1 = 0.9$ $\rho_2 = 0.75$ $\rho_3 = 0.75$
MC-Sort algorithm

Example: m = 2

<table>
<thead>
<tr>
<th>Task</th>
<th>T_i</th>
<th>u_i^L</th>
<th>u_i^H</th>
<th>MC-Sort</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_1</td>
<td>5</td>
<td>0.3</td>
<td>0.9</td>
<td>-</td>
</tr>
<tr>
<td>τ_2</td>
<td>7</td>
<td>0.4</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td>τ_3</td>
<td>35</td>
<td>0.1</td>
<td>0.3</td>
<td>-</td>
</tr>
<tr>
<td>τ_4</td>
<td>35</td>
<td>0.45</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>\sum</td>
<td>1.25</td>
<td>1.7</td>
<td>-</td>
<td>1.96</td>
</tr>
</tbody>
</table>

- Initial assignment ($\frac{u_i^H}{\rho}$) is done
- Allocate remaining slack to task with maximum u_i^H
MC-Sort algorithm

Solution:

<table>
<thead>
<tr>
<th>Task</th>
<th>(T_i)</th>
<th>(u^L_i)</th>
<th>(u^H_i)</th>
<th>MC-Sort</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau_1)</td>
<td>5</td>
<td>0.3</td>
<td>0.9</td>
<td>(\theta^L_i) 0.84 (\theta^H_i) 0.93</td>
</tr>
<tr>
<td>(\tau_2)</td>
<td>7</td>
<td>0.4</td>
<td>0.5</td>
<td>(\theta^L_i) 0.47 (\theta^H_i) 0.67</td>
</tr>
<tr>
<td>(\tau_3)</td>
<td>35</td>
<td>0.1</td>
<td>0.3</td>
<td>(\theta^L_i) 0.2 (\theta^H_i) 0.4</td>
</tr>
<tr>
<td>(\tau_4)</td>
<td>35</td>
<td>0.45</td>
<td>-</td>
<td>(\theta^L_i) 0.45 (\theta^H_i) -</td>
</tr>
<tr>
<td>(\sum)</td>
<td>1.25</td>
<td>1.7</td>
<td>1.96</td>
<td>2.0</td>
</tr>
</tbody>
</table>

\(\theta^L_i \) is computed same way as MC-Fluid
MC-Slope algorithm

- **MC-Sort limitation**: Does not consider the **difference in utilization** between criticality levels
 - Task that does maximum execution after mode switch may not get maximum rate allocation
MC-Slope algorithm

MC-Slope: HI rate assignment

- **Objective:** Minimize $\sum (\theta^L_i - u^L_i)$
- **Initial rate:** $\theta^H_i = u^H_i$
- **Sorts all HI tasks with** $R(\theta^H_i)$
 - $R(\theta^H_i) = \frac{d^2(\theta^L_i - u^L_i)}{d\theta^H_i}$
- **Assign maximum rate to task with larger** $R(\theta^H_i)$
- **Linearithmic complexity** *(i.e., nlogn)*
Introduction and Background
- Mixed-Criticality (MC) System
- Fluid Scheduling
- Dual-rate MC Fluid Scheduling

Motivation
- Challenges in Dual-rate MC Fluid Model

 Proposed Strategy
- MC-Sort algorithm
- MC-Slope algorithm

Evaluation
- Schedulability

Future Work
- Multi-rate model
Schedulability

![Graph showing acceptance ratio vs normalized utilization bound for different scheduling strategies.](image-url)
Outline

1. Introduction and Background
 - Mixed-Criticality (MC) System
 - Fluid Scheduling
 - Dual-rate MC Fluid Scheduling

2. Motivation
 - Challenges in Dual-rate MC Fluid Model

3. Proposed Strategy
 - MC-Sort algorithm
 - MC-Slope algorithm

4. Evaluation
 - Schedulability

5. Future Work
 - Multi-rate model
Multi-rate model: Each task executes with more than 2 rates
Future Work

Multi-rate model: Each task executes with more than 2 rates
Multi-rate model: Each task executes with more than 2 rates

- τ_1, τ_2, τ_3 represent execution requirements.
- C_1^H, C_2^H, C_3^H represent completion times.
- δ^L_i, δ^H_i, δ_H^* represent rates of jobs released in HI mode.
- Mode switch at T_i.
- Execution requirement is τ_i.
Future Work

Multi-rate model: Each task executes with **more than 2 rates**

\[
\begin{align*}
&\delta^L_i, \delta^H_i \text{ - rate of jobs in LI and HI mode from mode switch until the earliest period of a carry-over, respectively} \\
&\delta^H_i \text{ - rate of jobs in HI mode from mode switch until the earliest period of a carry-over} \\
&\delta^C_i \text{ - rate of carry-overs for task } i \\
&\tau^1, \tau^2, \tau^3, \ldots \\
&\delta^H_1, \delta^H_2, \delta^H_3, \ldots
\end{align*}
\]
Future Work

Multi-rate model: Each task executes with more than 2 rates
Multi-rate model

Example: $m = 2$

<table>
<thead>
<tr>
<th>Task T_i</th>
<th>u_i^L</th>
<th>u_i^H</th>
<th>MC-Fluid</th>
<th>Multi-rate model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>θ_i^L</td>
<td>θ_i^H</td>
<td>δ_i^L</td>
<td>δ_i^H*</td>
</tr>
<tr>
<td>τ_1</td>
<td>5</td>
<td>0.3</td>
<td>0.8</td>
<td>0.64</td>
</tr>
<tr>
<td>τ_2</td>
<td>7</td>
<td>0.4</td>
<td>0.7</td>
<td>0.70</td>
</tr>
<tr>
<td>τ_3</td>
<td>35</td>
<td>0.1</td>
<td>0.3</td>
<td>0.22</td>
</tr>
<tr>
<td>τ_4</td>
<td>35</td>
<td>0.45</td>
<td>-</td>
<td>0.45</td>
</tr>
<tr>
<td>\sum</td>
<td>2.01</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Thank you..!

Questions..?