Guaranteeing Timing Constraints Under Shortest Remaining Processing Time
Scheduling

R.L Davis, A. Burns and W. Walker
Real-Time Systems Research Group
Department of Computer Science
University of York

Abstract

The scheduling scheme “shortest remaining processing
time" (SRPT) has the advantage that it minimises mean re-
sponse times. In this paper we present feasibility tests for
SRPT that will enable this scheduling approach to be used
for real-time systems. Examples are given of task sets that
are schedulable under SRPT but not by fixed priority based
scheduling.

1. Introduction

In scheduling theory, the notion of priority is used to de-
scribe the attribute of a task or process which is used to
determine which of a set of competing tasks will utilize the
processor at any given time. Scheduling algorithms them-
selves can be classified according to the way in which this
notional “priority” is assigned and how it varies with time.
The main distinction is between fixed and dynamic priority
schemes.

In fixed priority preemptive scheduling, task priorities
assume constant values, allocated off-line by some priority
assignment policy such as Deadline Monotonic priority as-
sighment. At run time, each invocation of a given task has
the same fixed priority. This priority does not vary as the
task executes (other than to implement some concurrency
control protocal for resource sharing),

In 1972, Liu and Layland [4] (and others) showed that
a simple sufficient feasibility test could be used to deter-
mine if a set of independent periodic tasks assigned prior-
ities according to the Rate Monotonic priority assignment
policy would always meet their deadlines when dispatched
to the processor on 2 fixed priority preemptive basis. Subse-
quently, exact feasibility tests have been developed for task
sets scheduled according to general fixed priority preemp-
tive dispatching {3], [1].

Dynamic priority algorithms may be divided into two

types:

1. EDF like algorithms: The priority of each invocation
of a given task is determined dynamically and then
remains fixed for the duration of the invocation. For
example with EDF scheduling (earliest deadline first),
the priority of a task at invocation depends on its dead-
line, which is a fixed value determined at the release
of the task, similarly for FCFS (first come first served)
scheduling, the priority of a task is equivalent to its
release time. Liu and Layland [4] showed that a set
of independent periodic task will always meet their
deadlines when scheduled according to EDF provided
that the total utilisation of the task set is no more then
100%.

2. RPT like algorithms: The priority of every invocation
of a given task is the same at the release of that invo-
cation. However the priority of each invocation then
varies in proportion to the remaining execution time of
the invocation. We refer to this type of scheduling al-
gorithm as a ‘RPT’ algorithm (Remaining Processing
Time). The shortest remaining processing time (SRPT)
and maximum value density first (MVDF) algorithms
are examples of RPT algorithms.

In 1956, Smith [7] showed that scheduling a set of tasks
in shortest remaining processing time order results in the
minimum mean response time for the set of tasks. Build-
ing upon this result, Locke [5] showed that MVDF results
in a schedule which maximised the total value accrued by
completing tasks at any given time.

Since 1956, there has been much interest in RPT type al-
gorithms in the field of job-shop scheduling, since these al-
gorithms minimise/maximise some metric of interest, such
as the mean flow time (response time). However, since the
early 197(0’s the majority of research into real-time schedul-
ing has focused on fixed priority (FP) or EDF algorithms.
The development of feasibility tests for these algorithms

meant that ¢ priori analysis could be performed to deter-
mine if tasks scheduled by FP or EDF would always meet
their deadlines at run-time.

Although the primary aim of (hard) real-time system
scheduling is to ensure that time constraints (deadlines) are
always met, once this criteria is fulfilled, other metrics be-
come important. For example, a system which meets all
deadlines and provides the minimum mean response time
for jobs may be considered to provide a higher quality of
service than a comparable system which meets deadlines
but results in longer average delays.

In this paper, we show that there is a critical instant for
tasks scheduled according to the SRPT algorithm analogous
to that given by Liu and Layland for FP scheduling. We
provide a simple sufficient but not necessary feasibility test
for SRPT based upon similar tests derived for fixed priority
scheduling. This approach is then extended to provide an
exact feasibility test for tasks scheduled by SRPT. Examples
are given of task sets which are feasible under SRPT but not
under FP preemptive scheduling and vice versa.

2. Computational Model

In this paper, we consider a uniprocessor system execut-
ing a set of n tasks. Each task, 73, is assumed to have a min-
imum inter-arrival time (between invocations) of T}, a worst
case execution time (wcet) C; and a deadline D;. Task ar-
rival may therefore be periodic or sporadic. We assume that
V1, . D; < T;. The set of tasks ;... 7, are ordered ac-
cording to their execution times. Thus 7 is the task with
the shortest weet (i.e. smallest C'). We use sp(i) to denote
the set of tasks with shorter worst case execution times than
;. The alternative set, [p(i}, have longer processing time.

Throughout this paper, we assume preemptive shortest
remaining processing time scheduling. At any given time,
the task which is allocated the processor is the runnable task
with the shortest remaining processing time. It is assumed
that nothing is known about the remaining processing time
of a task save the worst case execution time C; and the time
for which the current invocation of the task has executed.
Thus if C; is the wcet of task 7; and it has executed for
titne ¢' then the remaining execution time is assumed to be
C; — t'. In general, we use C;(t) to denote the remaining
processing time of the current invocation of task 7; at some
arbitrary time ¢, The value C;(¢) = 0 implies that the task
has completed its current invocation.

3. Critical Instant

In this section, we derive a critical instant for SRPT
scheduling. By a critical instant, for task 7;, we refer to
the arrangement of task releases and executions such that

task 7; exhibits the largest possible delay between release
and completion. We refer to this largest possible delay as
the worst case response time, R;, of task ;.

We now give a general formula for the worst case re-
sponse time of task ;:

R =C; + Bi + I

Where I; is the maximum interference which 7; is sub-
ject to between its release and completion due to tasks in
the set sp(i). Similarly B; is the maximum time for which
7; is prevented from executing due to the execution of tasks
in the set [p(Z). In fixed priority scheduling, B; is referred
to as blocking.

First we introduce a simple theorem about the execution
order of tasks:

Theorem 1 At any arbitrary time t there can be at most
one task T; which has a wcet C'; greater than some arbi-
trary constant C and yet at time t has a remaining execution
which is less than C (i.e. C; > C and Cj(t) < C).

Proof

At time O (system start up) no tasks have the desired prop-
erty: C; > C and C;(t) < C. Without loss of generality,
we assume that at time t there is one task 7, with Cy, > C
and Cy(t) < C. Whilst Cy(t) < C, no other rask T; with
C; > C and C;(t) > C can execute until T, completes.
Hence at any given time, there can only be one task with a
weet greater than C which has a remaining execution time
which is less than C.

[

It follows that at time, ¢, only one task, 7;, from the set Ip(z)
can have C} (t) < Ci.

Theorem 2 The maximum interference which task T; may
be subject to, due to the execution of tasks in the set sp(i),
occurs when 1; and all the tasks in the set sp(i) are released
simultaneously and all subsequent instances are released
periodically.

Proof

We prove this theorem in two steps.

Step 1: we assume that there exists some arbitrary pat-
tern of releases of tasks (1;) in the set sp(i), characterised
by offsets O; (0 < O; < Tj) which leads to the worst case
response time for task .

In this worst case arrangermerit let q; be the number of
invocations of ; which interfere with ;. Thus the interfer-
ence suffered by ; is given by:

3 4G
ViiT;Esp(i)

Ler I;(t) be the cumulative task T; processing released
in the period [0,t), and C;(kT; + O;) be the remaining ex-
ecution time of task T; at the kth release of task 7;. (Note,

Ci(kTj + O;) > C; ¥k : 0 < k < g;) as all q invocations
interfere with ;).

Step 2: we now show that changing the pattern of task
releases assumed in Step | such that any arbitrary task 7;
(tj € spl(i)) is released at times t = 0,T;,2Tj, ... instead
oft = 0,T; + 0;,2T; + Oy, ... results in a worse case
response time for task T; which is at least as large as it is
with the pattern of task releases assunted in Step 1.

Given that 7; is released at time t = 0,Ty,2T5, ... let
Ci(kT;) be the remaining execution time of task T; at the
kth release of task ; and I'(t) be the cumulative task
processing released in the interval [0, t). The interference
due to T; increases by Cat each release of T; thus:

I_,;(ij) = Ij(ij +0;)
and therefore:
I;-(t) > L) Yt 0<t<qiT; + 0y

As all other task releases are at the times assumed in Step
1, all other task invocations which interfered with T; in the
interval [0, kT;) still interfere and therefore: C}(t) > C;(t)
and Cl(kTy) > Ci(kT; + Oy).

Thus all g; invocations of ; still interfere with 1; giving
T; a response time at least as large as in Step 1.

Repeatedly applying Steps 1 and 2 proves that O; = 0
(Vr; € sp(i)) gives a response time for T; which is at least
as long as that for any arbitrary set of task offsets.

O

4. A Sufficient Feasibility Test

From Theorem 1, the maximum time for which task 7;
may be prevented from executing due to the execution of
tasks with longer worst case execution times is:

Bz’:Ci

unless the task has the largest computation time (i.e 7,), in
which case the blocking time (B;) is zero.

From Theorem 2, an upper bound on the interference
which task 7; is subject to, due to the execution of tasks
with shorter worst case execution times, is given by:

R;
j€sp(i) I

An upper bound on the worst case response time of task
7; is thus given by:

R;
Ry =Ci+ Bi+ > {F]C’j 1)
jesp(iy ' 77

where B; = C; for all ; except 7,; for 7y, B, = 0

As R; appears on both sides of this equation (1) and the
summation term is a monotonically increasing function of
R;, it may be solved via a recurrence relation (this is a stan-
dard technique in FI* analysis [11).

?
L el
[Tj] !

jesp(d) '

T?+1 =C; + B; +

Tteration starts with r? = (; and terminates when r?“

ri or when 7}’ > D; in which case the response time of task
T; is greater than its deadline and the task is unschedulable.

We note that this test is pessimistic, it assumes that re-
leases of a task 7; with a shorter weet than 7; will always
interfere with task ;. However this is only in fact the case
if the remaining computation time of 7; is greater than C;.
Consider the task set given in the following table;

task |C | T | R | R
51 21414)| 4
Ta 317157

The values in column R give the actual worst case re-
sponse time of the task, whilst the values in column R’ give
the pessimistic values calculated using the above sufficient
feasibility test.

The timing diagram given below illustrates the actual
execution of the tasks under SRPT. The following points
should be noted:

s At time 4, 7, is released for a second time but it does
not preempt 7» as C2(4) = 1 and C; = 2. The pes-
simistic analysis assumes 7y does preempt and hence
R}, takes a value of 7 rather than 5.

s The third release of 7y shows the effect of ‘blocking’.
At time 8, C3(8) = 2; € is not less than this value so
71 is blocked until 75 completes.

This simple example also illustrates a further interest-
ing point. If the deadlines of the two tasks were (3,7) then
they can be scheduled by FP but not by SRPT. Alternatively
deadlines of (4,5) are amenable to SRPT but not FP. For FP
the tasks have worst case response times of (2,7), for SRPT
they are (4,5). ‘

5. An Exact Feasibility Test

‘We now derive an exact feasibility test for tasks sched-
uled according to the shortest remaining processing time al-
gorithm. This test follows the same form as the sufficient
test given above. The pessimism of the above approach
comes from the assumption that later arrivals of ‘higher pri-
ority’ tasks will always interfere. In reality they will only

0 2 4 6 8 10 12

TIME ——>>

Released but not executing

§ Executing

B

Figure 1. Example task set execution

interfere if they arrive with a computation time shorter than
the remaining processing time of the task under considera-
tion (7;).

' The method for finding the worst case response time of
task 7; follows that used by Davis et al [2] to calculate slack
time, it relies upon two equations. Equation (2) determines
the Iength of the busy period w?“(t) starting at time ¢,
during which tasks with a remaining execution time of less
than C;(t) execute in preference to 7;.

w)

B,;(t) -+

s, (79 [1)e

JEsct(Cu(t))

where sct(X) is the set of tasks with shorter computation
time than X

Tteration starts with w? = 0 and ends when w
w7 then gives the length of the busy period.

Given that time ¢ is the end of a ‘busy period” during
which tasks with remaining computation times less than
C(t) execute, equation (3) determines the length of time
for which 7; executes before being pre-empted by a task
with a shorter remaining execution time.

n+1

—_ T
i =W

_ . Ct(t)s
Vzﬁ(t: Ci (t)) = nun [MiHVjEsct(Cs(f))Mi(t’ Gi(t)) }
(3)

where

Mi(t,Ci(t) = [-jf;] T, -t
t

ifc; <Ci(t)—([27]1}—t)

J
oo otherwise

Combining equations (2) and (3) our method for deter-
mining the worst case response time (R;) proceeds as fol-
lows:

1. The remaining execution time of 7;, C;(t) is initially
set to C; and its response time R; is set to zero.

2. Equation (2) is used to compute the length of the busy
period. This is added to R;.

3. The end of the busy period is used as the start of a
period of task 7; execution, the length of which is cal-
culated using equation (3).

4. The remaining execution time of 7; is decremented by
the length of the ‘idle period’ found in Step 3. The
response time is incremented by the length of the ‘idle
period’.

5. If the remaining execution time of 7; is zero then R;
gives its response time. Otherwise if R; is less than
the deadline of task 7; we repeat Steps 2 - 5. If B; is
greater than or equal to the deadline and the remaining
execution time is non-zero, then task 7; is unschedula-
ble.

This method may be implemented as detailed in the al-
gorithm below:

for each task i1 do

£ := 0
C = C_1i
w{n+l) := 0
B := B_i
while t <= D_i and C > ¢ do
win) := wi{n+l)
win+l) := -- via eguation (2)
if win) = w(n+l) then
t := t + win)
V := -- via eguation (3)
t 1= £ + V
C :=C -V
wi(n+1) := 0
B :=0
end if
end do

if ¢ = 0 then
Task is schedulable,
response time is R = t
else
Task is not schedulable, exit

end do

6. An Example Task Set

In this section we present a more extensive example that
was analysed by a prototype tool that implements the exact

algorithm described above. The example task set is based
upon the GAP case study described by Locke et al [6]. In
Table 1 the task set is given in the order defined by the rate
monotonic algorithm. The response times are calculated us-
ing standard analysis for FP scheduling.

task T D C\| R
wi 250 250 9 9
wa 250 250 | 25| 34
ws 400 400 10| 44
Wy 500 500 |35 79
W3 500 500 | 60 | 139
we 590 590 | 62| 201
wy 700 700 | 28 | 229
Wy 700 700 | 37 | 300
Wy 1000 1000 | 61 | 361
wip { 2000 2000 | 11 | 372
wip | 2000 | 2000 | 12 | 384
wyiz | 2000 | 2000 | 18 | 412
wyg | 2000 | 2000 | 39 | 451
wis | 10000 | 10000 | 19 | 800
wig | 10000 | 10000 | 20 | 830

Table 1. FP Priority order

Table 2 gives the ordering dictated by SRPT and the re-
sponse times found by the exact analysis described earlier.
The example task set was also simulated under the standard
earliest deadline first (EDF) scheduling algorithm.

task T D C| R
wy 250 250 9 | 18
Ws 400 400 | 10| 29

wig | 2000 | 2000 | 11 | 41

wyp | 2000 | 2000 |12 | 54

wig | 2000 | 2000 | 18 | 78

wys | 10000 | 10000 | 19 | 98

wig | 10000 | 10000 | 20 | 119
ws 250 250 | 25] 149
wy 700 700 | 28 | 180
Wy 500 500 | 35| 222
wy T00 700 | 37| 270
L4 2000 2000 | 40 | 377
ws 500 500 | 60 | 467
wy 1000 1000 | 61 | 563
We 590 590 62 | 564

Table 2. SRPT Priority order

Two ways of comparing the FP, SRPT and EDF ap-
proaches (other than noting that they all schedule this task

set) is to examine the observed mean response times for all
tasks; either worse case or mean actual response time up to
the LCM (Least Common Multiple) of their periods. These
results are contained in Table 3, Table 4 and Table 5. Tt is
clear from these tables that while all approaches schedule
the task set, the mean response times of the tasks are signif-
icantly lower under the SRPT scheduling algorithm. Figure
7 illustrates this point. Here the cumulative density of the
tasks’ response times is show.

task | Mean R | Mean R | Mean R
Fp EDF SPTF
Wy 8.0 21.5 9.1
wa 34.0 29.5 45.0
w3 16.8 22.6 11.9
Wy 71.5 101.5 90.2
ws 134.0 i14.0 193.6
we 104.4 106.3 150.7
wr 76.5 103.7 41.8
we 133.9 109.4 93.6
W 265.8 265.8 3134
Wil 309.6 367.2 422
w1 334.8 379.9 60.3
w13 395.6 414.5 187.51
wig | 450.6 400.5 234.21

Table 3. Mean response times

Mean | Standard Deviation
FP 321.0 240.1
EDF | 3526 246.7
SRPT | 216.8 176.8

Table 4. Comparison of mean worst-case re-
sponse times

Mean | Standard Deviation
FP 104.3 -124.1
EDF 110.7 128.8
SRPT | 82.2 93.2

Table 5. Comparison of mean actual response
times

T T T R s LT PR L T
L el

EDF ~+--

SRPT G-

0 1 1 1 1 1 i 1 =i
0 o6 200 300 400 500 600 700 80O %00
Response Time

Figure 2. Cumulative response times

7. Summary

In this paper, we provided sufficient and exact feasibil-
ity tests for task sets scheduled under the SRPT algorithm.
These tests enable a priori analysis to be used to deter-
mine if tasks will always meet their deadlines. This anal-
ysis therefore permits for the first time, the use of SRPT
and other similar algorithms as a fundamental scheduling
approach in real-time systems.

The SRPT algorithm is of particular interest as its use
along with the analysis described in this paper allows task
deadlines to be guaranteed whilst also minimising the mean
response times of tasks.

References

[1] N.C. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J.
Wellings. Applying new scheduling theory to static prior-
ity pre-emptive scheduling. Software Engineering Journal,
8(5):284-292, 1993.

[2] R. Davis, K. Tindell, and A. Burns. Scheduling slack time in
fixed priority pre-emptive systems. In Proceedings Real-Time
Svstems Symposium, 1993.

[3] M. Joseph and P. Pandya. Finding response times in a real-
time system. BCS Computer Journal, 29(5):390-395, 1986.

[4] C. Liu and J. Layland. Scheduling algorithms for multipro-
gramming in a hard real-time environment. JACM, 20(1):46-
61, 1973.

[5] C. Locke. Best-effort decision making for real-time schedul-
ing. CMU-CS-86-134 (PhD Thesis), Computer Science De-
partment, CMU, 1986.

[6] C. Locke, D. Vogel, and T. Mesler. Building a Predictable
Avionics Platform in Ada: A Case Study. Proceedings of the
IEEE 12th Real Time Systems Symposium, 1991.

[7] W. E. Smith. Various optimisers for single-stage production.
Naval research and Logistics Quarterly, 3(1), 1956,

