
Response Time Analysis for Mixed Criticality
Systems with Arbitrary Deadlines

Alan Burns
Department of Computer Science,

University of York, UK.
Email: burns@cs.york.ac.uk

Robert I. Davis
Department of Computer Science,

University of York, UK.
Email: rob.davis@cs.york.ac.uk

Abstract—This paper extends analysis of the Adaptive
Mixed Criticality (AMC) scheme for fixed-priority preemptive
scheduling of mixed-criticality systems to include tasks with
arbitrary deadlines. Both of the previously published
schedulability tests, AMC-rtb and AMC-max are extended to
cater for tasks with deadlines that may be greater than their
periods. Evaluations show that the simpler method,
AMC-rtb-Arb, remains a viable approach that performs almost
as well as the more complex alternative, AMC-max-Arb, when
tasks with arbitrary deadlines are considered.

I. INTRODUCTION
Since the publication of Vestal’s model [14] there has

been a significant number of papers on the scheduling of
Mixed Criticality Systems (MCS) (see [8] for a survey).
Somewhat surprisingly none of the papers on fixed priority
scheduling of MCS have addressed tasks with so called
arbitrary deadlines that may be greater than their periods. In
this paper we consider this issue within the context of
fixed-priority preemptive systems scheduled according to the
Static Mixed Criticality (SMC) [4] and Adaptive Mixed
Criticality (AMC) [5], [1] schemes.

Arbitrary-deadline tasks cater for situations where there is
some leeway in when a task must execute. For example, a
consumer task that reads items from a buffer must, over a
long time interval, consume items at the same rate as they
are produced; however, the task can have response times that
are longer than its period or some multiple of its period,
provided that buffer has sufficient space to store unread
items. A task set may be unschedulable if its deadlines are
constrained (i.e. less than or equal to their periods), but may
meet all of its time constraints if a few tasks are allowed to
have arbitrary deadlines.

The remainder of the paper is organized as follows. In
Section II, we outline the standard MCS model. In Section
III, we recap on the extended form of response-time analysis
for arbitrary-deadline tasks. Section V then reviews existing
schedulability analysis for SMC and AMC, assuming tasks
with constrained deadlines. The main contribution of the paper
is the new response-time analyses derived in Section VI for the
AMC scheme, catering for arbitrary-deadline task sets. Section
VII discusses priority assignment, while Section VIII evaluates
the performance of the various schedulability tests. Section IX
concludes.

II. SYSTEM MODEL, TERMINOLOGY AND NOTATION
In this paper, we are interested in the Fixed Priority

Preemptive Scheduling (FPPS) of a single processor MCS
comprising a static set of n sporadic tasks. Each task, τi, is
defined by its period (or minimum inter-arrival time), relative

deadline, worst-case execution time (WCET), criticality level,
and unique priority: (Ti, Di, Ci, Li, Pi). Task deadlines may
be arbitrary, i.e. less than, equal to or greater than their
periods.

We assume that each task τi gives rise to a potentially
unbounded sequence of jobs, with the release of each job
separated by at least the minimum inter-arrival time from the
release of the previous job of the same task. The worst-case
response time of task τi is denoted by Ri and corresponds to
the longest response time from release to completion for any
of its jobs. For tasks with arbitrary deadlines, more than one
job of the same task may be active at any given time.
Among jobs of the same task, those released earlier are
executed first.

The system is assumed to be defined over two criticality
levels (HI and LO). Each LO-criticality task τj is assumed
to have a single estimate of its WCET: Cj(LO), while each
HI-criticality task τk has two estimates: Ck(HI) and
Ck(LO), with Ck(HI) ≥ Ck(LO). (Note we drop the task
index when using these and other terms in a generic way, but
include the index when referring to the parameters of a
specific task). Most scheduling approaches for MCS identify
different modes of behavior. In the LO-criticality (or normal)
mode, all tasks execute within their C(LO) bounds and all
deadlines are required to be met. At all times LO-criticality
tasks are constrained by run-time monitoring to execute for
no more than their C(LO) bound. In contrast, if a
HI-criticality task executes for C(LO) without signaling
completion then the system enters HI-criticality mode. In this
mode only HI-criticality tasks are required to meet their
deadlines. HI-criticality tasks are assumed to execute for no
more than C(HI). The response time of a task τi in
LO-criticality mode is denoted by Ri(LO) and in
HI-criticality mode by Ri(HI).

III. EXISTING ANALYSIS FOR FPPS
For constrained-deadline tasks (Di ≤ Ti) in a single

criticality level system, the response time of task τi can be
computed as follows (see [11], [3] for a full derivation):

Ri = Ci +
∑

j∈hp(i)

⌈
Ri
Tj

⌉
Cj (1)

where hp(i) is the set of tasks with higher priority than τi.
This and all subsequent response time equations can be solved
via fixed point iteration. Iteration starts with a value of Ri = 0
and continues either until convergence or until the computed
response time exceeds the task’s deadline.



For tasks with arbitrary deadlines (Di ≥ Ti) then it is
possible in a schedulable system that Ri ≥ Ti. It follows that
there can be more than one job of task τi active within the
same priority level-i busy period; any of these jobs can give
rise to the worst-case response time for the task. We use q
as an index to denote each job within the busy period, with
q = 0 indicating the first job. The completion time of each job
of the task, ri(q) (0 ≤ q ≤ p), as measured from the start of
the busy period, can be computed as follows (see [13] for a
full derivation):

ri(q) = (q + 1)Ci +
∑

j∈hp(i)

⌈
ri(q)

Tj

⌉
Cj (2)

The last job in the busy period is denoted by p, which is the
first value where completion of the job occurs before the next
release of the task, i.e. where ri(p) ≤ (p+1)Ti. The response-
time of each job q is calculated as follows:

∀q(0≤q≤p) : Ri(q) = ri(q)− qTi (3)

With the worst-case response time of the task given by:

Ri = max
∀q(0≤q≤p)

{Ri(q)} (4)

This analysis for FPPS scheduling of arbitrary-deadline
tasks can be applied to MCS by simply assuming that all
HI-criticality tasks have a single execution time of C(HI)
and all LO-criticality tasks have a single execution time of
C(LO).

IV. EXISTING ANALYSIS FOR SMC
Static Mixed Criticality (SMC) [4] is a simple scheme

that extends Vestal’s original approach [14] with run-time
monitoring. Under SMC, LO-criticality tasks continue to be
released and to execute in HI-criticality mode; however, they
are not required to meet their deadlines in that mode. (Recall
that all tasks are required to meet their deadlines in
LO-criticality mode).

Under SMC, the worst-case response times for constrained-
deadline tasks may be computed as follows:

Ri(Li) = Ci(Li)

+
∑

∀j∈hp(i)

⌈
Ri(Li)

Tj

⌉
Cj(min(Li, Lj)) (5)

We note that the arbitrary-deadline analysis for FPPS given
by (2), (3), and (4) can be adapted to SMC by changing Ci to
Ci(Li) and Cj to Cj(min(Li, Lj)).

V. EXISTING ANALYSES FOR AMC
With Adaptive Mixed Criticality (AMC) [5], if a

HI-criticality task executes for C(LO) without completing,
then the system enters HI-criticality mode. AMC differs from
SMC in that in HI-criticality mode, previously released jobs
of LO-criticality tasks may be completed, but subsequent
releases of LO-criticality tasks are not started. Similar to
SMC, only HI-criticality tasks are required to be schedulable
in HI-criticality mode. Also, in common with SMC,
LO-criticality mode may be re-entered when the processor
becomes idle.

In the original paper [5] two sufficient schedulability tests
were developed for AMC. The first approach, called
AMC-rtb (where rtb denotes ‘response time bound’) takes
account of a bound on the duration over which LO-criticality

tasks can interfere. The second, more complex approach is
called AMC-max; it determines the maximum response time
assuming all possible times at which the criticality mode
change could occur.

A. AMC-rtb Analysis
The AMC-rtb analysis first computes the worst-case

response time for each task τi in the LO-criticality mode:

Ri(LO) = Ci(LO) +
∑

τj∈hp(i)

⌈
Ri(LO)

Tj

⌉
Cj(LO) (6)

During the mode change and subsequent HI-criticality
mode only HI-criticality tasks are required to be schedulable.
The worst-case response time of a HI-criticality task τi can
be computed as follows:

Ri(HI) = Ci(HI) +
∑

τj∈hpH(i)

⌈
Ri(HI)

Tj

⌉
Cj(HI) +

∑
τk∈hpL(i)

⌈
Ri(LO)

Tk

⌉
Ck(LO) (7)

where hpH(i) is the set of HI-criticality tasks with higher
priority than τi, and hpL(i) is the set of LO-criticality tasks
with higher priority than τi. Note that higher priority
LO-criticality tasks released after Ri(LO) cannot cause
interference, since if task τi has not completed by Ri(LO)
then the system must have switched to HI-criticality mode.

B. AMC-max analysis
The AMC-rtb analysis given in (7) is potentially

pessimistic in that it assumes all jobs of higher priority
HI-criticality tasks contribute C(HI), and yet also assumes
that the mode change takes place as late as possible at
R(LO) allowing jobs of higher priority LO-criticality tasks
to contribute interference of C(LO) until that point. This
pessimism is avoided by the AMC-max analysis, which
assumes that a mode change takes place at some time s,
measured from the start of the busy period for task τi. All
jobs of higher priority tasks that complete before that time
can cause interference equating to at most their C(LO)
values, and after that time, no new jobs of LO-criticality
tasks can be released and contribute interference. (Note that
the AMC-max analysis for tasks in LO-criticality mode is the
same as that for AMC-rtb, i.e. (6)).

AMC-max computes the worst-case response time Rsi (HI)
of HI-criticality task τi, assuming a mode change at time s,
and then takes the maximum of these values over all possible
values of s.

Rsi (HI) = Ci(HI) + IL(s) + IH(s) (8)

where IL(s) is the interference from higher priority
LO-criticality tasks, and IH(s) is the interference from
higher priority HI-criticality tasks.

As jobs of higher priority LO-criticality tasks are prevented
from being released after the mode change at time s, their
worst-case interference is upper bounded by:

IL(s) =
∑

j∈hpL(i)

(⌊
s

Tj

⌋
+ 1

)
Cj(LO) (9)

IH(s) is defined by considering the number of jobs of
each higher priority HI-criticality task τk that can execute in



a busy period of length t, with the mode change taking place
at time s < t. Only those jobs that may have some part of
their execution after time s can contribute interference of
C(HI), with the remainder contributing C(LO).

The maximum number of jobs of τk with Dk ≤ Tk that
can fit into an interval of length t− s is bounded by:⌈

t− s− (Tk −Dk)

Tk

⌉
+ 1 (10)

Equation (10) can be pessimistic; including more jobs than can
actually be present in an interval of length t. This is taken into
account by defining:

M(k, s, t) = min

{⌈
t− s− (Tk −Dk)

Tk

⌉
+ 1,

⌈
t

Tk

⌉}
(11)

where M(k, s, t) is the maximum number of jobs of τk that can
exhibit HI-criticality behavior in a busy period of length t with
a transition to HI-criticality mode at time s. The interference
term for higher priority HI-criticality tasks thus becomes:

IH(s) =
∑

k∈hpH(i)

{
M(k, s, t) Ck(HI) +

(⌈
t

Tk

⌉
−M(k, s, t)

)
Ck(LO)

}
(12)

Hence the worst-case response time with a mode change at
time s is given by:

Rsi (HI) = Ci(HI) +
∑

j∈hpL(i)

(⌊
s

Tj

⌋
+ 1

)
Cj(LO) +

∑
k∈hpH(i)

{
M(k, s,Rsi )Ck(HI)+

(⌈
t

Tk

⌉
−M(k, s,Rsi )

)
Ck(LO)

}
(13)

The worst-case response time of the task is then the maximum
over all possible values of s:

R∗i (HI) = max
∀s

(Rsi (HI)) (14)

Finally, it is necessary to limit the number of values of s
that that are considered from the range of possible values
[0, RLOi ]. In (13), the hpL term increases as a step function
with increasing values of s, while the hpH term decreases.
It follows that Rsi (HI) can only increase at values of s
corresponding to multiples of the periods of LO-criticality
tasks – hence these are the only values of s that need to be
considered. Note that a LO-criticality job released at exactly
RLOi will not be allowed to execute, and hence s is restricted
to the interval [0,RLOi ).

VI. ARBITRARY-DEADLINE ANALYSIS FOR AMC
In this section, we present new analysis for

arbitrary-deadline tasks scheduled according to AMC. The
two new methods are referred to as AMC-rtb-Arb and
AMC-max-Arb (“Arb” meaning arbitrary deadline). They
build on the existing analysis for AMC-rtb, AMC-max [5]
and the classical arbitrary-deadline analysis for FPPS [13].

A. AMC-rtb-Arb Analysis
The strategy behind AMC-rtb is to count interference from

each job of a higher priority HI-criticality task τk as Ck(HI),
and to assume that each job of a higher priority LO-criticality
task τj released up to the LO-criticality response time of the
task under analysis τi causes interference of Cj(LO). We adapt
this strategy to the case of arbitrary deadlines.

First we consider each task τi in LO-criticality mode. The
length rLi (q) of the busy period in LO-criticality mode up to
completion of job q of τi is given by:

rLi (q) = (q+1)Ci(LO) +
∑

j∈hp(i)

⌈
rLi (q)

Tj

⌉
Cj(LO) (15)

The worst-case response time of each job is therefore:

∀q(0≤q≤p) : Ri(LO)(q) = rLi (q)− qTi (16)

and the worst-case response time of the task in LO-criticality
mode is given by:

Ri(LO) = max
∀q(0≤q≤p)

{Ri(LO)(q)} (17)

As with the classical analysis for FPPS, iteration over the
values of q ends at p, the smallest value such that
rLi (p) ≤ (p + 1)Ti, indicating that rLi (p) corresponds to the
end of the priority level-i busy period in LO-criticality mode.

Analysis for each HI-criticality task τi considering the
mode switch and HI-criticality behavior proceeds in a similar
fashion. Compared to LO-criticality mode, due to the larger
amounts of interference, it is possible that the busy period
extends over more releases of jobs of task τi. Let v be the
index of the last job of τi in this longer priority level-i busy
period. Note that v ≥ p, where p is the last release
considered in LO-criticality mode.

When analyzing HI-criticality behavior, for each job q,
we consider the longest time for which the system can
remain in LO-criticality mode, and so LO-criticality tasks
can be released. This is given by rLi (q) provided that q ≤ p.
In the case that q > p then it is not possible for
LO-criticality mode to extend as far as the release of job q,
since releases of LO-criticality jobs cannot take place beyond
rLi (p). The relevant equations become:

rHi (q) = (q + 1)Ci(HI) +
∑

j∈hpH(i)

⌈
rHi (q)

Tj

⌉
Cj(HI) +

∑
k∈hpL(i)

⌈
rLi (min(q, p))

Tk

⌉
Ck(LO) (18)

∀q(0 ≤ q ≤ v) : Ri(HI)(q) = rHi (q)− qTi (19)

Ri(HI) = max
∀q(0≤q≤v)

{Ri(HI)(q)} (20)

This formulation shares similar pessimism to the
constrained-deadline analysis on which it is based. As with
AMC-rtb, it assumes that jobs of higher priority HI-criticality
tasks cause interference of C(HI) over the entire busy
period, while higher priority LO-criticality tasks can interfere
over the duration of a maximum length LO-criticality busy
period. Often these two cases cannot occur together leading
to pessimism. The following analysis, building on
AMC-max, seeks to remove this pessimism.



B. AMC-max-Arb analysis for arbitrary-deadline MC tasks
We now extend the ARM-max analysis to

arbitrary-deadline tasks. The analysis for all tasks in
LO-criticality mode is the same as AMC-rtb-Arb, i.e. (15),
(16), and (17). We therefore only consider the schedulability
of HI-criticality tasks across the mode switch and in the
subsequent HI-criticality mode. It turns out that the
derivation, described in Section V-B for the constrained
deadline case, applies with simple adaptations.

We compute the completion time of the qth job of task τi
when the mode switch occurs at time s, as follows:

rsi (q) = XCi(HI) + Y Ci(LO) + IL(s) + IH(s) (21)

where X+Y = q+1. (The values of X and Y are determined
below). Note (9) still provides an upper bound IL(s) on the
interference from LO-criticality tasks.

Following the same argument as the AMC-max analysis,
we need to determine an upper bound IH(s) on the interference
that HI-criticality tasks such as τk can cause in a busy period
of length t if the mode change occurs at time s, with s < t. To
do so, we maximize the number of jobs of τk still potentially
active at time s as all of these jobs can contribute interference
of Ck(HI), while all other jobs of τk contribute Ck(LO). In
an interval of length t− s there can be at most⌈

t− s+ (Dk − Tk)
Tk

⌉
+ 1 (22)

active jobs of τk.
Equation (22) is identical to (10) that caters for D ≤ T ; we

observe that it is also applicable when D > T . Since (11) and
(12) remain unchanged, (21) can be used to compute rsi (q),
with IH(s) given by (12) and IL(s) given by (9).

The number X of jobs of the task under analysis τi which
contribute Ci(HI) can be derived in a similar way to (22).
Accounting for the fact that there are at most q+1 active jobs
in total, we have:

X = min

(⌈
t− s+ (Di − Ti)

Ti

⌉
+ 1, q + 1

)
The remaining steps are:

r∗i (q) = max
∀s

(rsi (q)) (23)

where s takes values corresponding to the release times of jobs
of higher priority LO-criticality tasks in the interval [0, rLi (q))
with rLi (q) given by (15).

∀q(0≤q≤p) : Ri(HI)(q) = r∗i (q)− qTi (24)

where p is the smallest value such that r∗i (p) ≤ (p + 1)Ti.
Finally, the worst-case response time is given by:

Ri(HI) = max
∀q(0≤q≤p)

{Ri(HI)(q)} (25)

VII. PRIORITY ASSIGNMENT
To maximize schedulability it is necessary to assign task

priorities in an optimal way [10]. For arbitrary-deadline task
sets scheduled under FPPS, and for constrained-deadline
mixed-criticality task sets scheduled under SMC or AMC, an
optimal priority ordering can be obtained via Audlsey’s
Optimal Priority Assignment (OPA) algorithm [2].

Davis and Burns [9] proved that it is both sufficient and
necessary to show that a schedulability test meets three
simple conditions in order for Audlsey’s OPA algorithm to

be applicable. These three conditions require that
schedulability of a task according to the test is (i)
independent of the relative priority order of higher priority
tasks, (ii) independent of the relative priority order of lower
priority tasks, (iii) cannot get worse if the task is moved up
one place in the priority order (i.e. its priority is swapped
with that of the task immediately above it in the priority
order). We observe that these three conditions hold for all of
the analyses derived in this paper, and thus Audsley’s OPA
algorithm is applicable.

VIII. EVALUATION
In this section, we present an empirical evaluation of the

schedulability tests introduced for mixed-criticality tasks with
arbitrary deadlines.

A. Task set parameter generation
The task set parameters used in our experiments were

randomly generated as follows:
• Task utilisations (Ui = Ci/Ti) were generated using

the UUnifast algorithm [7], giving an unbiased
uniform distribution of values.

• Task periods Ti were generated according to a log-
uniform distribution with a factor of 100 difference
between the minimum and maximum possible period.

• Task deadlines Di were generated according to a log-
uniform distribution in the range [0.25, 4.0]Ti.

• The LO-criticality execution time of each task was
given by: Ci(LO) = Ui · Ti.

• The HI-criticality execution time of each task was
given by: Ci(HI) = CF · Ci(LO) where CF = 2.0.

• The probability that a generated task was of
HI-criticality was given by the parameter CP = 0.5.

B. Schedulability tests investigated
We investigated the performance of the following

schedulability tests. In all cases, we made use of Audsley’s
Optimal Priority Assignment (OPA) algorithm [2].
• UB-H&L-Arb: This is a necessary test which checks

if all of the tasks are schedulable in LO-criticality
mode and if the HI-criticality tasks are schedulable
in HI-criticality mode (with no LO-criticality tasks
executing). It ignores the mode switch.
UB-H&L-Arb thus provides an upper bound on the
performance of any fixed-priority fully-preemptive
scheme for scheduling mixed-criticality,
arbitrary-deadline tasks.

• AMC-max-Arb: described in Section VI-B.
• AMC-rtb-Arb: described in Section VI-A.
• SMC-Arb: Analysis for Static Mixed Criticality [4]

using a straightforward adaptation of the standard
arbitrary-deadline analysis for FPPS [13].

• FPPS-Arb: The standard arbitrary-deadline analysis
for FPPS [13] described in Section III. This test
requires that both LO- and HI-criticality tasks must
be schedulable in both modes.

In addition to the above tests for arbitrary-deadline tasks,
we also explored the performance that could be obtained by
utilizing existing schedulability tests (e.g. AMC-max [5],
AMC-rtb [5], SMC [4], FPPS [11], [3]) designed for
constrained-deadline task sets. These methods can be used to
provide sufficient tests for arbitrary-deadline task sets via the
simple expedient of constraining any deadline that is greater
than the task’s period to be equal to that period. In the



figures, these methods are denoted by “(Suff.)” indicating a
sufficient test. They are shown using dotted lines, with the
same markers and line colors as the equivalent
arbitrary-deadline tests. Note that UB-H&L-Arb (Suff.) is an
upper bound on the schedulability of all fixed-priority
fully-preemptive methods for constrained-deadline task sets.

C. Experiments
In our experiments, the task set utilization was varied

from 0.025 to 0.9751. For each utilization value, 1000 task
sets were generated (100 for weighted schedulability
experiments) and the schedulability of those task sets
determined using the schedulability tests listed above. The
graphs are best viewed on-line in color.

Figure 1 shows the percentage of task sets generated that
were deemed schedulable for a system of 20 tasks with the
defaults parameters as described in section VIII-A. We
observe that AMC-max-Arb outperforms AMC-rtb-Arb by a
small but significant margin. The performance of both these
tests is relatively close to the theoretical upper bound given
by UB-H&L-Arb; closer than the equivalent tests for
constrained deadlines (dotted lines) are to their bound. This
is due to the fact that longer (arbitrary) deadlines can
compensate for the effects of the overload that occurs on a
criticality mode switch over a longer time interval.

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Sc
he

du
la

bl
e 

Ta
sk

se
ts

 

Utilisation 

UB-H&L-Arb
UB-H&L (Suff.)
AMC-max-Arb
AMC-max (Suff.)
AMC-rtb-Arb
AMC-rtb (Suff.)
SMC-Arb
SMC (Suff.)
FPPS-Arb
FPPS (Suff.)

Fig. 1. Percentage of schedulable task sets

Figure 1 also illustrates that the performance of
AMC-max-Arb and AMC-rtb-Arb is significantly better than
that of SMC-Arb, which in turn is significantly better than
FPPS-Arb. Further, each of these methods provides
performance that is significantly better than the equivalent
constrained-deadline test adapted to provide sufficient
analysis for arbitrary-deadline tasks. Stated otherwise, for
mixed criticality systems scheduled using AMC, SMC, and
FPPS, increasing task deadlines beyond their periods can
provide a substantial increase in guaranteed real-time
performance when the schedulability tests derived in this
paper are employed.

In the following figures we show the weighted
schedulability measure [6] for each schedulability test as a

1Utilization here is computed from the C(LO) values only.

function of some other parameter w which is varied. For
each value of w, this measure combines results for the task
sets generated for all of a set of equally spaced utilization
levels (0.025 to 0.975 in steps of 0.025) weighted by
utilisation level. (See [6] for further details of the weighted
schedulability measure).

Figure 2 shows how the weighted schedulability measure
for each schedulability test changes as the range of task
deadlines is varied from [0.25, 0.25]Ti to [0.25, 5.66]Ti (each
step on the x-axis increases the upper limit of the range by a
factor of 4

√
2, and hence every 4 steps it increases by a factor

of 2). Note in each case the deadlines are chosen at random
according to a log-uniform distribution. As expected, in all
cases schedulability improves as the range of possible
deadlines is expanded.

 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.25 0.35 0.50 0.71 1.00 1.41 2.00 2.83 4.00 5.66

W
ei

gh
te

d 
Sc

he
du

la
bi

lit
y 

Deadlines log-uniform in range [0.25, x] times period 

UB-H&L-Arb UB-H&L (Suff.)
AMC-max-Arb AMC-max (Suff.)
AMC-rtb-Arb AMC-rtb (Suff.)
SMC-Arb SMC (Suff.)
FPPS-Arb FPPS (Suff.)

Fig. 2. Varying the range of task deadlines

We observe that while the range is no greater than
[0.25, 1.0]Ti, then each of the arbitrary-deadline methods
provides exactly the same results as its constrained-deadline
counterpart (i.e. the solid and the dotted lines precisely
overlap). Beyond that point, the arbitrary-deadline analysis
confers increasingly superior performance. We note that the
relative performance of the various schemes (AMC, SMC,
and FPPS) remains broadly similar to that shown in the
baseline experiment.

Figure 3 shows how the weighted schedulability measure
changes as the range of task periods (ratio of max/min
possible task period) is expanded from 100.5 ≈ 3 to
104 = 10, 000. (In this experiment, task deadlines Di were
chosen according to the default settings from the range
[0.25, 4.0]Ti). When the range of tasks periods is small, then
the performance advantage of AMC-max-Arb over
AMC-rtb-Arb is negated. This happens because when the
task periods are similar, AMC-max-Arb counts, via (22),
almost all of the jobs of each higher priority HI-criticality
task as contributing interference of C(HI). In this case, the
analysis effectively reduces to that of AMC-rtb-Arb; all jobs
of higher priority HI-criticality tasks contribute C(HI), and
the maximum response time occurs when the transition to
HI-criticality mode is as late as possible allowing the
maximum interference from LO-criticality tasks. As the



range of task periods increases, so AMC-max-Arb begins to
confer an advantage.

 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

W
ei

gh
te

d 
Sc

he
du

la
bi

lit
y 

Task period range 10r 

UB-H&L-Arb UB-H&L (Suff.)
AMC-max-Arb AMC-max (Suff.)
AMC-rtb-Arb AMC-rtb (Suff.)
SMC-Arb SMC (Suff.)
FPPS-Arb FPPS (Suff.)

Fig. 3. Varying the range of task periods

The performance of SMC-Arb is substantially better,
weighted schedulability ≈ 0.67, when the range of task
periods is small, declining to ≈ 0.56 as the range of task
periods increases. This effect is due to the influence of
optimal priority assignment. If Deadline Monotonic Priority
Order is assumed for SMC-Arb, then the result is a nearly
horizontal line, with weighted schedulability ≈ 0.47 (this is
not shown to avoid cluttering the graph). With arbitrary
deadlines and a small range of task periods, the performance
of SMC-Arb can be enhanced by the OPA algorithm placing
LO-criticality tasks at low priority levels. These tasks are
schedulable in LO-criticality mode, assuming interference of
C(LO) from higher priority HI-criticality tasks. (Note such
an arrangement would not be feasible under FPPS-Arb where
LO-criticality tasks also have to be schedulable in
HI-criticality mode, where they are subject to interference of
C(HI) due to higher priority HI-criticality tasks). As a
consequence, HI-criticality tasks can be placed at higher
priority levels and thus have fewer higher priority
LO-criticality tasks that contribute interference when
HI-criticality mode is considered, improving overall
schedulability. The amount of flexibility available via priority
assignment reduces as the range of task periods becomes
larger and the deadlines of the tasks become more widely
separated. This reduces the performance of SMC-Arb.

Finally, observe that in the case of the
constrained-deadline methods, when the range of task periods
is small, then once constrained to the range [0.25, 1.0]Ti all
of the task deadlines are fairly similar and hence
schedulability is low compared to the situation with a much
larger range of periods (and deadlines). This is a well-known
property of FPPS. It happens when the total interference
from higher priority tasks in a given interval is considerably
higher than that implied by their utilization [12]. With longer,
arbitrary deadlines or with a larger range of task periods, this
excess interference reduces and so schedulability improves.

We also explored the effects of varying the number of tasks,
the criticality factor (CF), and the criticality percentage (CP).

These results were broadly in line with those reported for the
baseline experiment. The graphs are not shown here due to
space limitations.

IX. CONCLUSIONS
In this paper, we considered the problem of scheduling

mixed-criticality systems on a single processor. We studied
the Adaptive Mixed Criticality (AMC) scheme that requires
additional run-time support, but is able to provide superior
schedulability guarantees to Static Mixed Criticality (SMC) or
Fixed Priority Preemptive Scheduling (FPPS). Previous studies
of AMC have restricted the task model to constrained-deadline
tasks. In this paper we lifted this restriction, allowing tasks to
have arbitrary deadlines.

There are two main published schedulability tests for the
AMC scheme: AMC-rtb and AMC-max. In this paper we
extended both tests to allow tasks to have deadlines greater
than their periods. Our evaluation demonstrates that the
simpler AMC-rtb-Arb form of analysis remains effective for
tasks with arbitrary deadlines. The AMC-max-Arb analysis
delivers improved schedulability, but at a cost in terms of
increased complexity of the method.

Acknowledgements
The research in this paper is partially funded by the ESPRC grant,

MCCps (EP/K011626/1). EPSRC Research Data Management: No
new primary data was created during this study.

REFERENCES
[1] S. Asyaban and M. Kargahi. An exact schedulability test for fixed-

priority preemptive mixed-criticality real-time systems. Real-Time
Systems, Aug 2017.

[2] N. Audsley. On priority assignment in fixed priority scheduling.
Information Processing Letters, 79(1):39–44, 2001.

[3] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings.
Applying new scheduling theory to static priority preemptive
scheduling. Software Engineering Journal, 8(5):284–292, 1993.

[4] S. Baruah and A. Burns. Implementing mixed criticality systems in
Ada. In A. Romanovsky, editor, Proc. of Reliable Software Technologies
- Ada-Europe 2011, pages 174–188. Springer, 2011.

[5] S. Baruah, A. Burns, and R. I. Davis. Response-time analysis for mixed
criticality systems. In IEEE Real-Time Systems Symposium (RTSS),
pages 34–43, 2011.

[6] A. Bastoni, B. Brandenburg, and J. Anderson. Cache-related
preemption and migration delays: Empirical approximation and impact
on schedulability. In Proc. of Sixth International Workshop on
Operating Systems Platforms for Embedded Real-Time Applications,
pages 33–44, 2010.

[7] E. Bini and G. Buttazzo. Measuring the performance of schedulability
tests. Journal of Real-Time Systems, 30(1-2):129–154, 2005.

[8] A. Burns and R. I. Davis. A survey of research into mixed criticality
systems. ACM Computing Surveys, To appear, 2017.

[9] R. Davis and A. Burns. Improved priority assignment for global fixed
priority pre-emptive scheduling in multiprocessor real-time systems. In
Real-Time Systems, Volume 47, Issue 1, pages 1–40, 2010.

[10] R. I. Davis, L. Cucu-Grosjean, M. Bertogna, and A. Burns. A
review of priority assignment in real-time systems. Journal of systems
architecture, 65:64–82, 2016.

[11] M. Joseph and P. Pandya. Finding response times in a real-time system.
BCS Computer Journal, 29(5):390–395, 1986.

[12] C. Liu and J. Layland. Scheduling algorithms for multiprogramming
in a hard real-time environment. JACM, 20(1):46–61, 1973.

[13] K. Tindell, A. Burns, and A. J. Wellings. An extendible approach
for analysing fixed priority hard real-time tasks. Journal of Real-Time
Systems, 6(2):133–151, 1994.

[14] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In Proc. of the IEEE
Real-Time Systems Symposium (RTSS), pages 239–243, 2007.


