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Abstract—This paper introduces the Dirichlet-Rescale (DRS)
algorithm. The DRS algorithm provides an efficient general-
purpose method of generating n-dimensional vectors of compo-
nents (e.g. task utilizations), where the components sum to a
specified total, each component conforms to individual constraints
on the maximum and minimum values that it can take, and the
vectors are uniformly distributed over the valid region of the
domain of all possible vectors, bounded by the constraints.

The DRS algorithm can be used to improve the nuance and
quality of empirical studies into the effectiveness of schedula-
bility tests for real-time systems; potentially making them more
realistic, and leading to new conclusions. It is efficient enough
for use in large-scale studies where millions of task sets need
to be generated. Further, the constraints on individual task
utilizations can be used for fine-grained control of task set
parameters enabling more detailed exploration of schedulability
test behavior. Finally, the real power of the algorithm lies in the
fact that it can be applied recursively, with one vector acting as
a set of constraints for the next. This is particularly useful in
task set generation for mixed criticality systems and multi-core
systems, where task utilizations are either multi-valued or can be
decomposed into multiple constituent parts.

I. INTRODUCTION

The research presented in this paper supports the empirical
evaluation of schedulability tests for real-time systems. Two
aspects are important here:

1) Effectiveness – measured in terms of how many task sets
a particular schedulability test deems to be schedulable.

2) Tractability – measured in terms of how long the schedu-
lability test takes to run, and how its runtime scales with
increasing numbers of tasks.

Often there is a tradeoff between effectiveness and tractability.
Exact tests may be intractable for relatively small numbers of
tasks, whereas simple sufficient tests may be fast and work
for large numbers of tasks, but not be particularly effective,
classifying many task sets as unschedulable when they are not.

In this paper, we focus on the issue of effectiveness. A
systematic and scientific study of the effectiveness of different
schedulability tests requires a method of synthesising large
numbers of task sets to which the tests can be applied.
Further, the different task parameter settings used must cover
in an unbiased way, the range of possible task sets that could
potentially occur in practice.

Underpinning task set generation is the problem of gener-
ating individual task utilization values. The utilization Ui of a
task τi is defined as the maximum bandwidth of a processing
resource that the task can use. Thus, in the traditional sporadic
task model, the utilization of a task is directly related to its
maximum execution time Ci and its period or minimal inter-
arrival time Ti, with Ui = Ci/Ti. The total utilization U of a
task set is given by the sum of the individual task utilizations

U =
∑n

i=1 Ui, where n is the number of tasks. Note that the
total utilization cannot exceed the bandwidth that can be sup-
plied by the resource, e.g. U ≤ 1 for a single processor system,
and U ≤ m for a homogeneous m processor system, otherwise
the task set will necessarily be unschedulable. Further, each
individual task utilization cannot exceed the bandwidth that
can be supplied by a single processor, otherwise that task alone
would be not be schedulable1.

As noted by Davis [10], it is important that task set
generation is done in a way that does not confound variables.
An often employed technique that suffers from this pitfall
involves constructing task sets by repeatedly adding a task
until the desired utilization level is reached. The result, for
each utilization level, is a mix of task sets with different
cardinalities. This approach confounds task set cardinality and
utilization, resulting in a strong correlation between the two,
as tasks sets with low utilization have on average fewer tasks
than those with higher utilization. This makes it impossible to
determine if some aspect of schedulability test performance is
impacted by the number of tasks or by the utilization level.

The two primary inputs to an algorithm that generates
utilization values are the task set cardinality n and the total
utilization required U . The output is a vector u, containing
n task utilization values Ui that sum to the desired total U .
(Note, as is customary, we use a bold font to denote vectors).

There are three key requirements for any general-purpose
algorithm that generates task utilization values:

1) Efficiency – The algorithm must be fast. To achieve
statistically significant sample sizes across a wide-ranging
systematic evaluation it is necessary to generate millions
of task sets, with typically 1000 task sets required per
data point [10].

2) Uniformity – The generated vectors of utilization values
must be unbiased i.e. uniformly distributed within the do-
main. This is equivalent to selecting the utilization values
for each vector at random from a uniform distribution in
the range [0, 1] and then discarding those vectors that do
not match the constraints [13]. As shown by Bini and
Buttazzo [5], bias in the sets of vectors generated can
undermine the conclusions drawn from empirical studies.

3) Flexibility – The algorithm should be capable of handling
constraints on individual utilization values for each of
the n tasks, This enables the utilization values to be
tailored to the specific requirements of the problem at
hand (examples are given later), while still producing an
unbiased distribution of vectors, i.e. uniformly distributed
over the valid region determined by the constraints.

Existing approaches to the generation of unbiased task
utilization vectors: UUnifast [5], UUnifast-Discard [13], and

1Assuming that parallel execution of a single task is not permitted.



RandFixedSum [16] provide only limited support for the three
key requirements set out above.

The UUnifast method, introduced by Bini and Buttazzo in
2005 [5], is efficient, but takes no explicit constraints. Thus
UUnifast(n,U) is a function of two parameters, with the con-
straint vectors effectively fixed at umax = (U,U, . . . , U) and
umin = u0 = (0, 0, . . . 0). As a consequence, UUnifast only
provides valid output vectors when U ≤ 1, i.e. for the single
processor systems for which it was designed. We note that
a naı̈ve and inappropriate use of UUnifast for multiprocessor
systems (m > 1) with values of U > 1, would produce vectors
where some individual task utilizations are invalid (Ui > 1).

The problem with applying UUnifast to multiprocessor
systems was partly addressed via the UUnifast-Discard method
introduced by Davis and Burns in 2010 [13]. UUnifast-
Discard employs UUnifast to generate vectors of utilization
values, but then applies the constraint that umax = u1 =
(1, 1, . . . 1), and thus discards any vectors where some in-
dividual task utilization is invalid. Davis and Burns [13]
showed that UUnifast-Discard is effective provided that there
are more than approximately 2 tasks per processor. Below
this level, for example from n = 16 to n = 9 tasks
on an 8 processor system, with U = 8, the number of
discards required to generate a single valid utilization vector
quickly becomes very large, making the approach intractable.
We observe that the basic idea of UUnifast-Discard can
easily be adapted to apply vectors of maximum and min-
imum constraints, umax = (Umax

1 , Umax
2 , . . . , Umax

n ) and
umin = (Umin

1 , Umin
2 , . . . , Umin

n ) on individual task uti-
lizations, rather than simply umax = u1; however, tighter
constraints would only increase the number of discards, ex-
acerbating the tractability issues.

The RandFixedSum method, invented by Stafford [30] in
2006, and adapted to the problem of generating task utilization
values by Emberson et al. [16] in 2010, provides an efficient
solution for multiprocessor systems for any valid combination
of n and U . (An open source Python implementation by
Emberson et al. is available online2). RandFixedSum applies
symmetric constraints3, umax and umin on the maximum and
minimum individual task utilizations that are applied to all
tasks, typically umax = 1 and umin = 0. Unfortunately,
the way in which RandFixedSum makes use of symmetric
constraints means that adapting it to the more general case
of non-symmetrical constraints would make the algorithm
intractable, as explained in Section II-C.

The main contribution of this paper is the introduction
of a general-purpose algorithm for generating task utilization
values, called the Dirichlet-Rescale algorithm (DRS). The
algorithm has the following signature:

u = DRS(n,U,umax,umin) (1)

where u = (U1, U2, . . . , Un) is the output vector of task uti-
lization values, n is the cardinality of the task set, U is the total
utilization required, and umax = (Umax

1 , Umax
2 , . . . , Umax

n )
and umin = (Umin

1 , Umin
2 , . . . , Umin

n ) are vectors of con-
straints indicating the maximum and minimum value that each
task utilization may take. Note, umax and umin are optional
arguments, which take the values umax = u1 and umin = u0

if not explicitly specified.

2.See https://github.com/MaximeCheramy/simso/blob/master/simso/
generator/task generator.py

3Constraints are referred to as symmetric if they all take the same value.

The DRS algorithm meets all three key requirements for
generating vectors of task utilization values: (i) efficiency, (ii)
uniformity, and (iii) flexibility. It is efficient enough for use in
large-scale empirical studies that need to generate millions of
task sets, generates an unbiased distribution of utilization vec-
tors, and can work with any valid set of constraints on individ-
ual task utilizations, where

∑n
i=1 U

max
i ≤ U ≥

∑n
i=1 U

min
i

and ∀i Umax
i ≥ Umin

i ≥ 0. The constraints on individual
task utilizations can be used for fine grained control of task
set parameters, for example constraining some number of the
tasks to be small, i.e. with Ui ≤ 0.5. However, the real power
of the algorithm, lies in the fact that it can be applied recur-
sively on problems where task utilizations are multi-valued or
can be decomposed into multiple constituent parts. Examples
include modelling mixed criticality systems [8], multi-core
systems [23], typical and worst-case execution times [2,26],
self-suspensions [9], and resource locking.

Real-time systems have a variety of different distributions
of task utilizations, with different distributions representative
of different systems, and no single distribution representative
of them all. For generic schedulability analysis experiments,
using a uniform distribution of utilization vectors means that
each possible vector that complies with the constraints has
the same chance of being selected. Thus, the distribution is
unbiased, provides full and fair coverage of the region of all
valid possibilities, and is thus an appropriate one to use.

A. Motivation

The motivation for our work on the Dirichlet-Rescale algo-
rithm comes from two fields that have continued to be hot
topics of real-time systems research over the past 10 years:
mixed criticality systems [8] and multi-core systems [23].

Mixed Criticality Systems: From a scheduling and analysis
perspective, the key defining characteristic of Mixed Criticality
Systems (MCS) is that at least one of the task parameters is
not single valued, but rather two or more values (e.g. Ci(LO)
and Ci(HI)) need to be considered, corresponding to different
criticality levels or behaviors {HI,LO}. Further, the timing
constraints that the tasks must comply with depend on the
criticality mode of the system. As noted in a survey of MCS
research [8], these properties significantly undermine many of
the standard scheduling results that were developed for single
criticality systems. We note that they also undermine, or at
least require consideration of extensions to, the techniques that
are used in the evaluation of schedulability test effectiveness.

As an example, consider the approach taken to generating
Ci(LO) and Ci(HI) values by Baruah et al. [3] in the
paper on Adaptive Mixed Criticality (AMC) scheduling, and
subsequently used in many related works [6,7,11,18]. Baruah
et al. generated Ui(LO) values using UUnifast, and then
set Ci(LO) = Ui(LO) · Ti and Ci(HI) = CF · Ci(LO),
where the Criticality Factor (CF ), is a fixed multiplier. Hence
Ui(HI) = CF ·Ui(LO). This represents a small and somewhat
unrealistic part of the domain of all possible MCS task sets
where the HI and LO criticality execution times are in a fixed
ratio. The authors seek to address this drawback by varying
the value of CF and plotting the weighted schedulability
measure [4] as a function of CF . Even so, there remains a
perfect correlation between Ci(HI) and Ci(LO) and hence
between Ui(HI) and Ui(LO).

Other authors, for example Ekberg and Yi [14,15], select
values for Ci(LO) and Ci(HI) as uniform random variables in



the ranges [1, Cmax(LO)] and [Ci(LO), CF ·Ci(LO)] respec-
tively. While this provides additional variation for Ci(HI), the
utilization vectors produced are not uniformly distributed, as
illustrated in Section II-B.

In MCS, there is a constraint that ∀i (Ci(HI) ≥ Ci(LO))
and hence ∀i (Ui(HI) ≥ Ui(LO)). Hence, what is required is
a means of generating vectors of Ui(HI) and Ui(LO) values
that meet those constraints, and where the individual utiliza-
tions sum to specified totals UHI and ULO respectively. The
Dirichlet-Rescale algorithm introduced in this paper enables
vectors of utilization values to be generated that address this
problem, using an iterative approach. First, the vector u(HI)
of Ui(HI) values that sum to UHI can be generated with the
only constraints being that ∀i (Ui(HI) ≤ 1):

u(HI) = DRS(n,UHI ,u1) (2)

Then the constraint vector can be set to u(HI) and a vector
u(LO) of Ui(LO) values produced that sum to ULO (< UHI)
via a second iteration of the algorithm:

u(LO) = DRS(n,ULO,u(HI)) (3)

Thus vectors of Ui(HI) and Ui(LO) values are obtained that
comply with the constraints on both total utilizations UHI

and ULO, ensure that the intra-task constraints ∀i (Ui(HI) ≥
Ui(LO)) are met, and importantly are uniformly distributed
over the domain.

Note that while this example considers only two criticality
levels, the approach can easily be extended to an arbitrary
number of levels, via additional calls to the Dirichlet-Rescale
algorithm with the appropriate parameters.

Multi-core Systems: From a scheduling and analysis per-
spective, the execution time of a task in a multi-core system
can be broken down into multiple constituent parts, corre-
sponding to different shared resources that are accessed. For
example, Altmeyer et al. [1,12] consider both the processor
demand PDi and the memory demand4 MDi, thus the overall
task execution time, not including cross-core interference, is
given by Ci = PDi +MDi. The processor (core) utilization
of each task is given by Ui = Ci/Ti, and the bus utilization
by UBUS

i =MDi/Ti. Note that ∀i Ui > UBUS
i .

In the task set generation process used in their evaluation,
Altmeyer et al. [1,12] randomly selected a trace from the
Mäladarlen benchmark suite [21] to represent each task and
define its pair of PDi and MDi values. They then generated
utilization values (either Ui or UBUS

i ) via UUnifast, and
scaled the task periods to achieve the desired total processor
utilization or the desired total bus utilization, given the sets
of values of PDi and MDi selected. While this approach
provides a reasonable basis for evaluation, it is unable to
control for both processor and bus utilization at the same
time. It also fixes the relationship between PDi and MDi

based on a limited number of examples from the benchmark
suite. (A simpler scheme representing PDi and MDi as fixed
proportions of Ci would be unrealistic here, since task behavior
varies from compute-intensive to memory-intensive, as shown
by the data from the benchmark suite, see Table 2 in [12]).

The Dirichlet-Rescale algorithm, introduced in this paper,
enables task sets to be generated that address these problems.

4For simplicity, we have scaled MDi to account for the bus access latency,
whereas [1,12] includes this multiplier in the equation for Ci.

Both total processor and total bus utilization can be controlled
for independently, while also ensuring that the distribution
of the pairs of vectors of processor and bus utilizations are
uniformly distributed over the domain of possible values that
they could take. As an example, suppose we have a multi-
core system with 4 cores, and require a task set that has a
core utilization UCORE of 2.8 and a bus utilization of UBUS

of 0.8. The DRS algorithm can be first used to produce the
required vector uCORE of processor utilizations values:

uCORE = DRS(n,UCORE ,u1) (4)

The constraint vector umax can then be set to the values of
uCORE, and the vector uBUS of UBUS

i bus utilization values
produced that sum to UBUS(< UCORE) via a second call of
the algorithm:

uBUS = DRS(n,UBUS ,uCORE) (5)

While this example considers only processor and bus uti-
lization, the approach can easily be extended to an arbitrary
number of resources, via additional calls to the DRS algorithm
with the appropriate parameters.

B. Organization

The remainder of the paper is organized as follows. Section II
outlines the mathematical concepts used in the DRS algorithm,
discusses some common misconceptions about generating uni-
formly distributed utilization vectors, and reviews related work.
Section III gives an overview of the algorithm, followed by
a more detailed presentation of its operation. An empirical
verification is provided in Section IV, examining the efficiency
and correctness of the algorithm. Section V gives an example
of how it can be used to improve schedulability test evaluation
for mixed criticality systems. Section VI concludes with a
summary and directions for future work.

II. BACKGROUND AND RELATED WORK

In this section, we first provide an introduction to the math-
ematical concepts relevant to design of algorithms used to
generate vectors of task utilization values in an unbiased way.
We then discuss some common misconceptions related to the
generation of such vectors, and finally provide a more detailed
discussion of the existing approaches.

A. Mathematical Concepts

A simplex (plural simplices) is a generalization of a tri-
angle, extended to an arbitrary number of dimensions. More
specifically, an (n−1)-simplex is an (n−1)-dimensional flat-
sided shape (or polytope) formed by the convex hull of its
n vertices Vi. In this paper, we are interested in (n − 1)-
dimensional simplices embedded in an n-dimensional space.
To aid visualization of the concepts, we make use of examples
of 2-simplices (triangles) embedded in a 3-dimensional space.
(Note, here we deliberately overload n to mean both the
number of dimensions and the number of tasks, since, for the
purposes of this paper, the former derives from the latter).
The vertices of the simplices that we consider are assumed
to be affinely independent, meaning that no three vertices
lie on a line. A simplex is non-degenerate if the vectors
(∀j 6= i Vi −Vj) are all independent, and hence cannot be
constructed from a linear combination of each other. A simplex
is referred to as regular if all of its edges are the same length.



A simplex is referred to as standard if it is formed from the
standard unit vectors.

An Affine transformation can be represented by a com-
bination of a linear transformation and a translation. Affine
transformations preserve a number of interesting properties
following transformation [32]: (i) co-linearity: any set of points
that are in a line remain in a line; (ii) parallelism: lines that
are parallel remain parallel; (iii) convexity: a convex set of
points remains convex; (iv) ratios: the ratio between the lengths
of any two parallel line segments remains the same; and (v)
uniformity: a uniform distribution of points remains uniform
after transformation.

Triangles are affine, meaning that any triangle can be trans-
formed into any other triangle via an affine transformation.
Further, the non-degenerate simplices considered in this paper
are affine. These simplices are embedded in n-dimensional
space on the hyperplane given by x1 + x2 + x3 . . . xn = c,
where c is a constant. Thus they span Rn. As a consequence,
we can write any coordinate of Rn as a linear combination
of the simplex coordinates, and vice versa. The translation
between two sets of basis coordinates in this way is both iso-
morphous and Affine, as it can be written as a transformation
matrix, constructed using the translate-scale-translate method.

While there are many ways to compute the volume of
a simplex, there are only a limited number of methods that
work when the simplex is embedded in a higher dimensional
space. Hence for our purposes, the Cayley-Menger determinant
method [22,24] is used, which computes the volume of an
arbitrary (n−1)-dimensional simplex in n-dimensional space.

B. Common Misconceptions

In this section, we dispel a number of naı̈ve conclusions
and misconceptions regarding the generation of uniformly
distributed utilization vectors. Each of these misconceptions
may lead to the generation of vectors that are non-uniform,
and hence potentially skewed results from their subsequent
use in the evaluation of scheduling algorithms and analyses.

Misconception #1: The utilization values (i.e. the components
of the vectors) themselves form a uniform distribution

In the context of generating vectors of task utilization
values, the term unbiased or uniformly distributed means that
the random vectors generated should be uniformly distributed
over the domain of all possible vectors that are valid with
respect to the constraints. This does not, however, imply that
the utilization values will follow a uniform distribution.

A uniform distribution of vectors over the domain of inter-
est is illustrated in Figure 1 for 1000 runs of UUnifast(3, 1),
i.e. for 3 tasks and a total required utilization of 1. In Figure 1,
the (x, y, z) co-ordinates of each point correspond to the three
utilization values of the vector that it represents. The large
triangle shows the boundary of the domain of valid vectors,
with all points on the plane within that triangle meeting the
constraint x + y + z = 1. Points on the boundary represent
vectors where one of the x, y, or z co-ordinates is zero, while
the vertices are the points where two of these values are zero,
and hence the other is 1. The points are color-coded: red
indicates there is a co-ordinate value in the range (0.6, 0.8]
and blue where there is a value in the range (0.8, 1.0]. Notice
that the size of regions where vectors have a value in the
range (0.6, 0.8] is much larger than the size of the regions
for values in the range (0.8, 1.0]. The vectors are uniformly
distributed within the domain; however, due to the way that
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Fig. 1. The output of 1000 runs of UUnifast(3, 1).

the constraint x+y+ z = 1 shapes the domain, the individual
utilization values within those vectors do not follow a uniform
distribution. There are fewer values in the range (0.8, 1.0] (130
values) than in the range (0.6, 0.8] (361 values), since the
former areas are much smaller.

Misconception #2: A uniform distribution of utilization vectors
can be obtained by independently selecting individual Ui

values from a uniform distribution in the range [0, 1] and then
scaling the values such that they sum to 1. This is the UScale
approach discussed by Bini and Buttazzo [5]. As they noted,
this method does not result in a set of vectors that are uniformly
distributed over the required domain. Rather the vectors are
clustered near the center where x, y, and z have similar values.

Misconception #3: Multiple related vectors of utilization values
(e.g. the u(HI) and u(LO) vectors discussed in Section
I-A) can be obtained by first independently generating the
vector of smaller utilization values (e.g. u(LO)) and a vector
representing the differences (e.g. ∀i Ui(HI) − Ui(LO)), and
then adding the two together to obtain the required vector
of larger utilization values (e.g. u(HI)). The problem with
this approach, which we refer to as UAdd, is that the vectors
produced via such addition are not uniformly distributed over
the relevant domain. This is illustrated in Figure 2. Here, we
called UUnifast(3, 0.5) twice for each point and added the
vectors together to obtain the coordinates. Notice the clustering
of the vectors in the center of the domain

C. Related Work

In this section, we give a brief overview of existing
methods that can be used to generate uniformly distributed
vectors of utilization values.

In 1964, Olkin and Rubin [25] described the Multivariate
Beta Distribution, also called the Dirichlet distribution, which
we denote by Dir(n,α), where α is a vector of n real
numbers. The Dirichlet distribution is a generalization of
the Beta distribution to multiple dimensions. A special case
of the Beta distribution Beta(1, 1) equates to the Uniform
distribution over the interval [0, 1]. A special case of the
Dirichlet distribution, where all elements of α are 1, is called
the flat Dirichlet distribution. This is equivalent to a uniform
distribution over the standard (n − 1)-simplex (defined by n
vertices Vi with cartesian co-ordinates (x1, x2, . . . , xn) with
xi = 1 and xj 6=i = 0). We observe that the flat Dirichlet
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Fig. 2. The output of 1000 runs of UAdd(3, 1) = UUnifast(3, 0.5) +
UUnifast(3, 0.5).

distribution can therefore be used as a means of directly
generating uniformly distributed vectors of utilization values
that sum to 1. The Python code for a scaled version of
the flat Dirichlet distribution, with parameters n and U , is
shown below. This implementation (chosen for its efficiency),
utilises random variates from the Gamma(1, 1) distribution,
and calculates these via inverse transform sampling5.
def scaled_flat_dirichlet(n, U):

intermediate =
[-math.log(1 - random.random()) for _ in range(n)]
divisor = sum(intermediate)
return [(x/divisor)*U for x in intermediate]

In 2005, Bini and Buttazzo introduced the UUnifast(n,U)
algorithm [5], which provides a solution to the problem of
generating uniformly distributed vectors of utilization values,
where the sum of the components of each vector is U ≤ 1.

UUnifast works by iteratively sampling a value that repre-
sents the sum of n− 1, n− 2, n− 3, . . . task utilizations. On
each iteration i, the utilization for task τi is set to the difference
between the sampled value and the remaining total utilization
required. The remaining total utilization is then reduced to the
sampled value. Iteration ends when there is one task left, and
that task is assigned all of the remaining total utilization.

UUnifast has previously [16] been characterized as ob-
taining the sampled values via applying the inverse transform
sampling method to obtain the random variates of the sum
of n− 1 independent uniformly distributed random variables.
This description unfortunately obfuscates the true nature of
the random variates used in UUnifast, which are drawn from
the Beta distribution [17]. We observe that there is a direct
equivalence between UUnifast and the Dirichlet distribution,
since the UUnifast algorithm follows an intuitive definition
of the Dirichlet distribution [17], and functions by drawing
random variates via inverse transform sampling from the
marginal Beta distributions of the Dirichlet distribution.

UUnifast(n,U) = Dir(n,u1)× U (6)

In 2010, Davis and Burns presented UUnifast-Discard [13],
an adaptation of UUnifast to the multiprocessor case.
UUnifast-Discard repeatedly calls UUnifast to generate a vec-
tor of utilization values, discarding any vector where ∃i | Ui >

5Inverse transform sampling is a method of obtaining sample numbers at
random from any probability distribution given its cumulative distribution
function.

1 until a vector is found that meets all of the constraints. Recall
that UUnifast-Discard can easily be adapted to apply vectors
of constraints umax and umin.

UUnifast-Discard(n,U,umax,umin) (7)

Figure 3 illustrates the output of UUnifast-Discard for
a multiprocessor system, with a required total utilization of
U = 1.4, and constraints on the maximum utilization of the
three tasks given by x ≤ 0.5, y ≤ 0.8, and z ≤ 0.9. These
constraints are shown as annotated colored lines. Observe that
the constraint on the maximum utilization of each task elimi-
nates a region that is itself a simplex, similar in shape to that of
the simplex given by the constraint on total utilization, shown
by the thick black line. The results shown are for 1000 calls
to UUnifast, which produced 289 valid vectors that met the
constraints and are therefore plotted. Unfortunately, UUnifast-
Discard suffers from the curse of dimensionality. Thus, al-
though the number of discarded vectors in 3-dimensional space
is manageable, this is not the case in higher dimensions, since
the ratio of the constrained volume to the total volume of the
simplex becomes vastly smaller6 for larger n and larger U .
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Fig. 3. The output of 1000 runs of UUnifast-Discard(3, 1.4, (0.5, 0.8, 0.9)).

In 2010, Emberson et al. [16] described the RandFixedSum
method, invented by Stafford [30] in 2006, and adapted it to
the problem of generating task utilization values for multipro-
cessor systems. RandFixedSum support symmetric constraints
[umin, umax] on the range of values permitted for each task
utilization value Ui, subject to numin ≤ U ≤ numax, where
U is the total utilization required.

The basic operation of RandFixedSum is as follows:
1) Divide the valid region into simplices, all starting from the

center point at (U/n,U/n, . . . , U/n), see [16] for details
of how this is done. The result is

(
n−1
k

)
distinct types of

simplex, where k = bUc, with n! of each type of simplex
needed to cover the entire valid region.

2) Compute the volume of each different type of simplex.
3) Randomly select a type of simplex to generate a point in,

weighted by volume with respect to the set of all
(
n−1
k

)
types of simplex.

4) Randomly select a point within that simplex, using an
approach similar to UUnifast.

6For example, if each constraint halves the volume of the valid region, then
the ratio of the two volumes is 1/2n.



5) Randomly permute the co-ordinates of the point to obtain
coverage of the whole region.

Figure 4 illustrates the output of 1000 runs of RandFixed-
Sum, with n = 3, U = 1.4, and umax = 1.0. The red triangles
indicate the

(
2
1

)
= 2 types of simplex, with 3! = 6 of each

needed to cover the entire valid region.
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Fig. 4. The output of 1000 runs of RandFixedSum(3, 1.4). Also shows the
two types of simplex, 6 copies of each, required to cover the valid region.

The efficiency of RandFixedSum is due to the fact that
it deals with a relatively small number of simplex types,
given by the binomial coefficient

(
n−1
bUc
)
, rather than the actual

number (n!) of each type of simplex. Unfortunately, extending
RandFixedSum to handle non-symmetric constraints is prob-
lematic, since it removes the symmetry that makes the co-
ordinates interchangeable. This greatly increases the number
of different types of simplex that need to be considered. With
non-symmetric constraints, the number of different types of
simplex depends on n! [30], making the approach intractable.
(To aid visualization of this problem, note that with 3 tasks in
general the valid region becomes an irregular hexagon with no
two sides equal. As a result, 3! = 6 different types of simplex
(shapes of triangle) need to be considered, 2 of each. In higher
dimensions, this issue becomes much more acute).

III. DIRICHLET-RESCALE ALGORITHM

In designing an algorithm to solve the general problem of
generating uniformly distributed utilization vectors containing
values that sum to a required total and also meet a set of
constraints on individual utilizations, we first considered the
drawbacks of UUnifast-Discard and RandFixedSum. UUnifast-
Discard may need to discard large numbers of points, which
due to the curse of dimensionality, makes it intractable for
many interesting cases. RandFixedSum on the other hand does
not discard any points, but has the drawback that it only works
for symmetrical constraints. It relies on symmetry to avoid
intractability issues that would otherwise arise due to the need
to generate points uniformly within an irregular n-dimensional
polytope. The Dirichlet-Rescale Algorithm introduced in this
paper overcomes these issues by generating points within a
standard simplex, then rather than discarding points, it per-
forms a series of transformations that shifts the coordinates of
the points into the valid region. Crucially, these transformations
preserve the property of uniform distribution over the valid
region. Further, the DRS algorithm operates by transforming

the problem into a canonical form, whereby the total utilization
required is one, and the minimum constraints are zero, solving
the transformed problem, and then transforming the solution
back to the original problem that has non-zero minimum
constraints.

We note there is a duality between the standard simplex
that provides lower bounds of zero for all co-ordinates, and
the constraints simplex that provides upper bounds for all co-
ordinates, and is derived from the transformed constraints.
These simplices lie on the same hyperplane, and provide upper
and lower bounds, such that the valid region is given by
the intersection of the two simplices. Figure 5 illustrates the
standard simplex defined by the vertices (1, 0, 0), (0, 1, 0),
(0, 0, 1) and the constraints simplex defined by the constraints,
i.e. x ≤ 0.5, y ≤ 0.45, z ≤ 0.7. The valid region can be
considered as either: (i) the region of the standard simplex
that lies within the constraints simplex, or (ii) the region of
the constraints simplex that lies within the standard simplex.

The DRS algorithm makes use of this duality to transpose
the two simplices, when necessary to improve performance. It
always selects the smaller of the two simplices as the reference
simplex to generate initial points in, and treats the larger
simplex as the constraints simplex. This ensures that initial
points generated within the reference simplex break no more
than n − 1 of the n constraints. (If all n constraints were
broken, then that would imply that the constraints simplex was
entirely enclosed within the reference simplex and therefore
smaller). Generating points within the smaller simplex results
in substantial efficiency gains when the two simplices differ
greatly in volume. In practice, the use of the reference simplex
is achieved by detecting when the constraints simplex is
smaller, and transforming the problem accordingly. This may
be different to how the problem is posed; however, it has no
impact on the validity of the output.

A. Intuition and Overview
Below, we describe the intuition behind the DRS algorithm,

and give an overview of its operation. A more detailed math-
ematical description is given in the following subsection.

The outline operation of the DRS algorithm is as follows:
1) Transform the input parameters so that the rest of the

algorithm can operate on a canonical form of the problem,
whereby the sum of the co-ordinate values is required to
be one, and the lower bound on each co-ordinate is zero.

2) If the standard simplex has a larger volume than the
constraints simplex, switch them around and further trans-
form the problem so that the new reference simplex is
again the standard simplex.

3) Generate a point on the standard simplex, using the
Dirichlet distribution. Assign this point to the vector P.

4) If P satisfies the constraints then return P after reversing
the transformations applied to the original problem (exit).

5) Otherwise, define a simplex S based on the constraints
that have been broken. By construction, simplex S con-
tains point P. (See Figure 5 which shows an initial point
P0 that breaks the constraint x ≤ 0.5, and the simplex S
constructed using that broken constraint).

6) Map simplex S onto the standard simplex via a matrix
transformation that performs the necessary translation and
rescaling. This transformation alters the coordinates of
point P, making it more likely that the point will now
be in the valid region. (In the example shown in Figure 5
P0 at (0.9, 0.05, 0.05) first moves to P1 at (0.8, 0.1, 0.1),



and then on subsequent iterations to P2 at (0.6, 0.2, 0.2),
and P3 at (0.2, 0.4, 0.4), which is inside the valid region).

7) Go to Step 4.
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Fig. 5. The output of 1000 runs of Dirichlet-Rescale(3, 1, (0.5, 0.45, 0.7)).
The points P0, P1, P2, and P3, show the transformation of a point via the
repeated rescaling of simplex S onto the standard simplex.

Note that the example shown in Figure 5 is for the simplest
case where a single constraint is broken; however, in general
the matrix transformation in step 6 addresses multiple broken
constraints at once. For example if the initial point were
at (0.52, 0.47, 0.01) then both the x ≤ 0.5 and y ≤ 0.45
constraints would be broken. In that case, the simplex S would
be given by the very small triangle at the bottom of the
picture, bounded by the lines x = 0.5, y = 0.45, and z = 0.
The transformation of that simplex onto the standard simplex
involves both translation and scaling.

Since the distribution of points over the standard sim-
plex produced by the flat Dirichlet distribution is uniform,
it follows that the distribution of points over simplex S is
also uniform. Importantly, the matrix transformation in Step
6 that maps simplex S onto the standard simplex is an Affine
transformation (see Section II-A), and hence the points that
are uniformly distributed over S become uniformly distributed
over the standard simplex and hence uniformly distributed over
the valid region.

B. Detailed Description
In this subsection, we give a detailed description of the

Dirichlet-Rescale algorithm. The algorithm is decomposed into
a number of sub-functions, which are elaborated below, starting
with the lowest level sub-functions, and ending with the DRS
function itself.

Rescale Matrix to Standard Simplex: RMSS(S)
Summary: This sub-function returns a transformation ma-

trix that rescales a regular simplex S, so that it becomes the
standard simplex.

Definitions:
• Let S = (s1, s2, ...sn) be an (n − 1)-dimensional

simplex embedded in Rn, with ∀i
∑n

j=1 si,j = 1.
Further, let o be a point with all o− si orthogonal to
all o− sk for k 6= i.

• Let bn
k be the standard basis vectors of Rn, with the

non-zero component at the k-th position (e.g. b3
2 =

(0, 1, 0)).

• Let Bn = (bn
1 ,b

n
2 , ...b

n
n) be the (n− 1)-dimensional

standard simplex embedded in Rn.
As S and Bn are regular simplices, it follows that S can

be transformed into Bn via a standard translate-scale-translate
method7, that works as follows:
• Without loss of generality, pick s1 to have the greatest

first component (i.e. ∀si, i > 1, s1,1 > si,1).
• Translate the set S by −s1 to S′ = {s′i = si − s1}.

Due to the orthogonality of the components of S with
respect to o, each component of S that is not s1 will
have exactly two non-zero components once trans-
lated. (This can be seen as follows: Each si is equal to
o+ kiIi where Ii is the i-th unity vector (i.e the i-th
row of the identity matrix), and ki is some constant.
s′i = si − s1 = o + kiIi − o − k1I1 = kiIi − k1I1,
hence two non-zero components).

• Without loss of generality, we assume that for i > 1,
s′i = si−s1 has s′i,1 = x1 and s′i,i = xi with all other
components of the vector equal to zero.

• Next, scale S in each dimension as follows:
◦ For i = 1, scale by a factor of − 1

x1

◦ For i > 1, scale by a factor of 1
xi

• Applying this to the s′i, gives s′′i , where for i > 1,
s′′i,1 = −1, s′′i,i = 1, and all other components of the
vector are zero.

• Finally, translate all the s′′i by bn
1 to obtain s′′′i = bn

i .
As all of the transformations are Affine, they can be combined
into a single matrix transformation. This sub-function returns
that matrix.

Constraints to Simplex: CtS(r)
Summary: This sub-function converts a vector of con-

straints r = {(r1, r2, . . . rn) | ri ≥ 0, i = 1, . . . n}, into
a constraints simplex S, which is returned. This constraints
simplex, on the hyperplane of the standard simplex, bounds
the region in which the maximum constraints are met, while
the standard simplex bounds the region in which the minimum
constraints, already transformed to zero, are met.

The simplex S = {si}, which describes the constraints r,
is defined by:

si,j =

{
1−

∑n
k=1 rk + ri i = j

rj otherwise

Note, some components si,j may have negative values (for
example, the intersection of the z = 0.7 and x = 0.5 constraint
boundaries in Figure 5 is at (0.5,−0.2, 0.7)).

Rescale: Rescale(r,P)
Summary: This sub-function takes as its input parameters

a vector of constraints r, and a point P within the standard
simplex. It checks if P breaks any of the constraints in r.
If not, then it returns P. Otherwise, it constructs a simplex
using the broken constraints and uses a matrix transformation
to translate and rescale that simplex onto the standard simplex,
transforming the coordinates of point P.

1) If P satisfies all of the constraints in r, then return P.
2) Otherwise, construct the vector b such that:

bi =

{
ri if constraint ri was broken
0 otherwise

7This is true for any pair of regular simplices in Rn.



3) Let S = CtS(b), where S is the simplex constructed from
the broken constraints. (Note that by construction, P is
within S).

4) Let M = RMBS(S), where M is the transformation
matrix that translates and rescales simplex S onto the
standard simplex.

5) Return Rescale(r,MP). (Note MP requires P to be
embedded into an (n+1)-dimensional vector, multiplied,
and then de-embedded8).

SmallestSimplexRescale - SSR(r,P)
Summary: This sub-function takes as its input parameters

a vector of constraints r, and a point P within the standard
simplex. It checks if the simplex corresponding to the con-
straints r is smaller than the standard simplex. If so, then the
problem is transformed, switching the standard simplex for the
constraints simplex, and vice-versa.

1) Let C = CtS(r), where C is the simplex corresponding
to the constraints r.

2) If the volume of C is greater than the volume of the
standard simplex, return Rescale(r,P).

3) Otherwise, let M = RMBS(C), where M is the matrix
that transforms simplex C onto the standard simplex.

4) Let q = M0 be the new constraints. Note that M0 is
the boundary of the standard simplex transformed by the
matrix transformation that maps the simplex representing
the original constraints to the standard simplex, and hence
provides the constraints of the transformed problem.

5) Let t = Rescale(q,P) be the solution to the transformed
problem.

6) Let M−1 be the inverse of M , calculated via M−1 =
RMBS(CtS(q)).

7) Return M−1t, inverting the original transformation by M
that was applied.

Dirichlet-Rescale: DRS(n,U,umax,umin)
Summary: This is the main function. It takes as input

parameters the number of tasks n, the desired total utilization
U , a vector of maximum constraints umax (default u1),
and a vector of minimum constraints umin (default u0). It
first checks that the problem is valid. It then transforms the
parameters converting the problem into a canonical form,
whereby the sub-functions can operate on a standard simplex
(i.e. minimum constraints of u0). It generates the initial point
P in the standard simplex, and calls SmallestSimplexRescale().
Finally, it applies the reverse transformation on the output.

1) Check that the problem is valid (i.e.
∑n

k=1 U
min
k ≤ U ≤∑n

k=1 U
max
k and ∀k Umax

k ≥ Umin
k ).

2) If umin 6= u0, then convert the problem into a form with
umin = u0 as follows. First modify the constraints such
that u′max = umax−umin, U ′ = U−

∑n
k=1 U

min
k , then

return (DRS(n,U ′,u′max,u0)) + umin.
3) Let P be an initial point in the standard simplex generated

by Dirichlet(n, 1).
4) Return U · SmallestSimplexRescale(umax/U,P).

C. Convergence and Complexity
To prove that the Dirichlet-Rescale algorithm converges,

we effectively “paint” the regions of the standard simplex that
converge after q iterations, where an iteration represents a call
to the Rescale() sub-function.

8See https://en.wikipedia.org/wiki/Translation (geometry) for an overview
of translation using a matrix representation.

Consider a uniformly distributed, randomly chosen point
P on the standard simplex. Let

p =
volume(valid region)

volume(standard simplex)
(8)

Trivially, after no iterations, p is the probability that point P
will be accepted, and 1− p is the probability that it will not.
If P is not accepted, then that is because it lies outside of the
valid region. In which case, a new simplex S is formed from
the broken constraints. By construction, P is within S. The
ratio of the volume of simplex S to the volume of the standard
simplex can be no greater than (1− p), since by construction,
the entire volume of S lies within the standard simplex, and
does not intersect with the valid region. The rescale operation
maps S onto the standard simplex, and hence an upper bound
on the probability that P is not accepted on any one subsequent
iteration is given by (1 − p). It follows that an upper bound
on the probability of P not being accepted after q iterations
is given by (1 − p)q . This leads to the following formula for
the minimum converged volume c after q iterations:

c ≥ 1− (1− p)q (9)

Thus, as q →∞, c→ 1, and hence the algorithm converges.
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Fig. 6. Number of iterations (basic rescale operations) required to converge
for various initial points with the constraints x ≤ 0.5, y ≤ 0.5, z ≤ 0.5, and
x+ y + z = 1.

Figure 6 illustrates the areas of the standard simplex9

that converge after 0 (blue), 1 (cyan), 2 (green), 3 (yellow),
4 (orange), 5 (brown), and 6 (red) basic rescale operations,
assuming symmetrical constraints of x ≤ 0.5, y ≤ 0.5,
z ≤ 0.5 and x + y + z = 1. The standard simplex is
shown in black and the constraints simplex in blue. Observe
the fractal pattern (equating to the volume removed from
a Sierpinski triangle [28]) created by the areas that have
converged after a fixed number of iterations, and that on each
iteration the remaining unconverged area is reduced by a factor
of approximately 0.75. Hence, after 24 iterations, only an area
approximately 0.001003 times that of the standard simplex
remains. (In this particular example, all 1000 initial points
converged within 24 iterations).

9For illustration purposes, no optimization was performed leveraging the
duality between the constraints simplex and the standard simplex to switch
them around.



We note that convergence could be slow when the value of
p is very small, i.e. when the valid region is a tiny fraction of
the volume of the standard simplex. This can potentially occur
in two ways, the first of which is addressed by the algorithm
design. If the constraints are tight i.e.

∑
i U

max
i = U + δ

where δ is a small value, (for example, ∀i, Umax
i = (1+δ)/n,

U = 1), then the constraints simplex has a very small volume.
However, in this scenario, the algorithm exploits the duality
of the reference and constraints simplices to switch them
around, leading to rapid convergence. The worst-case scenario
thus occurs when there is no gain from exploiting duality
and yet the volume of the valid region is still very small.
This happens when the two simplices are of equal volume
and overlap occurs in a region along a single edge10. In
this case, two of the constraints take values of 1 − δ/2,
while the remaining constraints are all δ/(n − 2). While
such pathological constraints are possible to program, they are
highly unlikely to occur within the scope of the intended use
of the algorithm, i.e. generating task utilization values.

D. Implementation Issues and Convergence
There are two implementation issues related to the repeated

rescaling employed by the DRS algorithm: the accumulation
of floating point error, and the finite (e.g. 64-bit) precision of
the floating point representation. The former can result in a
small non-uniform component to the values generated, while
the latter effectively places a bound on the number of rescale
operations that can occur before Shannon’s Entropy [27] in
the initial point is effectively exhausted. These issues manifest
themselves as a divergence from the required total utilisation.
The algorithm detects when this divergence exceeds a given
constant ε. A default value of ε = 10−4 is used in our
implementation, thus the sum of the utilization values is
permitted to have an error of at most 0.01%. If divergence
exceeds ε, then the DRS algorithm retries with a new initial
point. Note, as this is an error term, there is no guarantee of
uniformity when values are considered to a precision smaller
than ε. If uniformity is required to a higher precision, then a
smaller value of ε can be used. Although the implementation of
the DRS algorithm rejects some points and retries, the regions
affected are much smaller than with UUnifast-Discard, hence
the algorithm remains tractable. In the following section, we
detail an empirical investigation into the convergence of the
algorithm in practice.

In cases where one or more constraints have very small
values, repeated rescaling may be required to map the initial
point onto the valid region. (A simple form of this problem is
illustrated in Figure 5 where point P is subject to the same
transformation four consecutive times). The implementation
of the DRS algorithm is optimized to compute the maximum
number of times k that the same matrix transformation M can
be applied without the set of broken constraints changing11.
The matrix Mk for the overall transformation is then obtained
by combining M , M2, M4, M8 . . . , thus reducing the number
of matrix operations needed to O(log(k)). We refer to this as
a power transformation.

The complexity of the algorithm is effectively pseudo-
polynomial O(p−1n2), where p is defined by (8), with the
O(n2) term coming from the matrix transformations.

10It is not possible to collapse the valid region further, i.e. towards a single
point, without also decreasing the volume of the constraints simplex.

11A change in the set of broken constraints would imply that a different
matrix transformation was required.

IV. EMPIRICAL VERIFICATION
This section provides an empirical investigation into the

performance and correctness of the DRS algorithm. First, we
examine the efficiency of the algorithm in terms of the number
of re-scaling operations required to generate utilization vectors.
Here, we investigate how runtime performance varies with
the desired total utilization, and also with the number of
tasks (i.e. the dimension of the vectors). Second, we verify
empirically that the algorithm produces a set of vectors that
are uniformly distributed within the valid region.

The evaluation covers the full range of possible inputs in
terms of the canonical form of the problem. This is achieved
by fixing the sum of the maximum constraints at 1, varying the
total required utilization over the range [0, 1], and employing
no minimum constraints (i.e. umin = u0).

Experiment A: investigated how the number of re-scale
operations and the number of retries required varies with the
utilization of the vectors generated from U = 0.05 to 0.95 in
steps of 0.05, for vectors of cardinality n = 50. The data for
each utilization level is based on 10,000 runs. On each run, first
a set of constraints were generated via umax = UUnifast(n, 1),
then DRS(n,U,umax) was called to generate a vector with
the desired utilization, subject to those constraints. Figure 7
illustrates the distribution of the number of rescale operations
required for each of the runs. Observe that the maximum
number of rescale operations did not exceed 200, for those
points that converged, and that the mean and upper percentiles
took their worst-case values for U = 0.5.
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Fig. 7. Distributions of the number of rescale operations required by DRS
to generate vectors of n = 50 utilization values, summing to a total of 0.05
to 0.95 (x-axis). Constraints generated as a vector of n = 50 maximum
utilization values summing to 1. The plot shows: minimum (lower circle), 5-
percentile (lower whisker), 25-percentile (bottom of box), median (line across
box), 75-percentile (top of box), 95-percentile (upper whisker), and maximum
(upper circle) of the distribution.

Figure 8 shows the average number of retries per vector
over the 10,000 runs at each utilization level. Observe that the
average number of retries per vector did not exceed 0.25 and
the worst-case was again at U = 0.5. (Note, in Figures 8 and
9 we increased U in steps of 0.01 to capture the fine detail).

By way of comparison, we repeated Experiment A using
UUnifast-Discard to generate the vectors. In this case, we
limited the maximum number of discards on each run to
10,000. If that limit was exceeded, then we recorded that the
algorithm had failed to generate a valid vector. Figure 9 shows
the average number of discards over the 10,000 runs at each
utilization level. Also shown is the number of valid vectors
produced. The worst-case occurs for U > 0.3, where no valid
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Fig. 8. Average number of retries per vector, required by DRS to generate
vectors of n = 50 values for each utilization level (x-axis).

vectors are produced in 108 attempts per utilization level, and
so the average number of discards per vector is 10,000. For
U > 0.15, UUnifast-Discard produced less than half of the
vectors within 10,000 discards, illustrating that the range of
problem characteristics where it can provide a viable solution
is severely restricted12. There are no such issues with the DRS
algorithm, which produced valid vectors in every case.
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Fig. 9. Average number of discards per vector, required by UUnifast-Discard
to generate vectors of n = 50 values for each utilization level (x-axis). Also,
number of valid vectors generated in less than 10,000 discards each.

Experiment B: was similar to Experiment A, however, it
fixed the total required utilization at U = 0.5 (the worst-
case with respect to DRS algorithm efficiency), and varied the
number of tasks from n = 5 to 100 in steps of 5. Figure 10
illustrates the distribution of the number of rescale operations
required for each of the 10,000 runs at each task set cardinality
value. Observe that the maximum number of rescale operations
required does not exceed 200 for n ≤ 100, for those points that
converged. Further, the DRS algorithm succeeded in generating
vectors in all cases. Figure 11 shows the average number
of retries per vector over the 10,000 runs at each task set
cardinality. Note the average number of retries per vector did
not exceed 5, even for task sets with n = 100.

Experiment C: examined how the runtime of the DRS
algorithm varies with task set cardinality n, based on the
requirements of a de facto standard schedulability analysis
experiment. Such an experiment typically requires 1000 task
sets to be generated at each utilization level from 0.05 to 0.95
in steps of 0.05. To obtain each task utilization vector, first a
set of constraints were generated via umax = UUnifast(n, 1),
then DRS(n,U,umax) was called to generate a vector with
the desired utilization, subject to those constraints. Figure 12
shows how the overall processing time required to generated
the 18,000 vectors needed for a standard schedulability anal-

12For smaller numbers of tasks e.g. n = 20, UUnifast-Discard is somewhat
more effective, but still there were no valid vectors produced for U > 0.6,
and less than half for U > 0.3.
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Fig. 10. Boxplot of the number of rescale operations required by DRS to
generate a vector of n utilization values summing to a total of U = 0.5 for
varying cardinality n (x-axis).
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Fig. 11. Average number of retries per vector, required by DRS, to generate
10,000 vectors, U = 0.5, for varying cardinality n (x-axis).

ysis experiment13 varies with task set cardinality. The results
were obtained by running a Python/NumPy implementation of
the DRS algorithm on all cores of a Raspberry Pi 4 (with a
heatsink capable of avoiding thermal throttling), using Ubuntu
Mate 20.04 Beta 1 AArch64. This hardware platform was used
to obtain accurate runtimes, while avoiding any interference
from co-running software. Note, in practice, the DRS algorithm
would normally be run on a desktop or laptop PC or a server.
Using a Dell XPS 13 with Intel R© i7-1065G7 running at
3.5GHz, the time required to generate 18,000 vectors was
approx. 6 seconds for 10 tasks, 1 minute for 50 tasks, and
6 minutes for 100 tasks (approx. 6 times faster than the Pi 4).

Experiment D: verified that the distribution of vectors
produced by the DRS algorithm is unbiased. This was done
by showing that the distribution is not statistically signif-
icantly different from that produced by UUnifast-Discard.
(By construction, the latter produces an unbiased distribution
of vectors). We note that while both algorithms in theory
produce a uniform distribution of vectors when operating on
real values, when a fixed-precision (e.g 64-bit) floating point
implementation is used, then the distributions obtained are not
precisely uniform. This issue is caused by the fixed-precision
arithmetic rather than any issue with the algorithms. As this
experiment aims to demonstrate uniformity as precisely as
possible, the value of ε was set to 10−8 (see Section III-D).
Expt. D was characterized as follows (n = 10, and U = 0.5):

13Note, weighted schedulability [4] experiments vary a additional parameter
over perhaps 10 different values, but also combine results for different
utilization levels into a single data point. Hence they typically only require
100 task sets per utilization level to achieve high quality results. The total
number of vectors needed is therefore similar to a standard schedulability
analysis experiment.
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Fig. 12. Total processing time in seconds (y-axis) required by the DRS
algorithm to generate the set of vectors for a de facto standard schedulability
analysis experiment, for varying cardinality n (x-axis).

1) umax = UUnifast(n, 1) was used to generate a con-
straints vector umax.

2) DRS(n,U,umax) and UUnifast-Discard(n,U,umax)
were called 106 times each to generate sets G and H
respectively, of vectors within the valid region.

3) 1000 reference simplices were generated as follows. First,
1000 sample simplices were created by calling UUnifast-
Discard(n,U,umax), and the volume of each sample
simplex calculated. After discarding outliers, the 98−
and 95−percentiles were used to calculate upper and
lower bounds for acceptable reference simplex volumes.
Reference simplices were then generated by the same
method as sample simplices, and only accepted if their
volume was within the bounds. This method was used to
pick reasonably large simplices and therefore minimize
the probability that a reference simplex would contain
no points. Since the vertices were selected from points
within the valid region, each reference simplex was also
fully contained within the valid region.

4) For each reference simplex, the numbers of points from
G and H contained within it were determined. This
data was then used to form density distributions. Any
reference simplex containing zero points was discarded.
Further, only data within the 5 − 95 percentiles were
considered, since outliers, outside of this range, can have
a disproportionate effect on statistical testing.

5) The density distributions for DRS and UUnifast-Discard,
were then compared using a two sample Kolmogorov-
Smirnov (KS) test [29,31].

The two density distributions are shown in Figure 13, as
cumulative distribution functions. The two sample KS test on
this data gave a KS-statistic of 0.04, and a p-value of 1.0,
which is as high as it can be. Hence, there is absolutely no
evidence that the distributions diverge, and we cannot reject the
null hypothesis that the density values from UUniFast-Discard
and DRS are drawn from the same distribution. Therefore we
have a high degree of confidence that the two distributions are
identical.

V. MIXED CRITICALITY SYSTEMS EXAMPLE
In this section, we give an example of how the Dirichlet-

Rescale algorithm can be employed in the evaluation of
schedulability tests for mixed criticality systems.

Below, we make use of the following additional notation:
The sets of LO- and HI-criticality tasks are denoted by {LO}
and {HI} respectively. ULO =

∑
∀i Ui(LO) is the total

LO-criticality utilization of all the tasks. Further, ULO
LO =∑

∀i∈{LO} Ui(LO) is the total LO-criticality utilization of the
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Fig. 13. Empirical Cumulative Distribution Function (ECDF) for the density
of points in R10 generated by DRS and UUnifast-Discard.

LO-criticality tasks, and UHI
LO =

∑
∀i∈{HI} Ui(LO) is the

total LO-criticality utilization of the HI-criticality tasks, hence,
ULO = ULO

LO + UHI
LO . Finally, UHI

HI =
∑
∀i∈{HI} Ui(HI) is

the total HI-criticality utilization of the HI-criticality tasks.
Our example is based on the first experiment described

by Baruah et al. in [3]. As a baseline, we replicated the
task set generation used in that paper, summarized as follows:
Each task set contained n = 20 tasks. The number nHI of
HI-criticality tasks was determined by the Criticality Propor-
tion14, CP , hence nHI = CP · n, and nLO = n − nHI .
With CP = 0.5, nHI = nLO = 10. Task LO-criticality
utilizations, Ui(LO), were generated using UUnifast [5], and
task HI-criticality utilizations set to Ui(HI) = CF · Ui(LO),
where the Criticality Factor, CF = 2.0. Task periods were
selected at random from a log-uniform distribution, with a
ratio of 100 between the minimum and maximum periods.
Task executions times were given by Ci(LO) = Ui(LO) · Ti
and Ci(HI) = Ui(HI) · Ti. The deadlines of all tasks were
implicit, i.e. equal to their periods.

Figure 14 shows the proportion of 1000 task sets generated
for each total LO-criticality utilization level (from 0.05 to 0.95)
that were schedulable according to the MCS schedulability
tests: AMC-max, AMC-rtb, and SMC (described in [3]). Also
shown is UB-H&L, an upper bound on the performance of
any fixed priority mixed criticality scheduling algorithm (also
described in [3]), and a further test, labelled Valid, which is
a necessary condition for schedulability of a mixed criticality
system [7]: (i) ∀i Ui(LO) ≤ 1, (ii) ∀i∈{HI} Ui(HI) ≤ 1, (iii)
ULO ≤ 1, and (iv) UHI

HI ≤ 1.
Observe that in Figure 14, for utilization levels of ULO ≥

0.6, not all of the task sets generated are valid, and at
ULO = 0.95 just over half are valid. The reason for this
is that the approach used by Baruah et al. [3] ensures that
ULO ≤ 1, but does not ensure that UHI

HI ≤ 1. In theory,
UHI
HI can take any value in the range (0, CF ·ULO). Checking

the data for the 1000 task sets generated with ULO = 0.95,
the 25-percentile, median, and 75-percentile values for UHI

HI
were {0.86, 0.96, 1.11}, with 425 of the 1000 values exceeding
1, and therefore invalid. Further, since Ui(HI) = CF ·
Ui(LO), individual HI-criticality tasks may also be invalid,
with Ui(HI) > 1.

Figure 15 illustrates schedulability test performance when
task sets are generated making use of the DRS algorithm
introduced in this paper, summarized as follows: The number
of tasks, and the methods of determining deadlines and periods

14Baruah et al. [3] used a probability of 50% of each task being HI-
criticality; however, here we fix the number of HI-criticality tasks to avoid
this additional source of variability.



were the same as in [3] (recapped above). The Ui(HI)
values for the nHI HI-criticality tasks were first generated by
calling DRS(nHI , UHI

HI ,u
1), where UHI

HI = CF · CP · ULO

and ULO is the desired LO-criticality utilization level. Next,
the constraint vector umax of maximum utilization values
was constructed using the Ui(HI) values computed in the
previous step for HI-criticality tasks and the value 1 (i.e. no
constraint except for validity) for the LO-criticality tasks.
The Ui(LO) values for all n tasks were then generated by
calling DRS(n,ULO,umax), where ULO is the desired LO-
criticality utilization level. Task executions times were given
by Ci(LO) = Ui(LO) · Ti and Ci(HI) = Ui(HI) · Ti.
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Fig. 14. Performance of AMC and SMC scheduling schemes with task sets
generated following the approach of Baruah et al. [3], controlling only ULO .
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Fig. 15. Performance of AMC and SMC scheduling schemes with task sets
generated using the DRS algorithm, controlling both ULO and UHI

HI .

This method controls both ULO and UHI
HI , the latter via

the parameters CP and CF . Since CP = 0.5 and CF = 2.0,
in this case UHI

HI = ULO meaning that provided ULO ≤ 1,
none of the task sets generated are invalid. Further, as UHI

HI =
ULO, the y-axis of Figure 15 gives both the total LO-criticality
utilization of the task set ULO and the HI-criticality utilization
of HI-criticality tasks, UHI

HI .
We observe that there are significant differences between

the apparent performance of the AMC and SMC scheduling
schemes, dependent on which method of task set generation is
used. Figure 15 reveals a sharp utilization threshold [19] for
AMC, where the probability of a randomly generated task set

being schedulable changes from close to 1 to close to zero,
over a small increase in utilization. This behavior occurs with
AMC because overall schedulability is mainly dependent on
schedulability in the individual LO- and HI-criticality modes
(as it is with the UB-H&L bound), with some impact from the
mode change transition. Hence, the values of ULO and UHI

HI ,
which are precisely controlled for by using the DRS algorithm
and necessarily cannot exceed 1 in a valid system, characterize
the threshold. No such sharp threshold is apparent in Figure
14, since the method of task set generation used by Baruah et
al. [3] does not control for UHI

HI . By contrast, schedulability
according to SMC does not exhibit a sharp threshold with
either method of task set generation. The reason for this is that
SMC still executes LO-criticality tasks in HI-criticality mode,
even though there is no requirement for those tasks to meet
their deadlines. This impinges on the schedulability of HI-
criticality tasks in the HI-criticality mode, hence schedulability
with SMC depends on the values of ULO and UHI

HI + ULO
LO ,

and the latter can exceed 1 in valid systems.
Comparing Figures 14 and 15, it is clear that the advantage

that the AMC scheme has over SMC is significantly larger than
could be inferred from previous work [3], and this disparity
has been hidden due to an artefact of the task set generation
methods previously used.

To summarize, the Dirichlet-Rescale algorithm introduced
in this paper can be used to improve the quality of perfor-
mance evaluation for MCS scheduling schemes and schedu-
lability tests. Using this algorithm, precise control can be
exercised over multiple key utilization parameters (e.g. ULO

and UHI
HI ), while simultaneously ensuring that all of the

task sets generated are valid, comply with the constraints
(Ui(LO) ≤ Ui(HI)), and the utilization vectors have an
unbiased distribution.

VI. CONCLUSIONS
This paper introduced the Dirichlet-Rescale (DRS) al-

gorithm, a general-purpose method of generating uniformly
distributed n-dimensional vectors of components (e.g. task
utilizations), where the components sum to a specified total,
and each component conforms to individual maximum and
minimum constraints.

The evaluation showed that the DRS algorithm can effi-
ciently generate vectors with dimensions of up to n = 100
via a Python implementation that has been made publicly
available [20]. (Note, this 64-bit floating point implementa-
tion of the DRS algorithm is able to generate vectors with
dimensions of up to n = 200, with a commensurate slowdown
in performance). Finally, we verified that the distribution of
vectors generated is unbiased, by making a statistical compar-
ison against UUnifast-Discard, which is known to produce a
uniform distribution of vectors within the valid region defined
by the constraints.

The DRS algorithm can be used to improve the nuance
and quality of empirical studies into the effectiveness of
schedulability tests for real-time systems; potentially making
them more realistic, and leading to new conclusions. It is
particularly useful in task set generation where task utilizations
are either multi-valued or can be decomposed into multiple
constituent parts. Examples include modelling mixed criticality
systems, multi-core systems, typical and worst-case execution
times, self-suspensions, and resource locking.
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