
Schedulability Analysis for Multi-core Systems
Accounting for Resource Stress and Sensitivity
Robert I. Davis £ �

Department of Computer Science, University of York, UK.

David Griffin £

Department of Computer Science, University of York, UK.

Iain Bate £�

Department of Computer Science, University of York, UK.

Abstract
Timing verification of multi-core systems is complicated by contention for shared hardware resources
between co-running tasks on different cores. This paper introduces the Multi-core Resource Stress
and Sensitivity (MRSS) task model that characterizes how much stress each task places on resources
and how much it is sensitive to such resource stress. This model facilitates a separation of concerns,
thus retaining the advantages of the traditional two-step approach to timing verification (i.e. timing
analysis followed by schedulability analysis). Response time analysis is derived for the MRSS task
model, providing efficient context-dependent and context independent schedulability tests for both
fixed priority preemptive and fixed priority non-preemptive scheduling. Dominance relations are
derived between the tests, and proofs of optimal priority assignment provided. The MRSS task
model is underpinned by a proof-of-concept industrial case study.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Software
and its engineering → Real-time schedulability

Keywords and phrases real-time, multi-core, scheduling, schedulability analysis, cross-core conten-
tion, resource stress, resource sensitivity

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2021.7

Funding Innovate UK HICLASS project (113213) and the ESPRC grants STRATA (EP/N023641/1)
and MARCH (EP/V006029/1). EPSRC Research Data Management: No new primary data was
created during this study.

Acknowledgements The authors would like to thank Rolls-Royce PLC for providing the object code
for one of their aero-engine controllers for use in real-time systems research.

1 Introduction

1.1 Background
The survey published by Akesson et al. in 2020 [1], shows that about 80% of industry
practitioners developing real-time systems are using multi-core processors, about twice the
number that are using single-cores. On a single-core processor, when a task executes without
interruption or pre-emption it has exclusive access to the hardware resources that it needs.
The execution time of the task therefore depends only on its own behavior and the initial state
of the hardware. This is in marked contrast to what happens when a task executes on one
core of a multi-core processor. Multi-core processors are typically designed to provide high
average-case performance at low cost, with hardware resources shared between cores. These
shared hardware resources typically include, the interconnect, caches, and main memory, as
well as other platform specific components. As a consequence, the execution time of a task
running on one core of a multi-core system can be extended by interference due to contention
for shared hardware resources emanating from co-running tasks on the other cores.

© Robert I. Davis, David Griffin, and Iain Bate;
licensed under Creative Commons License CC-BY 4.0

33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Björn B. Brandenburg; Article No. 7; pp. 7:1–7:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rob.davis@york.ac.uk
https://www-users.cs.york.ac.uk/~robdavis/ 
https://orcid.org/0000-0002-5772-0928
mailto:david.griffin@york.ac.uk
mailto:iain.bate@york.ac.uk
https://www-users.cs.york.ac.uk/~ijb/ 
https://doi.org/10.4230/LIPIcs.ECRTS.2021.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


7:2 Schedulability Analysis for Multi-core Systems

This problem of cross-core contention and interference has led to timing verification of
multi-core systems becoming a hot topic of real-time systems research in the decade to 2020.
The survey published by Maiza et al. in 2019 [32] classifies approximately 120 research papers
in this area. Much of this research relies on detailed information about shared hardware
resources and the policies used to arbitrate access to them. This information is then used
to derive analytical bounds on the maximum interference possible due to contending tasks
running on the other cores. In practice, however, there can be substantial difficulties in
obtaining and using such detailed low-level information, since it is not typically disclosed by
hardware vendors. This is because the complex resource arbitration policies and low-level
hardware design features employed comprise valuable intellectual property. Further, even if
such information is available, then the overall behavior can be so complex as to preclude a
static analysis that provides meaningful bounds, as opposed to substantial overestimates.

The predominant industry practice is to use measurement-based timing analysis tech-
niques to estimate worst-case execution times1 (WCETs). However, the simple extension of
measurement-based techniques to multi-core systems cannot provide an adequate solution
that bounds the impact of cross-core interference. This is because cross-core interference is
highly dependent on the timing of accesses to shared hardware resources by both the task
under analysis and its co-runners. In practice, it is not possible to choose the worst-case
combination of behavior (inputs, paths, and timing) for co-running tasks that will result in
the maximum interference occurring [33]. A potential solution to this problem, which is being
taken up commercially [37], is to employ a more nuanced measurement-based approach using
micro-benchmarks [36, 16, 33, 24]. These micro-benchmarks sustain a high level of resource
accesses, ameliorating the timing alignment issues inherent in the naive approach discussed
above. Micro-benchmarks can be used to characterize tasks in terms of the interference that
they can cause, or be subject to, due to contention over a particular hardware resource.

The timing verification of single-core systems has traditionally been solved via a two-step
approach [32]. First context-independent WCET estimates are obtained, either via static or
measurement-based timing analysis. Second, these estimates are used as parameter values in
a task model, with schedulability analysis employed to determine if all of the tasks can meet
their timing constraints when executed under a specific scheduling policy. This separation of
concerns between timing analysis and schedulability analysis brings many benefits; however,
its effectiveness is greatly diminished in multi-core systems due to the fact that execution
times heavily depend on co-runner behavior and the cross-core interference that they bring.
Inflating individual task execution time estimates to account for the maximum amount of
context-independent interference that could potentially occur during the time interval in
which each task executes can result in gross over-estimates that are not viable in practice [27].
Rather, research [2, 10] has shown that it is more effective to consider contention over the
longer time frame of task response times.

1.2 Contribution and Organization

In Section 2, we introduce the Multi-core Resource Stress and Sensitivity (MRSS) task model
that characterizes how much each task stresses shared hardware resources and how much each
task is sensitive to such resource stress. The MRSS task model provides a simple interface and
a separation of concerns between timing analysis and schedulability analysis, thus retaining

1 About 66% of the industry practitioners surveyed by Akesson et al. [1] used some form of measurement-
based timing analysis, whereas only about 33% used some form of static timing analysis.



R. I. Davis, D. Griffin, and I. Bate 7:3

the advantages of the traditional two-step approach to overall timing verification. The MRSS
task model relies on timing analysis, either measurement-based or static, to provide task
parameter values characterizing stand-alone (i.e. no contention) WCETs, resource stresses,
and resource sensitivities. Thus, it provides the information needed by schedulability analysis
to integrate cross-core interference into the computation of bounds on task response times,
and hence determine the schedulability of tasks running on multi-core systems. The MRSS
task model is generic and versatile. It supports different types of interference that occur via
cross-core contention for shared hardware resources, as follows:

(i) Limited interference where contention for the resource is ameliorated by parallelism
in the hardware. Here, the interference is sub-additive, i.e. less than the time that the
co-running task on another core spends accessing the resource.

(ii) Direct interference where the bandwidth of the resource is shared between contending
cores, for example with Round-Robin bus. Here, the interference is additive, directly
matching the time that co-running tasks spend accessing the resource.

(iii) Indirect interference where contention causes additional interference, over and above
the bandwidth consumed by co-running tasks (i.e. a super-additive effect), due to
changes in the state of the resource that cause further delays to subsequent accesses.
An example of indirect interference occurs with main memory (DRAM) [22] when
interleaved accesses target different rows, resulting in additional row close and row open
operations, increasing memory access latency.

The MRSS task model is not however a panacea, it cannot support unbounded interference
where task execution is disproportionately impacted by contending accesses. This includes
cases where contenders can effectively lock a resource for an extended or unbounded amount
of time, or change the information stored in the resource in such a way that it needs to be
obtained from elsewhere. Problems of cache thrashing [36], cache coherence [17], and cache
miss status handling registers [41] can all cause effectively unbounded interference, and need
to be eliminated from systems aimed at providing real-time predictability.

Section 3 introduces schedulability analysis for the MRSS task model, considering task
sets scheduled according to partitioned fixed priority preemptive scheduling (pFPPS) and
partitioned fixed priority non-preemptive scheduling (pFPNS) policies2. Two types of
schedulability test are derived: (i) context-dependent tests that make use of information
about the co-running tasks on the other cores, and (ii) context-independent tests that use
only information about the tasks running on the same core. The latter are less precise, but
fully composable, meaning that if the tasks on one core are changed, then only those tasks
need have their schedulability re-assessed; task schedulability on the other cores is unaffected.
Composability is an important issue for industry, particularly when different companies or
departments are responsible for the sub-systems running on different cores.

In systems that use fixed priority scheduling, appropriate priority assignment is a cru-
cial aspect of achieving a schedulable system [14]. Section 4 investigates optimal priority
assignment, proving that Deadline Monotonic [31] priority ordering is optimal for both
the context-independent and the simpler context-dependent schedulability tests for pFPPS.
Similarly, Audsley’s optimal priority assignment algorithm [4] is proven to be applicable and
optimal for the equivalent tests for pFPNS. The more complex and precise context-dependent
tests are proven incompatible with Audsley’s algorithm [4].

Section 5, provides a systematic evaluation of the effectiveness of the schedulability tests
derived in Section 3. The results of this evaluation follow the dominance relationships

2 The most commonly used real-time scheduling polices in industry practice [1]

ECRTS 2021



7:4 Schedulability Analysis for Multi-core Systems

demonstrated earlier, indicating the superiority of the more complex context-dependent
schedulability tests, while also highlighting the additional contention that adding further
cores brings. Section 6 concludes with a summary and directions for future work.

The appendix presents the findings from a case study examining 24 tasks from a Rolls-
Royce aero-engine control system. These tasks were assessed using measurement-based
timing analysis to obtain broad-brush estimates of their stand-alone WCETs, as well as
characterizing their resource stress and resource sensitivity parameters. The purpose of the
case study was not to try to determine definitive values for these parameters, in itself a
challenging research problem, rather our aim was to obtain proof-of-concept data to act as
an exemplar underpinning the MRSS task model and its analysis.

1.3 Related Work
Prior publications that relate to the research presented in this paper include work on micro-
benchmarks [36, 16, 33, 24, 37] that can be used to stress resources in multi-core systems,
and work on the integration of interference effects into schedulability analysis. Many of
the latter papers are summarized in Section 4 of the survey [32] by Maiza et al. Unlike
the analysis presented in this paper, which uses a generic task model that is applicable to
many different types of interference and a variety of different shared hardware resources,
most of these prior works focus on the details of one or more specific hardware resources.
They require detailed information about the resource arbitration policy used, the number
of resource accesses made by each task, and in some cases the timing of those accesses. By
contrast, this paper takes a more abstract, but nonetheless valid view, that interference can
be modeled in terms of its execution time impact via resource sensitivity and resource stress
parameters for each task. This approach requires less detail about the resource behavior,
and is more amenable to practical use, since it can still be used when full details of shared
resource behavior are not available from the hardware vendor.

Early work on the integration of interference effects into schedulability analysis by
Schliecker et al. [39] used arrival curves to model the resource accesses of each task, and hence
how resource access delays due to contention impact upon task response times. Schliecker’s
work focused on contention over the memory bus. Further work in this area by Schranzhofer
et al. [40], Pellizzoni et al. [35], Giannopoulou et al. [19], and Lampka et al. [28] used the
superblock model that divides each task into a sequence of blocks, and uses information
about the number of resource accesses within different phases of these blocks.

Dasari et al. [9] used a request function to model the maximum number of resource
accesses from each task in a given time interval, and integrated this request function into
response time analysis. Kim et al. [26] and Yun et al. [42] provided a detailed analysis of
contention caused by DRAM accesses, accounting for access scheduling and variations in
latencies due to differing states e.g. open and closed rows. The delays due to contention were
then integrated into response time analysis. Altmeyer et al. [2, 10] introduced a multi-core
response time analysis framework, aimed at combining the demands that tasks place on
difference types of resources (e.g. CPU, memory bus, and DRAM) with the resource supply
provided by those hardware resources. The resulting explicit interference was then integrated
directly into response time analysis. Rihani et al. [38] built on this framework, using it to
analyze complex bus arbitration policies on a many-core processor. Huang et al. [23] and
Cheng et al. [8] leveraged the symmetry between processing and resource access, viewing
tasks as executing and then suspending execution while accessing a shared resource. Using
this suspension model in the schedulability analysis, they obtained results that were broadly
comparable to those of Altmeyer et al. [2].



R. I. Davis, D. Griffin, and I. Bate 7:5

Paolieri et al. [34] proposed using a WCET-matrix and WCET-sensitivity values to
characterize the variation in task execution times in different execution environments (e.g. with
different numbers of contending cores, and different cache partition sizes). This information
was then used to determine efficient task partitioning and task allocation strategies. Andersson
et al. [3] presented a schedulability test where tasks have different execution times dependent
on their co-runners. Here, tasks are represented by a sequence of segments, each of which
has execution requirements and co-runner slowdown factors with respect to sets of other
segments that could execute in parallel with it. The schedulability test involves solving a
linear program to bound the longest response time given the possible ways in which different
segments could execute in parallel and the slowdown in execution that this would entail. The
method has significant scalability issues that effectively limit the total number of tasks it
can handle to approximately 32 tasks on a 4 core system (i.e. 8 tasks per core).

1.4 Inspiration
The research presented in this paper was inspired by the desire to combine a practical approach
to characterizing contention via micro-benchmarks and measurement-based techniques with
a generic form of schedulability analysis that can be applied to a wide range of homogeneous
multi-core systems with different types of shared hardware resources. The aim being to
provide an effective form of timing verification that, while retaining the traditional two-
step approach, is able to avoid undue pessimism by accounting for interference over long
time intervals equating to task response times rather than short time intervals equating to
task execution times. With industry practice in mind, the schedulability analysis derived
includes context-dependent (non-composable), context-independent (fully composable), and
partially composable schedulability tests. The overall method enables task timing behavior
on multi-cores to be assessed without necessitating recourse to detailed information about
the hardware behavior, something that most chip vendors do not make publicly available.

2 System Model and Assumptions

We assume a multi-core system with m homogeneous cores that executes tasks under either
partitioned fixed priority preemptive (pFPPS) or partitioned fixed priority non-preemptive
(pFPNS) scheduling. With partitioning, tasks are assigned to a specific core and do not
migrate. The tasks are assumed to be independent, but may access a set of shared hardware
resources r ∈ H, thus causing interference on the execution of tasks on other cores via
cross-core contention. We omit from consideration the effects of resource contention between
tasks on the same core, since they are executed sequentially rather than in parallel. We
assume that appropriate techniques are used to avoid substantial preemption effects when
preemptive scheduling is employed, for example cache partitioning can be used to eliminate
cache-related preemption delays. The costs of scheduling decisions and any context switching
are assumed to be subsumed into the task execution times. Each task τi is characterised
by: the minimum inter-arrival time or period between releases of its jobs, Ti, its relative
deadline, Di, and its WCET, Ci, when executing stand-alone, i.e. with no co-runners. All
task deadlines are assumed to be constrained i.e. Di ≤ Ti.

Further aspects of the model are based on the concept of resource sensitive contenders
and resource stressing contenders. A resource stressing contender maximizes the stress on
a resource r by repeatedly making accesses to it that cause the most contention. Hence,
running a resource stressing contender in parallel with a task creates the maximum increase
in execution time for the task due to contention over resource r from any single co-runner.

ECRTS 2021



7:6 Schedulability Analysis for Multi-core Systems

A resource sensitive contender for a resource r, suffers the maximum possible interference
by repeatedly making accesses to the resource that suffer from the most contention. Hence,
running a resource sensitive contender in parallel with a task creates the maximum increase
in execution time for any single co-running contender due to contention over resource r from
the task. Note, resource stressing and resource sensitive contenders for a given resource are
not necessarily one and the same.

Each task is further characterised by its resource sensitivity Xr
i and resource stress Y r

i

for each shared hardware resource r ∈ H. Xr
i captures the increase in execution time of task

τi (from Ci to Ci + Xr
i ) when it is executed in parallel with a resource stressing contender

for resource r. Thus Xr
i models how much task τi behaves like a resource sensitive contender.

Similarly, Y r
i captures the increase in execution time of a resource sensitive contender (from

C to C + Y r
i ) for resource r, when it is executed in parallel with task τi. Hence Y r

i models
how much task τi behaves like a resource stressing contender. With this model, the execution
time of a task τi running on one core, subject to interference via shared hardware resource
r from task τk running in parallel on another core, is increased by at most min(Xr

i , Y r
k )

i.e. from Ci to Ci + min(Xr
i , Y r

k ). The notation Γx is used to denote the set of tasks that
execute on the same core (with index x) as the task of interest τi. Similarly, Γy is used
to denote the set of tasks that execute on some other core (with index y). Each task τi is
assumed to have a unique priority. hp(i) (resp. lp(i)) is used to denote the set of tasks with
higher (resp. lower) priority than task τi. Similarly, hep(i) (resp. lep(i)) is used to denote
the set of tasks with higher (resp. lower) than or equal priority to task τi.

The schedulability tests introduced in this paper are named using the following convention:
CpSched-m-X , where C indicates a contention-based test for p partitioned scheduling,
using scheduling policy Sched, which is either FPPS or FPNS. The test is applicable to
systems with m cores, and makes use of information X , which is either D or R meaning the
deadlines or the response times of the tasks on other cores, or fc meaning fully composable,
i.e. the test does not rely on any information about the tasks running on the other cores.

The MRSS task model assumes that the resource sensitivity Xr
i and resource stress Y r

i

parameters for each task τi are provided by timing analysis. Obtaining precise bounds for
these parameters is a challenging timing analysis problem that is beyond the scope of this
paper; nevertheless, below we give a brief overview of how such values could be estimated.

Using measurement-based timing analysis techniques, the resource sensitivity Xr
i can

be obtained by capturing the maximum difference between the execution time of task τi

when it runs in parallel with a resource stressing contender, and the corresponding execution
time when it runs stand-alone, assuming that the same inputs and initial state are used in
each case. Similarly, the resource stress Y r

i can be obtained by capturing the maximum
difference between the execution time of a resource sensitive contender when it runs in
parallel with task τi, and the corresponding execution time of the contender when it runs
stand-alone. As with measurement-based WCET estimation, such an approach needs to
explore a representative set of inputs and initial states in order to obtain valid estimates.
Further, resource stressing and resource sensitive contenders need to be carefully designed to
meet their requirements in terms of creating/suffering the maximum amount of interference
via contention over the resource [24]. Bounds on resource sensitivity and resource stress can
also be obtained via static timing analysis. Static analysis first needs to compute an upper
bound on the maximum number of accesses Ar

i that task τi can make to the resource. The
resource sensitivity Xr

i can then be computed by determining the maximum increase in the
execution time of task τi assuming that Ar

i accesses are made in contention with an arbitrary
number of accesses emanating from one other core. Similarly, the resource stress Y r

i equates



R. I. Davis, D. Griffin, and I. Bate 7:7

to the maximum increase in the execution time of any arbitrary resource sensitive contender,
due to contention over the resource caused by Ar

i accesses emanating from one other core.
The schedulability analysis presented in Section 3 assumes that the total interference

occurring via multiple different resources can be upper bounded by the sum of the interference
occurring via each of those resources individually. This assumption can reasonably be expected
to hold provided that the resource contention is independent. In other words, that contention
over one resource does not create additional contention over another resource. An example
that breaks this assumption occurs with a cache that is shared between cores. In this case,
cache thrashing [36] can result in additional accesses to main memory, and hence further
contention and interference over that disparate resource. Cache partitioning (per core) would
be an effective way of addressing this issue, thus improving timing predictability.

The analysis also assumes that the total interference occurring due to co-running tasks
on multiple other cores can be upper bounded by the sum of the interference occurring due
to co-running tasks on each of those cores individually. This assumption can reasonably be
expected to hold provided that there are no discontinuities in the amount of interference
that can occur that can be triggered by co-running tasks on a multiple cores, but not by
co-runners on just one core. An example that breaks this assumption occurs with cache miss
status handling registers (MSHR) [41]. In this case, contention from tasks on multiple cores
can exhaust all of the available MSHRs, resulting in substantial blocking delays. Depending
on the local memory level parallelism, utilizing all of the MSHRs is typically not be possible
with just one contending core. Increasing the number of MSHRs, or reducing the local
memory level parallelism, such that contention from all m cores cannot exhaust the set of
MSHRs, are effective ways of addressing this problem [41] and restoring timing predictability.
To validate the use of the analysis given in Section 3, each of the above assumptions needs
to be assessed for the hardware architecture considered.

3 Schedulability Analysis

In this section, we introduce schedulability tests for the MRSS task model, assuming
partitioned fixed priority preemptive scheduling (pFPPS) (Section 3.1), and partitioned
fixed priority non-preemptive scheduling (pFPNS) (Section 3.2). In Section 3.3 we consider
composability and derive context-independent schedulability tests for both pFPPS and pFPNS.
The dominance relationships between the various tests are derived in Section 3.4.

3.1 pFPPS Schedulability Analysis
In the absence of any interference via shared hardware resources, the worst-case response
time of task τi under pFPPS is given via standard response time analysis [25, 5]:

Ri = Ci +
∑

j∈Γx∧j∈hp(i)

⌈
Ri

Tj

⌉
Cj (1)

Adding cross-core interference considering each resource r ∈ H, we may compute the worst-
case response time as follows:

Ri = Ci +
∑

j∈Γx∧j∈hp(i)

⌈
Ri

Tj

⌉
Cj +

∑
r∈H

Ir
i (Ri) (2)

where Ir
i (Ri) is an upper bound on the interference that may occur within the response time

of task τi, via shared hardware resource r, due to tasks executing on the other cores.

ECRTS 2021



7:8 Schedulability Analysis for Multi-core Systems

The interference term Ir
i (Ri) depends on: (i) the total resource sensitivity for resource

r, denoted by Sr
i (Ri, x), for the tasks executing on the same core x as task τi within its

response time Ri; and (ii) the total resource stress on resource r, denoted by Er
i (Ri, y), that

can be produced by tasks executing on each of the other cores y within an interval of length
Ri. The total resource sensitivity Sr

i (Ri, x) is computed based on the jobs that may execute
within the worst-case response time of task τi, hence with reference to (1) we have:

Sr
i (Ri, x) = Xr

i +
∑

j∈Γx∧j∈hp(i)

⌈
Ri

Tj

⌉
Xr

j (3)

The total resource stress Er
i (Ri, y) due to tasks that execute on another core y in the interval

Ri can be upper bounded as follows. Here, unlike in (3), the worst-case does not occur when
these tasks are released synchronously, but rather when the resource contention occurs as late
as possible for one job of a task, and then as early as possible for subsequent jobs. Further,
tasks of any priority can cause interference when executing on other cores. Thus we have:

Er
i (Ri, y) =

∑
j∈Γy

⌈
Ri + Dj

Tj

⌉
Y r

j (4)

The analysis in (4) does not make any assumptions about how long task τj needs to execute
in order to cause an increase in execution time of up to Y r

j in a task running on another
core. In particular, there is no assumption that task τj needs to run for at least Y r

j , since Y r
j

is a measure of the maximum increase in execution time of another task due to contention
from task τj , not a measure of the time for which task τj needs to execute to cause that
contention. Assuming that the execution causing contention can occur instantaneously, as is
done in (4), is potentially pessimistic; however, it ensures that the analysis is sound even
when there is considerable asymmetry in the (small) execution time required to stress a
resource and the (large) increase in execution time of another task, which is sensitive to that
resource stress. Since Xr

k represents the maximum sensitivity of a task τk when subject to
continuous interference via resource r from a maximally resource stressing contender on one
single other core, the maximum interference from other cores that can impact the response
time of task τi via resource r can be upper bounded by:

Ir
i (Ri) =

∑
∀y ̸=x

min(Er
i (Ri, y), Sr

i (Ri, x)) (5)

This is the case, since the maximum interference due to contention from each core y cannot
exceed the total resource stress Er

i (Ri, y) emanating from that core within a time Ri.
We refer to the schedulability test given by (2), (3), (4), and (5) as the CpFPPS-m-D

test, since this test uses information about the deadlines of the tasks running on other cores.
A more precise analysis may be obtained by substituting Rj for Dj in (4) as follows, since

a schedulable job of task τj cannot execute beyond its worst-case response time.

Er
i (Ri, y) =

∑
j∈Γy

⌈
Ri + Rj

Tj

⌉
Y r

j (6)

Using this formulation, the response times of the tasks become interdependent. This problem
can be solved via fixed point iteration. Here, an outer iteration starts with Ri = Ci, Rj = Cj

etc. for all tasks in the system, and repeatedly computes the response times for all tasks on
all cores. This is done using the Rj values in the right hand side of (6) from the previous
round, until all response times either converge (i.e. are unchanged from the previous round)



R. I. Davis, D. Griffin, and I. Bate 7:9

or one of them exceeds the associated deadline. Since Er
i (Ri, y) in (6) is a monotonically

non-decreasing function of each Rj , then on each round, each Rj value can only increase or
remain the same, it cannot decrease. Thus, the outer fixed point iteration is guaranteed to
either converge giving the set of schedulable Ri ≤ Di for all tasks in the system, or to result
in some Ri > Di, in which case that task and the system as a whole is unschedulable. We
refer to the schedulability test given by (2), (3), (5), and (6) as the CpFPPS-m-R test,
since it uses information about the response times of the tasks running on the other cores.

3.2 pFPNS Schedulability Analysis
In the absence of any cross-core contention and interference via shared hardware resources,
the worst-case response time of task τi under pFPNS can be upper bounded via a sufficient
response time analysis [13]:

Ri = max
k∈Γx∧k∈lep(i)

(Ck) +
∑

j∈Γx∧j∈hp(i)

(⌊
Ri − Ci

Tj

⌋
+ 1

)
Cj + Ci (7)

Here, we have reformulated the sufficient analysis for FPNS [13] into a single equation. The
changes involve compacting the blocking term (max()), and bringing the execution time Ci

of the task under analysis into the equation. To compensate for the latter, the time interval
in which higher priority tasks can execute is changed to (Ri − Ci). This excludes the time at
the end of the interval when task τi is executing non-preemptively. We also use a ⌊ ⌋ + 1
formulation rather than ⌈ ⌉ to avoid the need for a term equal to the time unit granularity.

Similar to the case for pFPPS in (2), adding cross-core interference considering each
resource r ∈ H, we may compute an upper bound on the worst-case response time as follows:

Ri = max
k∈Γx∧k∈lep(i)

(Ck) +
∑

j∈Γx∧j∈hp(i)

(⌊
Ri − Ci

Tj

⌋
+ 1

)
Cj + Ci +

∑
r∈H

Ir
i (Ri) (8)

where Ir
i (Ri) is an upper bound on the interference that may occur within the response time

of task τi, via shared hardware resource r, due to tasks executing on other cores. Here, we
make the sound, but potentially pessimistic, assumption that even though the execution
time of task τi may be increased to more than Ci due to contention, only during the final Ci

time units of the task’s response time are other tasks on core x precluded from executing
(i.e. we continue to use (Ri − Ci) in the ⌊ ⌋ function). Further, we use Ri in the final term,
since cross-core contention still occurs during non-preemptive execution.

The interference term Ir
i (Ri) depends on: (i) the total resource sensitivity for resource

r, denoted by Sr
i (Ri, x), for the tasks executing on the same core x as task τi within its

response time Ri; and (ii) the total resource stress on resource r, denoted by Er
i (Ri, y), that

can be produced by tasks executing on each of the other cores y within an interval of length
Ri. The total resource sensitivity Sr

i (Ri, x) is computed based on the jobs that may execute
within the worst-case response time of task τi, hence with reference to (7) we have:

Sr
i (Ri, x) = max

k∈Γx∧k∈lep(i)
(Xr

k) +
∑

j∈Γx∧j∈hp(i)

(⌊
Ri − Ci

Tj

⌋
+ 1

)
Xr

j + Xr
i (9)

The two equations (4) and (6) for the total resource stress Er
i (Ri, y) due to tasks that

execute on another core y in the interval Ri depend only on the tasks parameters and
response times, but not the scheduling policy per se. Thus by redefining Sr

i (Ri, x) according

ECRTS 2021



7:10 Schedulability Analysis for Multi-core Systems

to (9) for the non-preemptive case, we obtain the following pFPNS schedulability tests for
the MRSS task model.

The CpFPNS-m-D test given by (8), (9), (4), and (5) makes use of the deadlines of the
tasks running on the other cores.

The CpFPNS-m-R test given by (8), (9), (6), and (5) makes use of the response times
of the tasks running on the other cores.

3.3 Composability
The schedulability analyses derived in Sections 3.1 and 3.2 make use of information about
the resource contention due to tasks executing on other cores. In other words, these analyses
requires that the resource stress (Y r

j ) values are known for all tasks executing on the other
cores, as well as their other parameters i.e. Tj , Dj , Rj . While this results in tighter response
time bounds, it also means that the analyses are not fully composable, since the schedulability
of the tasks running on one core depend on the parameters of the tasks running on the other
cores. A fully composable analysis can, however, be obtained by redefining (5) as follows:

Ir
i (Ri) =

∑
∀y ̸=x

Sr
i (Ri, x) = (m − 1) · Sr

i (Ri, x) (10)

This equates to assuming a worst-case scenario of resource stressing contenders for each
resource r running on every core. This may be pessimistic on two counts: Firstly, the resource
stressing contenders may cause significantly more interference than the tasks actually running
on the other cores, and secondly, with more than one resource it may not be possible to
maximally stress all resources simultaneously.

Using (10) results in fully composable context-independent schedulability tests. These
tests are able to check the schedulability of task sets on each of the m cores in a system,
without needing to know any of the parameters of the tasks on the other cores. We refer to
the schedulability test given by (2), (3), and (10) as the CpFPPS-m-fc test. Similarly, we
refer to the schedulability test given by (8), (9), and (10) as the CpFPNS-m-fc test.

Finally, an intermediate partially composable analysis can be provided if resource access
regulation mechanisms or budgets are employed to limit the amount of contention emanating
from each core. Let F r

i (t, y) be the maximum increase in execution time of a resource
sensitive contender on another core that can occur due to contention over resource r caused
by a resource stressing contender running on core y for a time period of t, subject to resource
regulation. Partially composable analysis can be obtained by redefining (5) as follows:

Ir
i (Ri) =

∑
∀y ̸=x

min(F r
i (Ri, y), Sr

i (Ri, x)) (11)

Note, this analysis only holds if the resource regulation on each core y does not actually limit
the accesses to each resource r made by tasks on that core over any time interval. Provided
that is guaranteed, no actual runtime enforcement is necessary, the budget function F r

i (t, y)
simply acts as an intermediate value that permits a separation of concerns and composition.

3.4 Dominance Relations
A schedulability test S is said to dominate another test Z for a given task model and
scheduling algorithm, if every task set that is deemed schedulable according to test Z is also
deemed schedulable by test S, and there exists some task sets that are schedulable according
to test S, but not according to test Z.



R. I. Davis, D. Griffin, and I. Bate 7:11

Comparing the definitions of Er
i (Ri, y) given by (6) for the CpFPPS-m-R and CpFPNS-

m-R tests and by (4) for the CpFPPS-m-D and CpFPNS-m-D tests, it is evident that
each of the former tests deems schedulable all task sets that are schedulable according to the
corresponding latter test. This is the case, since in any schedulable system, the response
time of a task is no greater than its deadline (Rj ≤ Dj), and hence the Er

i (Ri, y) term for
the former tests, given by (6), is less then or equal to the equivalent term, given by (4),
for the latter tests. Further, it is easy to see that there exist task sets that are schedulable
according to the each of the former tests, but not according to the corresponding latter test
due to a larger contention contribution emanating from the larger Er

i (Ri, y) term. Hence
the CpFPPS-m-R test dominates the CpFPPS-m-D test, and the CpFPNS-m-R test
dominates the CpFPNS-m-D test.

Comparing the definitions of Ir
i (Ri) given by (5) for the CpFPPS-m-D and CpFPNS-

m-D tests and by (10) for the CpFPPS-m-fc and CpFPNS-m-fc tests, it is evident
that the former tests deems schedulable all task sets that are schedulable according to
the corresponding latter test. Further, it is easy to see that there exist task sets that are
schedulable according to the each of the former tests, but not according to the corresponding
latter test due to a larger contention contribution emanating from the larger Ir

i (Ri) term.
Hence the CpFPPS-m-D test dominates the CpFPPS-m-fc test, and the CpFPNS-m-D
test dominates the CpFPNS-m-fc test.

As dominance is transitive, we have: CpFPPS-m-R → CpFPPS-m-D → CpFPPS-
m-fc and CpFPNS-m-R → CpFPNS-m-D → CpFPNS-m-fc where S → Z indicates
that test S dominates test Z.

Finally, comparing a system of m cores to one with m + 1 cores, where in each case
the first m cores execute exactly the tasks, and the m + 1 core system has extra tasks that
executes on core m + 1, then there is a dominance relationship between the systems as
analysed by any of the schedulability tests. In other words, adding a core and the contention
that it brings cannot improve schedulability for the tasks running on the existing cores, but
may make their schedulability worse. Schedulability for m cores thus dominates that for
m + 1 cores with added tasks: CpSched-m-X → CpSched-(m + 1)-X

4 Priority Assignment

To maximize schedulability it is necessary to assign task priorities in an optimal way [14].
This section considers optimal priority assignment for the schedulability tests introduced in
Section 3.

4.1 pFPPS Priority Assignment
Leung and Whitehead [31] showed that Deadline Monotonic Priority Ordering (DMPO) is
optimal for constrained-deadline task sets with parameters (C, D, T ) under fixed priority
preemptive scheduling. We observe that this result also holds for constrained-deadline
MRSS task sets compliant with model described in Section 2 and analysed according to
the CpFPPS-m-fc test introduced in Section 3.3. This is because that formulation can
be re-arranged to match the basic response time analysis (1), with the execution time of
each task τk increased by

∑
r∈H(m − 1)Xr

k . DMPO is also optimal for constrained-deadline
MRSS task sets analysed according to the CpFPPS-m-D test, introduced in Section 3.1.
Proof is given below using the standard apparatus for proving the optimality of such priority
orderings, as described in section IV of [14]. This proof technique is applicable in cases where
task priorities can be defined directly from fixed task parameters, for example periods and

ECRTS 2021



7:12 Schedulability Analysis for Multi-core Systems

deadlines. To show that a priority assignment policy P (i.e. DMPO) is optimal, it suffices to
prove that any task set that is schedulable according to the schedulability test considered
using some priority assignment policy Q is also schedulable using priority ordering P . Proof
is obtained by transforming priority ordering Q into priority ordering P , while ensuring that
no tasks become unschedulable during the transformation. The proof proceeds by induction.

▶ Theorem 1. Deadline Monotonic Priority Ordering is optimal for constrained-deadline
MRSS task sets compliant with the model described in Section 2 and analysed according to
the CpFPPS-m-D test introduced in Section 3.1.

Proof. Base case: The task set is schedulable with priority order Q = Qk, where k is the
iteration count.

Inductive step: We select a pair of tasks that are at adjacent priorities i and j where
j = i + 1 in priority ordering Qk, but out of Deadline Monotonic relative priority order. Let
these tasks be τA and τB , with τA having the higher priority in Qk. Note that DA > DB as
the tasks are out of Deadline Monotonic relative order. Let i be the priority of task τA in Qk

and j be the priority of task τB . We need to prove that all of the tasks remain schedulable
with priority order Qk−1, which switches the priorities of these two tasks. There are four
groups of tasks to consider:

hp(i): tasks in this set have higher priorities than both τA and τB in both Qk and Qk−1.
Since the schedulability of these tasks is unaffected by the relative priority ordering of τA

and τB , they remain schedulable in Qk−1.
τA: Let w = RB be the response time of task τB in priority order Qk. Since task τB is

schedulable in Qk, we have w = RB ≤ DB < DA ≤ TA, hence in (2), the contribution from
τA within the response time of τB is exactly one job (i.e. CA), and there is also a contribution
of CB from task τB itself. Considering interference, the total resource sensitivity Sr

B(w, x)
given by (3) depends only on the value w and fixed parameters of the set of tasks with
priorities higher than or equal to task τB in Qk that is τA, τB , and hp(i). Further, the total
resource stress Er

B(w, y) due to tasks executing on some other core y depends only on the
value of w and the fixed parameters of the tasks executing on that core. It follows that the
interference term Ir

B(w) given by (5) and used in (2) depends only on the value of w and the
fixed parameters of the set of tasks τA, τB , and hp(i), as well as the fixed parameters of the
tasks executing on all other cores. Now consider the response time of task τA under priority
order Qk+1. This response time is RA = w , as there is exactly the same contribution from
tasks τA, τB and all the higher priority tasks, and further the interference due to resource
contention is the same, in other words Ir

B(w) for Qk equates to Ir
A(w) for Qk+1, since the

value of w is the same, and the set of tasks that this term is dependent upon is unchanged
(τA, τB , and hp(i) on core x, and all of the task on the other cores). Since w < DA, task τA

remains schedulable.
τB: as the priority of τB has increased its response time is no greater in Qk+1 than in

Qk. This is the case because the only change to the response time calculation for τB is the
removal of the contribution from task τA, and also the removal of its contribution to the
total resource sensitivity, and hence from the interference term Ir

B(w). Thus τB remains
schedulable.

lp(j) : tasks in this set have lower priorities than tasks τA and τB in both Qk and Qk+1.
Since the schedulability of these tasks is unaffected by the relative priority ordering of tasks
τA and τB , they remain schedulable.

All tasks therefore remain schedulable in Qk+1.
At most k = n(n−1)/2 steps are required to transform priority ordering Q into P without

any loss of schedulability ◀



R. I. Davis, D. Griffin, and I. Bate 7:13

Next, we consider optimal priority assignment with respect to the CpFPPS-m-R test
introduced in Section 3.1. Davis and Burns proved in [12] that it is both sufficient and
necessary to show that a schedulability test meets three simple conditions in order for
Audsley’s Optimal Priority Assignment (OPA) algorithm [4] algorithm to be applicable.
Condition 1: The schedulability of a task according to the test must be independent of the

relative priority order of higher priority tasks.
Condition 2: The schedulability of a task according to the test must be independent of the

relative priority order of lower priority tasks.
Condition 3: The schedulability of a task according to the test must not get worse if the

task is moved up one place in the priority order (i.e. its priority is swapped with that of
the task immediately above it in the priority order).

▶ Theorem 2. The CpFPPS-m-R test, given in Section 3.1, is not compatible with Audsey’s
Optimal Priority Assignment (OPA) algorithm [4], and hence that algorithm cannot be used
to obtain an optimal priority assignment with respect to the test.

Proof. To prove non-compatibility, it suffices to show that any one of the three conditions
set out in [12] and listed above is broken by the test. In this case, we show that Condition 1
does not hold. According to the CpFPPS-m-R test, the schedulability of a task τi on core
x can depend on the response time of task τj on a different core y via Er

j (Ri, y) given by
(6). In turn, the response time of task τj can depend on the response time of some higher
priority task τk on the same core x as task τi via Er

k(Rj , x) also given by (6). Since the
response time of task τk depends on its relative priority order among those tasks with higher
priority than task τi, Condition 1 does not hold and therefore the CpFPPS-m-R test is
not compatible with Audsley’s OPA algorithm ◀

Although the CpFPPS-m-R test is not compatible with Audsley’s OPA algorithm, the
form of the test, with its dependence on the response times of other tasks, means that a
back-tracking search, as proposed in [11], could potential be used to obtain a schedulable
priority assignment without having to explore all possible priority orderings. The same
applies to the CpFPNS-m-R test discussed in Section 4.2 below.

4.2 pFPNS Priority Assignment
George et al. [18] showed that Deadline Monotonic Priority Ordering (DMPO) is not
optimal for constrained-deadline task sets with parameters (C, D, T ) under fixed priority non-
preemptive scheduling, and proved that Audsley’s algorithm [4] is able to provide an optimal
priority ordering in this case. We observe that this result also holds for constrained-deadline
MRSS task sets compliant with the model described in Section 2 and analysed according to
the CpFPNS-m-fc test introduced in Section 3.3. This is the case because the formulation
can be re-arranged to match the basic response time analysis (7), with the execution time of
each task τk increased by (m − 1)Xr

k . Audsley’s algorithm [4] is also optimal with respect to
the CpFPNS-m-D test, as proved below.

▶ Theorem 3. Audsley’s algorithm [4] is optimal for constrained-deadline MRSS task sets
compliant with the model described in Section 2 and analysed according to the CpFPNS-m-D
test introduced in Section 3.2.

Proof. It suffices to show that the schedulability test meets the three conditions, given in [12]
and set out in Section 4.1. With respect to Condition 1 and Condition 2, inspection
of (8) shows that the first two terms are dependent on the set of lower and equal priority

ECRTS 2021



7:14 Schedulability Analysis for Multi-core Systems

tasks lep(i) and the set of higher priority tasks hp(i) respectively, but do not depend on the
relative priority order of the tasks within those sets. Considering the fourth term in (8),
Ir

i (t) is given by (5). In the definition of Ir
i (t), the total resource sensitivity Sr

i (t, x) is given
by (9), which is dependent on the set of tasks lep(i) and the set of tasks hp(i), but does
not depend on the relative priority order of the tasks within those sets. Finally, the total
resource contention Er

i (t, y) given by (4) has no dependence on the relative priority order of
the tasks in the sets hp(i) and lep(i) (or lp(i)), thus Condition 1 and Condition 2 hold.

With respect to Condition 3, moving task τi up one place in the priority order is
equivalent to moving another task τh that also executes on core x from the set hp(i) to the
set lep(i). Considering (8), such a change may increase the first term by no more than Ch,
but is guaranteed to also reduce the second term by at least Ch. Further, with respect to the
total resource sensitivity Sr

i (t, x), given by (9), such a change may increase the first term by
no more than Xr

h, but is guaranteed to also reduce the second term by at least Xr
h. There is

no change to the total resource stress Er
i (t, y) given by (4). Hence the schedulability of task

τi cannot get worse if the task is moved up one place in the priority order ◀

Finally, we note that the CpFPNS-m-R test is not compatible with Audsley’s OPA
algorithm, since it breaks Condition 1, as proven below.

▶ Theorem 4. The CpFPNS-m-R test given in Section 3.1, is not compatible with Audsey’s
Optimal Priority Assignment (OPA) algorithm [4], and hence that algorithm cannot be used
to obtain an optimal priority assignment with respect to the test.

Proof. Proof follows via exactly the same argument as given in the proof of Theorem 2 in
Section 4.1, replacing the CpFPPS-m-R test with the CpFPNS-m-R test ◀

5 Evaluation

In this section, we present an empirical evaluation of the schedulability tests introduced in
Section 3 for MRSS task sets executing on a multi-core system, assuming a single hardware
resource shared between all cores. (Note, multiple shared hardware resources resulting in the
same total interference would have the same impact on schedulability, due to the summation
terms in (2) and (8)). Experiments were performed for 1, 2, 3, and 4 cores3, with the single
core case considered for comparison purposes.

5.1 Task Set Parameter Generation
The task set parameters used in our experiments were generated as follows:

Task utilizations (Ui = Ci/Ti) were generated using the Dirichlet-Rescale (DRS) al-
gorithm [21] (open source Python software [20]) providing an unbiased distribution of
utilization values that sum to the total utilization U required.
Task periods Ti were generated according to a log-uniform distribution [15] with a factor
of 100 difference between the minimum and maximum possible period. This represents a
spread of task periods from 10ms to 1 second, as found in many real-time applications.
(When considering non-preemptive scheduling, a factor of 10 difference was used, otherwise
most task sets would not be schedulable).

3 The analysis scales to more than 4 cores; however, we limited consideration to this range, since 4 cores
represents a typical cluster size beyond which sharing hardware resources can become a significant
performance bottleneck.



R. I. Davis, D. Griffin, and I. Bate 7:15

Task deadlines Di were set equal to their periods Ti.
The stand-alone execution time of each task was given by: Ci = Ui · Ti.
Task resource sensitivity values Xr

i were determined as follows. The DRS algorithm was
used to generate task resource sensitivity utilization values V r

i , such that the total resource
sensitivity utilization was SF (the Sensitivity Factor, default SF = 0.25) times the total
task utilization (i.e.

∑
∀i V r

i = U · SF ), and each individual task resource sensitivity
utilization was upper bounded by the corresponding task utilization (i.e. V r

i ≤ Ui). Each
task resource sensitivity value was then given by Xr

i = V r
i · Ti.

Task resource stress values Y r
i were set to a fixed proportion of the corresponding resource

sensitivity value Y r
i = Xr

i · RF , where RF is the Stress Factor, default RF = 0.5.

The default value for the Sensitivity Factor (SF = 0.25) was set to approximately twice
the average value (13.6%) obtained for the tasks in the industry case study described in the
Appendix. This is justified since the case study considers a single shared hardware resource,
whereas in practice contention would likely occur via multiple shared hardware resources,
resulting in higher levels of interference. The default value for the Stress Factor (RF = 0.5)
was set within the range found in the case study (0.23 to 1.58). Further, specific experiments
were also used to evaluate performance over a wide range of values for these parameters.

5.2 Experiments
The experiments considered systems with 1, 2, 3, and 4 cores, with a different task set
(generated according to the same parameters) assigned to each core. The per core task
set utilization U (shown on x-axis of the graphs) was varied from 0.05 to 0.95. For each
utilization value examined, 1000 task sets were generated for each core considered, (100
in the case of experiments using the weighted schedulability measure [6]). The default
cardinality of the task sets on each core was n = 10. In the experiments, a system was
deemed schedulable if and only if the different task sets assigned to each of its m cores were
schedulable, i.e. if all m · n tasks in the system were schedulable. With a single core, there is
no cross-core resource contention and hence no interference, and so task set schedulability can
be determined via standard response time analysis. With multiple cores, contention and the
resulting interference was modelled as described in Section 2. The experiments investigated
the performance of the following schedulability tests for partitioned fixed priority preemptive
and non-preemptive scheduling:

No-CpFPPS-m: The exact analysis of pFPPS [25, 5] with no contention, recapped in
Section 3.1, and given by (1).
CpFPPS-m-R: The response time based analysis of pFPPS with contention, introduced
in Section 3.1, and given by (2), (3), (5), and (6).
CpFPPS-m-D: The deadline based analysis of pFPPS with contention, introduced in
Section 3.1, and given by (2), (3), (4), and (5).
CpFPPS-m-fc: The fully composable analysis of pFPPS with contention, introduced in
Section 3.3, and given by (2), (3), and (10).
No-CpFPNS-m: The sufficient analysis of pFPNS [13] with no contention, recapped in
Section 3.2, and given by (7)).
CpFPNS-m-R: The response time based analysis of pFPNS with contention, introduced
in Section 3.2, and given by (8), (9), (6), and (5).
CpFPNS-m-D: The deadline based analysis of pFPNS with contention, introduced in
Section 3.2, and given by (8), (9), (4), and (5).

ECRTS 2021



7:16 Schedulability Analysis for Multi-core Systems

CpFPNS-m-fc: The fully composable analysis of pFPNS with contention, introduced
in Section 3.3, and given by (8), (9), and (10).

For consistency of comparison, Deadline Monotonic Priority Ordering (DMPO) [31] was
used to assign priorities to tasks on the individual cores. As shown in Section 4, DMPO is
optimal with respect to the No-CpFPPS-m, CpFPPS-m-fc, and CpFPPS-m-D tests,
but only a heuristic policy with respect to the CpFPPS-m-R test and the tests for fixed
priority non-preemptive scheduling.

Note, the results for the fully composable analyses (tests CpFPPS-m-fc and CpFPNS-
m-fc) equate to the performance obtained via the use of resource sensitivity information
only, as outlined in prior works [36, 16, 33, 24].

5.3 Results
In the first experiment, we compared the performance of the various schedulability tests,
assuming 1, 2, 3, and 4 cores, using the default parameters given in Section 5.1. The Success
Ratio, i.e. the percentage of systems generated that were deemed schedulable, is shown for
each of the pFPPS schedulability tests in Figure 1a, and for the pFPNS schedulability tests
in Figure 1b. The dominance relationships between the tests, discussed in Section 3.4, are
evidenced by the lines on the graphs. Note, schedulability depends on the number of cores
even when contention is not taken into account. This is because for an m-core system the
task sets on all m cores have to be schedulable for the system to be deemed schedulable.

Observe, that the performance advantage that the context-independent tests have over
their context-dependent counterparts is more pronounced with pFPPS than with pFPNS.
The reason for this is that the increased response times due to the blocking factor with
pFPNS mean that the critical task(s) (those that become unschedulable as utilization is
increased) are much more likely to be medium or high priority tasks than is the case with
pFPPS. For higher priority tasks, the balance between total resource sensitivity Sr

i (Ri, x) and
total resource stress Er

i (Ri, y) tends towards the latter being larger, since Er
i (Ri, y) includes

a contribution from all of the tasks on core y, while Sr
i (Ri, x) only includes a contribution

from a single lower priority (blocking) task in the case of pFPNS, and no lower priority tasks
at all in the case of pFPPS. When Er

i (Ri, y) exceeds Sr
i (Ri, x) then the performance of the

context-independent tests is reduced to that of their context-dependent counterparts.
In the second set of experiments, we used the weighted schedulability measure [6] to assess

schedulability test performance, while varying an additional parameter. In these experiments,
the other parameters were set to their default values given in Section 5.1. In all of the
weighted schedulability experiments the relative performance of the different tests follows
the pattern illustrated in the first experiment, as dictated by the dominance relationships.

The results of varying the Sensitivity Factor SF from 0.05 to 0.5 in steps of 0.05, are
shown in Figure 2a for pFPPS, and Figure 2b for pFPNS. Recall that the Sensitivity Factor
determines the ratio of the total resource sensitivity utilization to the total task utilization.
As expected, increasing the Sensitivity Factor and hence the amount of interference that
tasks can be subject to due to cross-core contention for resources results in a rapid decline in
the weighted schedulability measure for all of the tests that take into account contention.

The results of varying the Stress Factor RF from 0 to 1.2 in steps of 0.1 are shown in
Figure 3a for pFPPS, and Figure 3b for pFPNS. Recall that the Stress Factor determines
the ratio of the resource stress for each task to its resource sensitivity. Here, it is interesting
to note that interference effective saturates once the Stress Factor reaches 1.0. By then, the
total resource stress Er

i (t, y), given by (4) or (6), emanating from each additional core y in a



R. I. Davis, D. Griffin, and I. Bate 7:17

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
c

h
e

d
u

la
b

le
 S

y
s

te
m

s

Task Set Utilization

No-CpFPPS-1

No-CpFPPS-2

No-CpFPPS-3

No-CpFPPS-4

CpFPPS-2-R

CpFPPS-2-D

CpFPPS-2-fc

CpFPPS-3-R

CpFPPS-3-D

CpFPPS-3-fc

CpFPPS-4-R

CpFPPS-4-D

CpFPPS-4-fc

(a) pFPPS
 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
c

h
e

d
u

la
b

le
 S

y
s

te
m

s

Task Set Utilization

No-CpFPNS-1

No-CpFPNS-2

No-CpFPNS-3

No-CpFPNS-4

CpFPNS-2-R

CpFPNS-2-D

CpFPNS-2-fc

CpFPNS-3-R

CpFPNS-3-D

CpFPNS-3-fc

CpFPNS-4-R

CpFPNS-4-D

CpFPNS-4-fc

(b) pFPNS

Figure 1 Success Ratio: Varying task set utilization

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

W
e

ig
h

te
d

 S
c

h
e

d
u

la
b

il
it

y
 

Sensitivity Factor

No-CpFPPS-1
No-CpFPPS-2
No-CpFPPS-3
No-CpFPPS-4
CpFPPS-2-R
CpFPPS-2-D
CpFPPS-2-fc
CpFPPS-3-R
CpFPPS-3-D
CpFPPS-3-fc
CpFPPS-4-R
CpFPPS-4-D
CpFPPS-4-fc

(a) pFPPS
 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

W
e

ig
h

te
d

 S
c

h
e

d
u

la
b

il
it

y
 

Sensitivity Factor

No-CpFPNS-1
No-CpFPNS-2
No-CpFPNS-3
No-CpFPNS-4
CpFPNS-2-R
CpFPNS-2-D
CpFPNS-2-fc
CpFPNS-3-R
CpFPNS-3-D
CpFPNS-3-fc
CpFPNS-4-R
CpFPNS-4-D
CpFPNS-4-fc

(b) pFPNS

Figure 2 Weighted Schedulability: Varying Sensitivity Factor (SF)

time interval t tends to exceed the total resource sensitivity Sr
i (t, x), given by (3), for core x

in that same time interval. Hence, for pFPPS the CpFPPS-m-R and CpFPPS-m-D tests
reduce to exactly the same performance as the CpFPPS-m-fc test. Similarly, for pFPNS the
CpFPNS-m-R and CpFPNS-m-D tests reduce to exactly the same performance as the
CpFPNS-m-fc test. This is because the min(Er

i (t, y), Sr
i (t, x)) term in (5) ceases to reduce

the value in the summation below Sr
i (t, x). At the other extreme a Stress Factor RF of zero

means that Er
i (t, y) = 0 whether computed via (4) or (6). For pFPPS, the CpFPPS-m-R

and CpFPPS-m-D tests therefore have the same performance as the no contention No-
CpFPPS-m test, and similarly for pFPNS the CpFPNS-m-R and CpFPNS-m-D tests
have the same performance as the No-CpFPNS-m test. Between the two extremes, the
smaller values of Er

i (t, y) given by (6) as opposed to (4) mean that the CpFPPS-m-R test
outperforms the CpFPPS-m-D test, and similarly the CpFPNS-m-R test outperforms
the CpFPNS-m-D test.

The results of varying the cardinality of task sets running on each core from 2 to 32 in

ECRTS 2021



7:18 Schedulability Analysis for Multi-core Systems

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

W
e

ig
h

te
d

 S
c

h
e

d
u

la
b

il
it

y
 

Stress Factor

No-CpFPPS-1
No-CpFPPS-2
No-CpFPPS-3
No-CpFPPS-4
CpFPPS-2-R
CpFPPS-2-D
CpFPPS-2-fc
CpFPPS-3-R
CpFPPS-3-D
CpFPPS-3-fc
CpFPPS-4-R
CpFPPS-4-D
CpFPPS-4-fc

(a) pFPPS
 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

W
e

ig
h

te
d

 S
c

h
e

d
u

la
b

il
it

y
 

Stress Factor

No-CpFPNS-1
No-CpFPNS-2
No-CpFPNS-3
No-CpFPNS-4
CpFPNS-2-R
CpFPNS-2-D
CpFPNS-2-fc
CpFPNS-3-R
CpFPNS-3-D
CpFPNS-3-fc
CpFPNS-4-R
CpFPNS-4-D
CpFPNS-4-fc

(b) pFPNS

Figure 3 Weighted Schedulability: Varying Stress Factor (RF)

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 6 10 14 18 22 26 30

W
e

ig
h

te
d

 S
c

h
e

d
u

la
b

il
it

y
 

Number of Tasks

No-CpFPPS-1
No-CpFPPS-2
No-CpFPPS-3
No-CpFPPS-4
CpFPPS-2-R
CpFPPS-2-D
CpFPPS-2-fc
CpFPPS-3-R
CpFPPS-3-D
CpFPPS-3-fc
CpFPPS-4-R
CpFPPS-4-D
CpFPPS-4-fc

(a) pFPPS
 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 6 10 14 18 22 26 30

W
e

ig
h

te
d

 S
c

h
e

d
u

la
b

il
it

y
 

Number of Tasks

No-CpFPNS-1
No-CpFPNS-2
No-CpFPNS-3
No-CpFPNS-4
CpFPNS-2-R
CpFPNS-2-D
CpFPNS-2-fc
CpFPNS-3-R
CpFPNS-3-D
CpFPNS-3-fc
CpFPNS-4-R
CpFPNS-4-D
CpFPNS-4-fc

(b) pFPNS

Figure 4 Weighted Schedulability: Varying number of tasks in each task set

steps of 2 are shown in Figure 4a for pFPPS, and Figure 4b for pFPNS. In the preemptive
case, task set cardinality typically has only a limited effect on schedulability test performance;
however, in the non-preemptive case (Figure 4b), larger task sets equate to smaller execution
times for each task and hence smaller blocking factors. Thus schedulability improves with
increasing cardinality for all of the pFPNS schedulability tests. In the preemptive case (Figure
4a) the gap between the CpFPPS-m-R and CpFPPS-m-D tests and the CpFPPS-m-fc
test increases with larger numbers of tasks. This is due to changes in the shape of the total
resource stress function Er

i (t, y), which typically consists of many small steps when there are
a large number of tasks, and fewer larger steps when there are a smaller number of tasks. As
the function Er

i (t, y) is above the same gradient line in both cases, this difference acts to
improve schedulability for the CpFPPS-m-R and CpFPPS-m-D tests at higher task set
cardinality. The same effect is also evident in Figure 4a for the pFPNS schedulability tests.

The effects of varying the range of task periods (ratio of the max/min possible task
period) from 100.5 ≈ 3 to 104 = 10, 000 are shown in Figure 5a for pFPPS, and Figure 5b for



R. I. Davis, D. Griffin, and I. Bate 7:19

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.5 1 1.5 2 2.5 3 3.5 4

W
e

ig
h

te
d

 S
c

h
e

d
u

la
b

il
it

y
 

Range of Task Periods 10r

No-CpFPPS-1
No-CpFPPS-2
No-CpFPPS-3
No-CpFPPS-4
CpFPPS-2-R
CpFPPS-2-D
CpFPPS-2-fc
CpFPPS-3-R
CpFPPS-3-D
CpFPPS-3-fc
CpFPPS-4-R
CpFPPS-4-D
CpFPPS-4-fc

(a) pFPPS
 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.5 1 1.5 2 2.5 3 3.5 4

W
e

ig
h

te
d

 S
c

h
e

d
u

la
b

il
it

y
 

Range of Task Periods 10r

No-CpFPNS-1
No-CpFPNS-2
No-CpFPNS-3
No-CpFPNS-4
CpFPNS-2-R
CpFPNS-2-D
CpFPNS-2-fc
CpFPNS-3-R
CpFPNS-3-D
CpFPNS-3-fc
CpFPNS-4-R
CpFPNS-4-D
CpFPNS-4-fc

(b) pFPNS

Figure 5 Weighted Schedulability: Varying range of task periods

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

W
e

ig
h

te
d

 S
c

h
e

d
u

la
b

il
it

y
 

Ratio of Deadline to Period

No-CpFPPS-1
No-CpFPPS-2
No-CpFPPS-3
No-CpFPPS-4
CpFPPS-2-R
CpFPPS-2-D
CpFPPS-2-fc
CpFPPS-3-R
CpFPPS-3-D
CpFPPS-3-fc
CpFPPS-4-R
CpFPPS-4-D

(a) pFPPS
 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

W
e

ig
h

te
d

 S
c

h
e

d
u

la
b

il
it

y
 

Ratio of Deadline to Period

No-CpFPNS-1
No-CpFPNS-2
No-CpFPNS-3
No-CpFPNS-4
CpFPNS-2-R
CpFPNS-2-D
CpFPNS-2-fc
CpFPNS-3-R
CpFPNS-3-D
CpFPNS-3-fc
CpFPNS-4-R
CpFPNS-4-D

(b) pFPNS

Figure 6 Weighted Schedulability: Varying ratio of deadlines to periods

pFPNS. As expected, increasing the range of task periods results in a gradual improvement
in pFPPS schedulability test performance, a well-known effect with fixed priority preemptive
scheduling. In contrast, with non-preemptive scheduling, once the range of task periods
exceeds 100 (i.e. r = 2), hardly any task sets are schedulable. This happens because tasks
with short periods (and deadlines) cannot tolerate being blocked by tasks with long periods
and commensurate large execution times.

Finally, the results of varying task deadlines from 25% to 100% of the task’s period
are shown in Figure 6a for pFPPS, and Figure 6b for pFPNS. As expected, schedulability
improves for all approaches as task deadlines are increased. Further, the performance
advantage of the CpFPPS-m-R test over the CpFPPS-m-D test increases with increasing
deadlines. This occurs because larger deadlines provide a more pessimistic approximation of
response times for schedulable tasks, impacting the total resource stress as assumed by the
CpFPPS-m-D test.

ECRTS 2021



7:20 Schedulability Analysis for Multi-core Systems

6 Conclusions

The main contributions of this paper are the Multi-core Resource Stress and Sensitivity
(MRSS) task model and its accompanying schedulability analyses. The MRSS task model:

Characterizes how much each task stresses shared hardware resources and how much it is
sensitive to such resource stress.
Provides a simple yet effective interface between timing analysis and schedulability analysis,
facilitating a separation of concerns that retains the advantages of the traditional two-step
approach to timing verification.
Caters for a variety of different shared hardware resources in a way that is both generic
and versatile.

The accompanying schedulability analyses:
Provide efficient context-dependent and context independent schedulability tests for both
fixed priority preemptive and fixed priority non-preemptive scheduling.
Exhibit dominance relationships illustrating the trade-off between context independence
and schedulability.
Were proven compatible or incompatible with efficient optimal priority assignment al-
gorithms.
Were subject to a systematic evaluation illustrating their effectiveness across a wide range
of parameter values.

In future, we aim to investigate task allocation strategies for partitioned fixed priority
scheduling of MRSS tasks. Details of a preliminary case study that explores the resource
stress and resource sensitivity of tasks from a Rolls-Royce aero-engine control system are
given in the appendix. This case study provides an underpinning proof-of-concept for the
MRSS task model.

A Case Study

In this appendix, we present a preliminary case study that investigates the resource stress
and resource sensitivity of tasks from a real-time industrial application. The purpose of this
case study is not to try to determine definitive values for task WCETs, resource sensitivities
and resource stresses, in itself a challenging research problem that is beyond the scope of this
work. Rather our aim is to obtain proof-of-concept data to act as an exemplar underpinning
the MRSS task model and its accompanying schedulability analysis.

The case study focuses on a set of 24 tasks from a Rolls-Royce aero engine control
system or FADEC (Full Authority Digital Engine Controller). The industrial software was
developed in SPARK-Ada and has been verified according to DO-178C standards (level A).
The software was provided in an anonymized object code format, derived from that used in
the case studies reported in [29] and [30]. The tasks have object code libraries ranging in size
from 300 KBytes to 40 MBytes, including compiled in data structures, but not including any
framework or Linux additions. The software was originally designed to run on a Rolls-Royce
specific packaged processor that integrates a single core, memory, I/O, and tracing interfaces;
however, for research purposes, it was ported to run on a Raspberry Pi 3B+ [30], along with
a framework that facilitates taking timing measurements [7].

The Raspberry Pi 3B+ uses a Broadcom BCM2837 System-on-Chip with a quad-core
ARM Cortex-A53 processor. It has a 16 KByte L1 data cache, 16 KByte L1 instruction
cache, 512 KByte L2 shared cache, and 1 GByte of DDR2-DRAM. The L2 cache was, as is



R. I. Davis, D. Griffin, and I. Bate 7:21

the default, configured for use as local memory for the GPU4, and so was not available to
the four CPUs. The experimental hardware set-up involved a cluster of Raspberry Pi 3B+s,
configured to run at a clock frequency of 600MHz, so as to eliminate any possible disruption
due to thermal throttling. The cluster was powered by specialized power rails to ensure a
stable supply voltage and frequency. The Pi 3B+s used the Raspberry Pi OS Lite (updated
on 01/25/2021) and the Linux Kernel 5.10.11-v7+. The isolcpus Linux option was used to
minimize activity on the two cores used for the experiments. Timing measurements were
obtained using a nanosecond clock, and cross-referenced against a 600MHz cycle counter.
Prior to each run of a task, the L1 data and L1 instruction caches were flushed. Given that
the L2 cache was not accessible to the CPUs, the case study focussed on the key shared
hardware resource, main memory (DDR2-DRAM).

A.1 Case Study Experiments
For each of the 24 tasks, we considered 10,000 randomly selected traces of execution. When
a task was called for a specific trace, each of its input parameters was set to a random value
based on the type (float, integer, or boolean) and the range of values permitted. The inputs
were thus randomized, but nevertheless reproducible via the trace number, which controlled
the random seed used. In the following, for brevity we use trace to mean a task with a
specific set of input parameters corresponding to the trace number.

In Experiment A.1, for each trace we obtained the stand-alone execution time, the
resource sensitivity, and the resource stress as measured against each of the three contenders
described below. These values were obtained by: (i) running the trace stand alone, (ii)
running the trace in parallel with the contender, (iii) running the contender stand alone.
In (i) and (ii) the execution time of the trace was recorded. In addition, in (ii) the number
of times L that the contender looped while the trace was running was recorded, along
with the execution time of the contender for that number of loops. Finally, in (iii) the
stand-alone execution time of the contender was recorded for L loops. The loop count L thus
enabled comparable measurements to be made irrespective of the trace execution times. The
stand-alone execution time of the trace came directly from (i), while the resource sensitivity
(per contender) for the trace was given by the difference between the trace execution times in
(i) and (ii), and the resource stress for the trace by the difference in the contender’s execution
times in (ii) and (iii).

We repeated the runs for each trace 9 times to ensure consistency. Post processing of the
raw timing data was used to eliminate anomalies caused by the kernel scheduler tick and
the clock synchronization interrupt, neither of which could be disabled. The cycle counter
was configured to pause when the scheduler was running, and so we were able to detect and
eliminate anomalies due to the scheduler by comparing nanosecond clock and cycle counter
readings. Measurement noise caused by the clock synchronization interrupt was more difficult
to detect; however, we were able to filter out these anomalies by taking the median value for
the 9 repeated runs for each trace, and by using the 95th percentile value (over the 10,000
traces) as the reference “maximum” increase in execution time for each task and contender.

Three contenders were used that cause contention by repeatedly accessing main memory.
The contenders both stress the resource and are sensitive to contention. The three contenders
have a similar structure, they differ only in the instruction patterns used: Read-Read (RR),
Read-Write (RW), and Write-Write (WW). The read and write operations both compile down

4 The case study software does not use the GPU.

ECRTS 2021



7:22 Schedulability Analysis for Multi-core Systems

to a single instruction. Each contender loop body included 100 memory access instructions,
ensuring that the loop overhead, i.e. checking when the contender should stop, was small in
comparison to the loop body. Hence each contender achieved close to the maximum possible
load in terms of instructions that access memory and cause contention. The addresses used
were such that the accesses had to go to memory, rather than being satisfied by the L1 cache.
A handshaking protocol was used between task and contender to ensure that the contender
started before and finished after the task. Further, dummy loops with no memory accesses
were added before and after each task, to ensure that the experimental framework did not
cause extra interference on the contender when it was running but the task was not.

 

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

N
o

rm
al

iz
ed

 t
o

 s
ta

n
d

-a
lo

n
e 

ex
ec

u
ti

o
n

 t
im

e

Task Number

Sensitivity Stress

Figure 7 Estimated resource stress and resource sensitivity values for 24 tasks from a Rolls-Royce
aero-engine control systems normalized to the task’s estimated stand-alone WCET

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

N
o

rm
al

iz
ed

 t
o

 s
ta

n
d

-a
lo

n
e 

ex
ec

u
ti

o
n

 t
im

e

Task Number (Victim)

Measured Bound

Figure 8 Increase in execution time of a (victim) task co-running with its paired task. Maximum
observed value and computed bound derived from resource sensitivity and resource stress values,
normalized to the stand-alone execution time of the victim task.

Figure 7 shows the results of Experiment A.1, for 24 tasks from the Rolls-Royce aero-
engine application, giving their maximum resource sensitivity and maximum resource stress
normalized to the task’s maximum stand-alone execution time. Note, the tasks appear in the
figure ordered by their maximum stand-alone execution time, largest first. The RW contender
was responsible for the maximum increase in task execution time (resource sensitivity) in all
24 cases. However, in terms of which contender suffered the maximum increase in execution
time due to the task (i.e. resource stress), this was the RR contender in 2 cases, the RW
contender in 3 cases, and the WW contender in 19 cases. Running a contender in parallel



R. I. Davis, D. Griffin, and I. Bate 7:23

with a task increased the task’s execution time by between 3.8% and 15.0% compared
to stand-alone execution, thus characterizing the tasks’ resource sensitivity. Further, the
contender’s execution time increased by between 1.5% and 19.3% of the task’s stand-alone
execution time, thus characterizing the tasks’ resource stress. The ratio of resource stress to
resource sensitivity for each task varied from 0.23 to 1.58. Some negative correlation can
be observed between the stand-alone execution time and the percentage resource sensitivity
and resource stress, with longer running tasks often having lower percentage values for these
metrics. This is to be expected, since longer tasks typically spend more of their execution
time in loops, running code that is cached, and therefore causes less resource contention.

As well as running tasks (traces) in parallel with the synthetic contenders, we also
conducted Experiment A.2, running pairs of tasks in parallel on different cores. For each
pair of tasks, we ran 10,000 pairs of their traces in parallel, with the inputs randomly selected
as described previously. Figure 8 shows the maximum increase in execution time for each
(victim) task due to cross-core contention from the task it was paired with. (The tasks
were sorted by stand-alone execution time and then paired 1-2, 3-4, 5-6 and so on). The
values shown are the maximum over the 10,000 pairs of traces, and are normalized to the
stand-alone execution time of the victim task. Also shown is the bound computed from the
minimum of (i) the resource sensitivity for the victim task and (ii) the resource stress for the
task it was paired with, both obtained via Experiment A.1 using the synthetic contenders.
The maximum measured increase in execution time is no greater than the computed bound.
On average it is approx. 69% of the bound, and varies between 26% and 99%.

This preliminary case study underpins the MRSS task model, illustrating the relevance
of using both resource sensitivity and resource stress to characterize cross-core contention,
and thus bound interference.

References
1 Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer, and Robert I. Davis.

An empirical survey-based study into industry practice in real-time systems. In 41st IEEE
Real-Time Systems Symposium, RTSS 2020, Houston, TX, USA, December 1-4, 2020, pages
3–11. IEEE, 2020. URL: https://doi.org/10.1109/RTSS49844.2020.00012, doi:10.1109/
RTSS49844.2020.00012.

2 Sebastian Altmeyer, Robert I. Davis, Leandro Soares Indrusiak, Claire Maiza, Vincent Nélis,
and Jan Reineke. A generic and compositional framework for multicore response time analysis.
In Julien Forget, editor, Proceedings of the 23rd International Conference on Real Time
Networks and Systems, RTNS 2015, Lille, France, November 4-6, 2015, pages 129–138. ACM,
2015. URL: https://doi.org/10.1145/2834848.2834862, doi:10.1145/2834848.2834862.

3 Björn Andersson, Hyoseung Kim, Dionisio de Niz, Mark H. Klein, Ragunathan Rajkumar,
and John P. Lehoczky. Schedulability analysis of tasks with corunner-dependent execution
times. ACM Trans. Embed. Comput. Syst., 17(3):71:1–71:29, 2018. URL: https://doi.org/
10.1145/3203407, doi:10.1145/3203407.

4 Neil C. Audsley. On priority assignment in fixed priority scheduling. Inf. Process. Lett.,
79(1):39–44, 2001. URL: https://doi.org/10.1016/S0020-0190(00)00165-4, doi:10.1016/
S0020-0190(00)00165-4.

5 Neil C. Audsley, Alan Burns, Michael Richardson, Kenneth W. Tindell, and Andrew J.
Wellings. Applying new scheduling theory to static priority pre-emptive scheduling. Software
Engineering Journal, 8:284–292(8), September 1993. URL: https://digital-library.theiet.
org/content/journals/10.1049/sej.1993.0034.

6 Andrea Bastoni, Bjorn B. Brandenburg, and James H. Anderson. Cache-related preemption
and migration delays: Empirical approximation and impact on schedulability. In International

ECRTS 2021

https://doi.org/10.1109/RTSS49844.2020.00012
http://dx.doi.org/10.1109/RTSS49844.2020.00012
http://dx.doi.org/10.1109/RTSS49844.2020.00012
https://doi.org/10.1145/2834848.2834862
http://dx.doi.org/10.1145/2834848.2834862
https://doi.org/10.1145/3203407
https://doi.org/10.1145/3203407
http://dx.doi.org/10.1145/3203407
https://doi.org/10.1016/S0020-0190(00)00165-4
http://dx.doi.org/10.1016/S0020-0190(00)00165-4
http://dx.doi.org/10.1016/S0020-0190(00)00165-4
https://digital-library.theiet.org/content/journals/10.1049/sej.1993.0034
https://digital-library.theiet.org/content/journals/10.1049/sej.1993.0034


7:24 Schedulability Analysis for Multi-core Systems

Workshop on Operating Systems Platforms for Embedded Real-Time Applications, pages 33–44,
2010.

7 Iain Bate, David Griffin, and Benjamin Lesage. Establishing confidence and understanding
uncertainty in real-time systems. In Liliana Cucu-Grosjean, Roberto Medina, Sebastian
Altmeyer, and Jean-Luc Scharbarg, editors, 28th International Conference on Real Time
Networks and Systems, RTNS 2020, Paris, France, June 10, 2020, pages 67–77. ACM, 2020.
URL: https://doi.org/10.1145/3394810.3394816, doi:10.1145/3394810.3394816.

8 Sheng-Wei Cheng, Jian-Jia Chen, Jan Reineke, and Tei-Wei Kuo. Memory bank partitioning
for fixed-priority tasks in a multi-core system. In 2017 IEEE Real-Time Systems Symposium,
RTSS 2017, Paris, France, December 5-8, 2017, pages 209–219. IEEE Computer Society, 2017.
URL: https://doi.org/10.1109/RTSS.2017.00027, doi:10.1109/RTSS.2017.00027.

9 Dakshina Dasari, Björn Andersson, Vincent Nélis, Stefan M. Petters, Arvind Easwaran, and
Jinkyu Lee. Response time analysis of cots-based multicores considering the contention on the
shared memory bus. In IEEE 10th International Conference on Trust, Security and Privacy in
Computing and Communications, TrustCom 2011, Changsha, China, 16-18 November, 2011,
pages 1068–1075. IEEE Computer Society, 2011. URL: https://doi.org/10.1109/TrustCom.
2011.146, doi:10.1109/TrustCom.2011.146.

10 Robert I. Davis, Sebastian Altmeyer, Leandro Soares Indrusiak, Claire Maiza, Vincent Nélis,
and Jan Reineke. An extensible framework for multicore response time analysis. Real
Time Syst., 54(3):607–661, 2018. URL: https://doi.org/10.1007/s11241-017-9285-4, doi:
10.1007/s11241-017-9285-4.

11 Robert I. Davis and Alan Burns. On optimal priority assignment for response time analysis of
global fixed priority pre-emptive scheduling in multiprocessor hard real-time systems. Technical
Report YCS-2010-451, University of York, Computer Science Dept., 2010.

12 Robert I. Davis and Alan Burns. Improved priority assignment for global fixed priority
pre-emptive scheduling in multiprocessor real-time systems. Real Time Syst., 47(1):1–40, 2011.
URL: https://doi.org/10.1007/s11241-010-9106-5, doi:10.1007/s11241-010-9106-5.

13 Robert I. Davis, Alan Burns, Reinder J. Bril, and Johan J. Lukkien. Controller area
network (CAN) schedulability analysis: Refuted, revisited and revised. Real Time Syst.,
35(3):239–272, 2007. URL: https://doi.org/10.1007/s11241-007-9012-7, doi:10.1007/
s11241-007-9012-7.

14 Robert I. Davis, Liliana Cucu-Grosjean, Marko Bertogna, and Alan Burns. A review of
priority assignment in real-time systems. J. Syst. Archit., 65:64–82, 2016. URL: https:
//doi.org/10.1016/j.sysarc.2016.04.002, doi:10.1016/j.sysarc.2016.04.002.

15 Paul Emberson, Roger Stafford, and Robert I. Davis. Techniques for the synthesis of
multiprocessor tasksets. In International Workshop on Analysis Tools and Methodolo-
gies for Embedded and Real-time Systems (WATERS), pages 6–11, July 2010. URL:
http://retis.sssup.it/waters2010/waters2010.pdf.

16 Mikel Fernández, Roberto Gioiosa, Eduardo Quiñones, Luca Fossati, Marco Zulianello, and
Francisco J. Cazorla. Assessing the suitability of the NGMP multi-core processor in the
space domain. In Ahmed Jerraya, Luca P. Carloni, Florence Maraninchi, and John Regehr,
editors, Proceedings of the 12th International Conference on Embedded Software, EMSOFT
2012, part of the Eighth Embedded Systems Week, ESWeek 2012, Tampere, Finland, October
7-12, 2012, pages 175–184. ACM, 2012. URL: https://doi.org/10.1145/2380356.2380389,
doi:10.1145/2380356.2380389.

17 Rudolf Fuchsen. How to address certification for multi-core based IMA platforms: Current
status and potential solutions. In 29th Digital Avionics Systems Conference, pages 5.E.3–1–
5.E.3–11, 2010. doi:10.1109/DASC.2010.5655461.

18 Laurent George, Nicolas Rivierre, and Marco Spuri. Preemptive and nonpreemptive real-time
uniprocessor scheduling. Technical report, INRIA Research Report, No. 2966, 1996. URL:
https://hal.inria.fr/inria-00073732.

https://doi.org/10.1145/3394810.3394816
http://dx.doi.org/10.1145/3394810.3394816
https://doi.org/10.1109/RTSS.2017.00027
http://dx.doi.org/10.1109/RTSS.2017.00027
https://doi.org/10.1109/TrustCom.2011.146
https://doi.org/10.1109/TrustCom.2011.146
http://dx.doi.org/10.1109/TrustCom.2011.146
https://doi.org/10.1007/s11241-017-9285-4
http://dx.doi.org/10.1007/s11241-017-9285-4
http://dx.doi.org/10.1007/s11241-017-9285-4
https://doi.org/10.1007/s11241-010-9106-5
http://dx.doi.org/10.1007/s11241-010-9106-5
https://doi.org/10.1007/s11241-007-9012-7
http://dx.doi.org/10.1007/s11241-007-9012-7
http://dx.doi.org/10.1007/s11241-007-9012-7
https://doi.org/10.1016/j.sysarc.2016.04.002
https://doi.org/10.1016/j.sysarc.2016.04.002
http://dx.doi.org/10.1016/j.sysarc.2016.04.002
http://retis.sssup.it/waters2010/waters2010.pdf
https://doi.org/10.1145/2380356.2380389
http://dx.doi.org/10.1145/2380356.2380389
http://dx.doi.org/10.1109/DASC.2010.5655461
https://hal.inria.fr/inria-00073732


R. I. Davis, D. Griffin, and I. Bate 7:25

19 Georgia Giannopoulou, Kai Lampka, Nikolay Stoimenov, and Lothar Thiele. Timed model
checking with abstractions: towards worst-case response time analysis in resource-sharing
manycore systems. In Ahmed Jerraya, Luca P. Carloni, Florence Maraninchi, and John Regehr,
editors, Proceedings of the 12th International Conference on Embedded Software, EMSOFT
2012, part of the Eighth Embedded Systems Week, ESWeek 2012, Tampere, Finland, October
7-12, 2012, pages 63–72. ACM, 2012. URL: https://doi.org/10.1145/2380356.2380372,
doi:10.1145/2380356.2380372.

20 David Griffin, Iain Bate, and Robert I. Davis. Dirichlet-Rescale (DRS) algorithm software:
dgdguk/drs: v1.0.0 available at https://doi.org/10.5281/zenodo.4118059, December 2020.

21 David Griffin, Iain Bate, and Robert I. Davis. Generating utilization vectors for the systematic
evaluation of schedulability tests. In 41st IEEE Real-Time Systems Symposium, RTSS
2020, Houston, TX, USA, December 1-4, 2020, pages 76–88. IEEE, 2020. URL: https:
//doi.org/10.1109/RTSS49844.2020.00018, doi:10.1109/RTSS49844.2020.00018.

22 Mohamed Hassan. On the off-chip memory latency of real-time systems: Is DDR DRAM
really the best option? In 2018 IEEE Real-Time Systems Symposium, RTSS 2018, Nashville,
TN, USA, December 11-14, 2018, pages 495–505. IEEE Computer Society, 2018. URL:
https://doi.org/10.1109/RTSS.2018.00062, doi:10.1109/RTSS.2018.00062.

23 Wen-Hung Huang, Jian-Jia Chen, and Jan Reineke. MIRROR: symmetric timing analysis
for real-time tasks on multicore platforms with shared resources. In Proceedings of the
53rd Annual Design Automation Conference, DAC 2016, Austin, TX, USA, June 5-9, 2016,
pages 158:1–158:6. ACM, 2016. URL: https://doi.org/10.1145/2897937.2898046, doi:
10.1145/2897937.2898046.

24 Dan Iorga, Tyler Sorensen, John Wickerson, and Alastair F. Donaldson. Slow and steady:
Measuring and tuning multicore interference. In IEEE Real-Time and Embedded Technology
and Applications Symposium, RTAS 2020, Sydney, Australia, April 21-24, 2020, pages 200–
212. IEEE, 2020. URL: https://doi.org/10.1109/RTAS48715.2020.000-6, doi:10.1109/
RTAS48715.2020.000-6.

25 Mathai Joseph and Paritosh K. Pandya. Finding response times in a real-time system.
Comput. J., 29(5):390–395, 1986. URL: https://doi.org/10.1093/comjnl/29.5.390, doi:
10.1093/comjnl/29.5.390.

26 Hyoseung Kim, Dionisio de Niz, Björn Andersson, Mark H. Klein, Onur Mutlu, and Ragunathan
Rajkumar. Bounding and reducing memory interference in cots-based multi-core systems.
Real Time Syst., 52(3):356–395, 2016. URL: https://doi.org/10.1007/s11241-016-9248-1,
doi:10.1007/s11241-016-9248-1.

27 Namhoon Kim, Bryan C. Ward, Micaiah Chisholm, James H. Anderson, and F. Donelson
Smith. Attacking the one-out-of-m multicore problem by combining hardware management
with mixed-criticality provisioning. Real Time Syst., 53(5):709–759, 2017. URL: https:
//doi.org/10.1007/s11241-017-9272-9, doi:10.1007/s11241-017-9272-9.

28 Kai Lampka, Georgia Giannopoulou, Rodolfo Pellizzoni, Zheng Wu, and Nikolay Stoimenov.
A formal approach to the WCRT analysis of multicore systems with memory contention
under phase-structured task sets. Real Time Syst., 50(5-6):736–773, 2014. URL: https:
//doi.org/10.1007/s11241-014-9211-y, doi:10.1007/s11241-014-9211-y.

29 Stephen Law and Iain Bate. Achieving appropriate test coverage for reliable measurement-
based timing analysis. In 28th Euromicro Conference on Real-Time Systems, ECRTS 2016,
Toulouse, France, July 5-8, 2016, pages 189–199. IEEE Computer Society, 2016. URL:
https://doi.org/10.1109/ECRTS.2016.21, doi:10.1109/ECRTS.2016.21.

30 Benjamin Lesage, Stephen Law, and Iain Bate. TACO: an industrial case study of test
automation for coverage. In Yassine Ouhammou, Frédéric Ridouard, Emmanuel Grolleau,
Mathieu Jan, and Moris Behnam, editors, Proceedings of the 26th International Conference
on Real-Time Networks and Systems, RTNS 2018, Chasseneuil-du-Poitou, France, October
10-12, 2018, pages 114–124. ACM, 2018. URL: https://doi.org/10.1145/3273905.3273910,
doi:10.1145/3273905.3273910.

ECRTS 2021

https://doi.org/10.1145/2380356.2380372
http://dx.doi.org/10.1145/2380356.2380372
https://doi.org/10.5281/zenodo.4118059
https://doi.org/10.1109/RTSS49844.2020.00018
https://doi.org/10.1109/RTSS49844.2020.00018
http://dx.doi.org/10.1109/RTSS49844.2020.00018
https://doi.org/10.1109/RTSS.2018.00062
http://dx.doi.org/10.1109/RTSS.2018.00062
https://doi.org/10.1145/2897937.2898046
http://dx.doi.org/10.1145/2897937.2898046
http://dx.doi.org/10.1145/2897937.2898046
https://doi.org/10.1109/RTAS48715.2020.000-6
http://dx.doi.org/10.1109/RTAS48715.2020.000-6
http://dx.doi.org/10.1109/RTAS48715.2020.000-6
https://doi.org/10.1093/comjnl/29.5.390
http://dx.doi.org/10.1093/comjnl/29.5.390
http://dx.doi.org/10.1093/comjnl/29.5.390
https://doi.org/10.1007/s11241-016-9248-1
http://dx.doi.org/10.1007/s11241-016-9248-1
https://doi.org/10.1007/s11241-017-9272-9
https://doi.org/10.1007/s11241-017-9272-9
http://dx.doi.org/10.1007/s11241-017-9272-9
https://doi.org/10.1007/s11241-014-9211-y
https://doi.org/10.1007/s11241-014-9211-y
http://dx.doi.org/10.1007/s11241-014-9211-y
https://doi.org/10.1109/ECRTS.2016.21
http://dx.doi.org/10.1109/ECRTS.2016.21
https://doi.org/10.1145/3273905.3273910
http://dx.doi.org/10.1145/3273905.3273910


7:26 Schedulability Analysis for Multi-core Systems

31 Joseph Y.-T. Leung and Jennifer Whitehead. On the complexity of fixed-priority scheduling
of periodic, real-time tasks. Perform. Evaluation, 2(4):237–250, 1982. URL: https://doi.
org/10.1016/0166-5316(82)90024-4, doi:10.1016/0166-5316(82)90024-4.

32 Claire Maiza, Hamza Rihani, Juan Maria Rivas, Joël Goossens, Sebastian Altmeyer, and
Robert I. Davis. A survey of timing verification techniques for multi-core real-time systems.
ACM Comput. Surv., 52(3):56:1–56:38, 2019. URL: https://doi.org/10.1145/3323212,
doi:10.1145/3323212.

33 Jan Nowotsch and Michael Paulitsch. Leveraging multi-core computing architectures in avionics.
In Cristian Constantinescu and Miguel P. Correia, editors, 2012 Ninth European Dependable
Computing Conference, Sibiu, Romania, May 8-11, 2012, pages 132–143. IEEE Computer
Society, 2012. URL: https://doi.org/10.1109/EDCC.2012.27, doi:10.1109/EDCC.2012.27.

34 Marco Paolieri, Eduardo Quiñones, Francisco J. Cazorla, Robert I. Davis, and Mateo Valero.
Iaˆ3: An interference aware allocation algorithm for multicore hard real-time systems. In
17th IEEE Real-Time and Embedded Technology and Applications Symposium, RTAS 2011,
Chicago, Illinois, USA, 11-14 April 2011, pages 280–290. IEEE Computer Society, 2011. URL:
https://doi.org/10.1109/RTAS.2011.34, doi:10.1109/RTAS.2011.34.

35 Rodolfo Pellizzoni, Andreas Schranzhofer, Jian-Jia Chen, Marco Caccamo, and Lothar Thiele.
Worst case delay analysis for memory interference in multicore systems. In Giovanni De Micheli,
Bashir M. Al-Hashimi, Wolfgang Müller, and Enrico Macii, editors, Design, Automation
and Test in Europe, DATE 2010, Dresden, Germany, March 8-12, 2010, pages 741–746.
IEEE Computer Society, 2010. URL: https://doi.org/10.1109/DATE.2010.5456952, doi:
10.1109/DATE.2010.5456952.

36 Petar Radojkovic, Sylvain Girbal, Arnaud Grasset, Eduardo Quiñones, Sami Yehia, and Fran-
cisco J. Cazorla. On the evaluation of the impact of shared resources in multithreaded COTS
processors in time-critical environments. ACM Trans. Archit. Code Optim., 8(4):34:1–34:25,
2012. URL: https://doi.org/10.1145/2086696.2086713, doi:10.1145/2086696.2086713.

37 Rapita Systems. Multicore timing analysis for do-178c. https://www.rapitasystems.com/
downloads/multicore-timing-analysis-do-178c.

38 Hamza Rihani, Matthieu Moy, Claire Maiza, Robert I. Davis, and Sebastian Altmeyer.
Response time analysis of synchronous data flow programs on a many-core processor. In Alain
Plantec, Frank Singhoff, Sébastien Faucou, and Luís Miguel Pinho, editors, Proceedings of
the 24th International Conference on Real-Time Networks and Systems, RTNS 2016, Brest,
France, October 19-21, 2016, pages 67–76. ACM, 2016. URL: https://doi.org/10.1145/
2997465.2997472, doi:10.1145/2997465.2997472.

39 Simon Schliecker and Rolf Ernst. Real-time performance analysis of multiprocessor systems
with shared memory. ACM Trans. Embed. Comput. Syst., 10(2):22:1–22:27, 2010. URL:
https://doi.org/10.1145/1880050.1880058, doi:10.1145/1880050.1880058.

40 Andreas Schranzhofer, Rodolfo Pellizzoni, Jian-Jia Chen, Lothar Thiele, and Marco Cac-
camo. Worst-case response time analysis of resource access models in multi-core systems.
In Sachin S. Sapatnekar, editor, Proceedings of the 47th Design Automation Conference,
DAC 2010, Anaheim, California, USA, July 13-18, 2010, pages 332–337. ACM, 2010. URL:
https://doi.org/10.1145/1837274.1837359, doi:10.1145/1837274.1837359.

41 Prathap Kumar Valsan, Heechul Yun, and Farzad Farshchi. Taming non-blocking caches to
improve isolation in multicore real-time systems. In 2016 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), Vienna, Austria, April 11-14, 2016, pages 161–
172. IEEE Computer Society, 2016. URL: https://doi.org/10.1109/RTAS.2016.7461361,
doi:10.1109/RTAS.2016.7461361.

42 Heechul Yun, Rodolfo Pellizzoni, and Prathap Kumar Valsan. Parallelism-aware memory
interference delay analysis for COTS multicore systems. In 27th Euromicro Conference on
Real-Time Systems, ECRTS 2015, Lund, Sweden, July 8-10, 2015, pages 184–195. IEEE
Computer Society, 2015. URL: https://doi.org/10.1109/ECRTS.2015.24, doi:10.1109/
ECRTS.2015.24.

https://doi.org/10.1016/0166-5316(82)90024-4
https://doi.org/10.1016/0166-5316(82)90024-4
http://dx.doi.org/10.1016/0166-5316(82)90024-4
https://doi.org/10.1145/3323212
http://dx.doi.org/10.1145/3323212
https://doi.org/10.1109/EDCC.2012.27
http://dx.doi.org/10.1109/EDCC.2012.27
https://doi.org/10.1109/RTAS.2011.34
http://dx.doi.org/10.1109/RTAS.2011.34
https://doi.org/10.1109/DATE.2010.5456952
http://dx.doi.org/10.1109/DATE.2010.5456952
http://dx.doi.org/10.1109/DATE.2010.5456952
https://doi.org/10.1145/2086696.2086713
http://dx.doi.org/10.1145/2086696.2086713
https://www.rapitasystems.com/downloads/multicore-timing-analysis-do-178c
https://www.rapitasystems.com/downloads/multicore-timing-analysis-do-178c
https://doi.org/10.1145/2997465.2997472
https://doi.org/10.1145/2997465.2997472
http://dx.doi.org/10.1145/2997465.2997472
https://doi.org/10.1145/1880050.1880058
http://dx.doi.org/10.1145/1880050.1880058
https://doi.org/10.1145/1837274.1837359
http://dx.doi.org/10.1145/1837274.1837359
https://doi.org/10.1109/RTAS.2016.7461361
http://dx.doi.org/10.1109/RTAS.2016.7461361
https://doi.org/10.1109/ECRTS.2015.24
http://dx.doi.org/10.1109/ECRTS.2015.24
http://dx.doi.org/10.1109/ECRTS.2015.24

	1 Introduction
	1.1 Background
	1.2 Contribution and Organization
	1.3 Related Work
	1.4 Inspiration

	2 System Model and Assumptions
	3 Schedulability Analysis
	3.1 pFPPS Schedulability Analysis
	3.2 pFPNS Schedulability Analysis
	3.3 Composability
	3.4 Dominance Relations

	4 Priority Assignment
	4.1 pFPPS Priority Assignment
	4.2 pFPNS Priority Assignment

	5 Evaluation
	5.1 Task Set Parameter Generation
	5.2 Experiments
	5.3 Results

	6 Conclusions
	A Case Study
	A.1 Case Study Experiments


