Mixed-Criticality Job Models: A Comparison

Sanjoy Baruah and Zhishan Guo

Department of Computer Science
University of North Carolina at Chapel Hill
Mixed-Criticality Systems

• **MC Systems:** *functionalities of different levels of importance (criticalities)* are implemented upon a *shared platform.*
Mixed-Criticality Systems

- **MC Systems**: functionalities of different *levels of importance* (*criticalities*) are implemented upon *a shared platform*.

- Traditional non-MC design:
 Need significant *resource over-provisioning* to guarantee their *temporal correctness*, which leads to highly *inefficient resource usage* at run-time!
Mixed-Criticality Systems

- **MC Systems**: functionalities of different levels of importance (*criticalities*) are implemented upon a shared platform.

- Traditional non-MC design:
 Need significant resource over-provisioning to guarantee their temporal correctness, which leads to highly inefficient resource usage at run-time!

- **MC**:
 Over-provisioned resources (to more important tasks) can be used to execute less important ones.
Models

Temporal Correctness

Real-Time Cyber-Physical SYSTEMS

SAFETY-CRITICAL
Models

Temporal Correctness

Analyzing

MODELS

Modeling

Real-Time Cyber-Physical SYSTEMS
Models

Real-Time Cyber-Physical Systems

Too Complicated

Modeling Schedulability Lost

Modeling

More or Less Simple

Analyzing

Temporal Correctness

MODEL
Models

Temporal Correctness

Analytical Schedulability Lost

Analyzing

More or Less Simple

MODEL

Modeling

Modeling Schedulability Lost

Too Complicated

Real-Time Cyber-Physical SYSTEMS
Models

Temporal Correctness

Analyzing

Modeling

Real-Time Cyber-Physical Systems

Schedulability Lost

Model Complexity

Model Complexity

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
Models

- Temporal Correctness
- Analyzing
- Modeling
- Real-Time Cyber-Physical Systems

Release Time & Deadline
Single WCET: C

L.L.
Models

Temporal Correctness

Analyze

Model Complexity

Modeling

Real-Time Cyber-Physical SYSTEMS

L.L. MODEL

Release Time & Deadline
Single WCET: C

Example: \(x := a + b \)

3~9~321 cycles
Models

Temporal Correctness

Analyzing

"Exact" MODEL

Model Complexity

Modeling

Real-Time Cyber-Physical SYSTEMS

Schedulability Lost

L.L.

"Exact" MODEL

Model Complexity

Analyzing

Real-Time Cyber-Physical SYSTEMS
Models

Temporal Correctness

Model Complexity

Modeling

"Exact" MODEL

Schedulability Lost

L.L.

"Exact"

Real-Time Cyber-Physical SYSTEMS

Analyzing
Models

Release Time & Deadline
Criticality Level (A,B,C,D)
WCETs: C(A), C(B), C(C), C(D)

Schedulability Lost

Vestal

“Exact”

Model Complexity

Temporal Correctness

Vestal MODEL

Analyzing

Modeling

Real-Time Cyber-Physical SYSTEMS

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
Models

Temporal Correctness

Release Time & Deadline
Criticality Level (A, B, C, D)
WCETs: C(A), C(B), C(C), C(D)

Vestal MODEL

Model Complexity

Modeling

Analyzing

Real-Time Cyber-Physical SYSTEMS

L.L.

Vestal

"Exact"

Schedulability Lost

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL
Models

Release Time & Deadline
Criticality Level (A,B,C,D)

WCETs: C(A), C(B), C(C), C(D)

Temporal Correctness

Analyzing

Vestal MODEL

Model Complexity

Modeling

Real-Time Cyber-Physical SYSTEMS

Schedulability Lost

L.L.

Vestal

“Exact”

Model Complexity

Designer’s Preference

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
Models

Release Time & Deadline
Criticality Level (A,B,C,D)

Two WCETs: C(self), C(normal)

Schedulability Lost

L.L. Burns Vestal "Exact"

Model Complexity

Burns MODEL

Temporal Correctness

Analyzing

Modeling

Real-Time Cyber-Physical SYSTEMS

Designer’s Preference
Models

Release Time & Deadline
Criticality Level (A, B, C, D)
Two WCETs: C(self), C(normal)

Schedulability Lost

Burns
Vestal
“Exact”

Model Complexity

Temporal Correctness

Analyzing

Burns MODEL

Modeling

Real-Time Cyber-Physical SYSTEMS

Designer’s Preference

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL
Model Comparison

<table>
<thead>
<tr>
<th>Vestal Model</th>
<th>Burns Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criticality Levels χ_i: A, B, C, or D</td>
<td></td>
</tr>
<tr>
<td>WCETs: $C_i(A)$, $C_i(B)$, $C_i(C)$, $C_i(D)$</td>
<td></td>
</tr>
<tr>
<td>642, 321, 10, 5</td>
<td></td>
</tr>
</tbody>
</table>

Example: $x := a + b$

3~9~321 cycles
Model Comparison

<table>
<thead>
<tr>
<th>Vestal Model</th>
<th>Burns Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critically Levels χ_i:</td>
<td>Only Two WCETs:</td>
</tr>
<tr>
<td>A, B, C, or D</td>
<td>$\text{C}_i(\text{self}), \text{C}_i(\text{normal})$</td>
</tr>
<tr>
<td>WCETs:</td>
<td></td>
</tr>
<tr>
<td>$\text{C}_i(\text{A}), \text{C}_i(\text{B}), \text{C}_i(\text{C}), \text{C}_i(\text{D})$</td>
<td>$\text{C}_i(\text{self}), \text{C}_i(\text{normal})$</td>
</tr>
<tr>
<td>642, 321, 10, 5</td>
<td>642, 5</td>
</tr>
</tbody>
</table>

Example: $x := a + b$

$3\sim9\sim321$ cycles
Model Comparison

Criticality Levels \(\chi_i: A, B, C, \text{ or } D \)

<table>
<thead>
<tr>
<th>Vestal Model</th>
<th>Burns Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCETs:</td>
<td>Only Two WCETs:</td>
</tr>
<tr>
<td>(C_i(A), C_i(B), C_i(C), C_i(D))</td>
<td>(C_i(\text{self}), C_i(\text{normal}))</td>
</tr>
<tr>
<td>N/A, 321, 10, 5</td>
<td>321, 5</td>
</tr>
</tbody>
</table>

Example: \[x := a + b \]

3~9~321 cycles
Model Comparison

<table>
<thead>
<tr>
<th>Vestal Model</th>
<th>Burns Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criticality Levels χ_i: A, B, C, or D</td>
<td>Only Two WCETs: $C_i(\text{self})$, $C_i(\text{normal})$</td>
</tr>
<tr>
<td>WCETs: $C_i(A)$, $C_i(B)$, $C_i(C)$, $C_i(D)$</td>
<td>Only Two WCETs: $C_i(\text{self})$, $C_i(\text{normal})$</td>
</tr>
<tr>
<td>N/A, N/A, 10, 5</td>
<td>10, 5</td>
</tr>
</tbody>
</table>

Example: $x := a + b$

$3\sim9\sim321$ cycles
Model Comparison

<table>
<thead>
<tr>
<th>Vestal Model</th>
<th>Burns Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criticality Levels χ_i: A, B, C, or D</td>
<td>Only Two WCETs: $C_i(\text{self})$, $C_i(\text{normal})$</td>
</tr>
<tr>
<td>WCETs: $C_i(A)$, $C_i(B)$, $C_i(C)$, $C_i(D)$</td>
<td>10, 5</td>
</tr>
<tr>
<td>N/A, N/A, 10, 5</td>
<td>10, 5</td>
</tr>
</tbody>
</table>

Example: $x := a + b$

3~9~321 cycles

Actual execution time remains unknown until the job *signals* its completion. (non-clairvoyant)
Model Comparison

<table>
<thead>
<tr>
<th>Vestal Model</th>
<th>Burns Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criticality Levels χ_i: A, B, C, or D</td>
<td>Criticality Levels χ_i: A, B, C, or D</td>
</tr>
<tr>
<td>WCETs:</td>
<td>Only Two WCETs:</td>
</tr>
<tr>
<td>$C_i(A)$, $C_i(B)$, $C_i(C)$, $C_i(D)$</td>
<td>$C_i(self)$, $C_i(normal)$</td>
</tr>
<tr>
<td>N/A, 321, 10, 5</td>
<td>321, 5</td>
</tr>
<tr>
<td>Level of the System := Smallest ℓ that $C_i(\ell)$ caps behavior of job i, $\forall i$</td>
<td>Level of the System := χ_i of the greatest-criticality job exceeding its $C_i(NL)$</td>
</tr>
</tbody>
</table>

Example: $x := a + b$

$3\sim9\sim321$ cycles

Actual execution time remains **unknown** until the job **signals** its completion. (non-clairvoyant)
Model Comparison

<table>
<thead>
<tr>
<th>Vestal Model</th>
<th>Burns Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporal Correctness</td>
<td>-- per level</td>
</tr>
<tr>
<td>Criticality Levels χ_i:</td>
<td>A, B, C, or D</td>
</tr>
<tr>
<td>WCETs:</td>
<td>Only Two WCETs:</td>
</tr>
<tr>
<td>$C_i(A)$, $C_i(B)$, $C_i(C)$, $C_i(D)$</td>
<td>$C_i(\text{self})$, $C_i(\text{normal})$</td>
</tr>
<tr>
<td>N/A, 321, 10, 5</td>
<td>321, 5</td>
</tr>
</tbody>
</table>

Level of the System :=

- Smallest ℓ that $C_i(\ell)$ caps behavior of job i, $\forall i$
- χ_i of the greatest-criticality job exceeding its $C_i(\text{NL})$

Example: $x := a + b$

3~9~321 cycles

Actual *execution time* remains unknown until the job *signals* its completion.

(non-clairvoyant)
Model Comparison

<table>
<thead>
<tr>
<th>Vestal Model</th>
<th>Burns Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criticality Levels χ_i: A, B, C, or D</td>
<td></td>
</tr>
<tr>
<td>WCETs: $C_i(A)$, $C_i(B)$, $C_i(C)$, $C_i(D)$</td>
<td>Only Two WCETs: C_i(self), C_i(normal)</td>
</tr>
<tr>
<td>642, 5, 5, 5</td>
<td>642, 5</td>
</tr>
</tbody>
</table>

Proposition 1:
Any instance represented in the Burns model can be represented exactly in the Vestal model.

- Example: $x := a + b$
 - 3\sim9\sim321 cycles

- Actual **execution time** remains **unknown** until the job *signals* its completion.
 - (non-clairvoyant)
Model Comparison

<table>
<thead>
<tr>
<th>Vestal Model</th>
<th>Burns Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporal Correctness</td>
<td>-- per level</td>
</tr>
<tr>
<td>Criticality Levels χ_i: A, B, C, or D</td>
<td></td>
</tr>
<tr>
<td>WCETs:</td>
<td>Only Two WCETs:</td>
</tr>
<tr>
<td>$C_i(A)$, $C_i(B)$, $C_i(C)$, $C_i(D)$</td>
<td>$C_i(SF)$, $C_i(NL)$</td>
</tr>
<tr>
<td>N/A, 321, 10, 5</td>
<td>321, 5</td>
</tr>
</tbody>
</table>

Proposition 2:
Instances represented in the Vestal model cannot always be represented exactly in the Burns model.

Example:
$x := a + b$

3~9~321 cycles

Actual execution time remains unknown until the job *signals* its completion.
(Non-clairvoyant)
Models

- Real-Time Cyber-Physical Systems
 - Temporal Correctness
 - Analyzing
 - Modeling
 - Real-Time Cyber-Physical Systems

Schedulability Lost

- L.L.
- Burns
- Vestal
- “Exact”

Model Complexity

Designer’s Preference

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
Models

- Temporal Correctness
- Analyzing
- Modeling
- Real-Time Cyber-Physical SYSTEMS
- "Exact" MODEL
- Burns MODEL
- L.L. MODEL
- Vestal MODEL

Schedulability Lost

- L.L.
- Burns
- Vestal
- "Exact"

Model Complexity

Designer’s Preference
Model Comparison

<table>
<thead>
<tr>
<th>Vestal Model</th>
<th>Burns Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporal Correctness -- per level</td>
<td></td>
</tr>
<tr>
<td>Criticality Levels χ_i: A, B, C, or D</td>
<td>Only Two WCETs:</td>
</tr>
<tr>
<td>WCETs: $C_i(A)$, $C_i(B)$, $C_i(C)$, $C_i(D)$</td>
<td>Only Two WCETs: $C_i(SF)$, $C_i(NL)$</td>
</tr>
<tr>
<td>N/A, 321, 10, 5</td>
<td>321, 5</td>
</tr>
</tbody>
</table>

Proposition 3:
Determining whether a given instance specified according to the Burns model is MC-schedulable is NP-hard in s.s.
Model Comparison

<table>
<thead>
<tr>
<th>Vestal Model</th>
<th>Burns Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporal Correctness</td>
<td>-- per level</td>
</tr>
<tr>
<td>Criticality Levels χ_i:</td>
<td>A, B, C, or D</td>
</tr>
<tr>
<td>WCETs:</td>
<td>Only Two WCETs:</td>
</tr>
<tr>
<td>$C_i(A)$, $C_i(B)$, $C_i(C)$, $C_i(D)$</td>
<td>$C_i(SF)$, $C_i(NL)$</td>
</tr>
<tr>
<td>N/A, 321, 10, 5</td>
<td>321, 5</td>
</tr>
</tbody>
</table>

Thm 1:
There are MC instances with L distinct criticality levels specified using the Burns model that are clairvoyantly-schedulable, but that are not schedulable for any fixed priority policy on a processor that is less than s_L^* times as fast.

s_L^* is the root of $x^L = (1 + x)^{L-1}$, i.e., the speedup bound under Vestal model.
Conclusion

• We seek to better understand the Ease-of-use Burns model.

• Unfortunately, we have not identified any analytical benefits in terms of reduced complexity of feasibility analysis, less schedulability loss, etc., at the cost of reduced expressiveness.
Conclusion & Future Work

• We seek to better understand the Ease-of-use Burns model.

• Unfortunately, we have not identified any analytical benefits in terms of reduced complexity of feasibility analysis, less schedulability loss, etc., at the cost of reduced expressiveness.

• Limitation: Fixed-Priority; Job Set; Uniprocessor.
Thank you!

Zhishan Guo
zsguo@cs.unc.edu
WMC’15, San Antonio