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Abstract—In this paper, we use the term “Analysis-Runtime
Co-design” to describe the technique of modifying the runtime
protocol of a scheduling scheme to closely match the analysis
derived for it. Carefully designed modifications to the runtime
protocol make the schedulability analysis for the scheme less
pessimistic, while the schedulability guarantee afforded to any
given application remains intact. Such modifications to the
runtime protocol can result in significant benefits with respect
to other important metrics. An enhanced runtime protocol is
designed for the Adaptive Mixed-Criticality (AMC) scheduling
scheme. This protocol retains the same analysis, while ensuring
that in the event of high-criticality behavior, the system degrades
less often and remains degraded for a shorter time, resulting in
far fewer low-criticality jobs that either miss their deadlines or
are not executed.

Index Terms—Real-Time, Mixed Criticality, Fixed Priority,
Schedulability Analysis

I. INTRODUCTION

The role of schedulability analysis is to provide a priori
guarantees that a real-time application will meet its timing
constraints at runtime. Schedulability analysis is traditionally
derived after a runtime protocol has been chosen. So, for
example, Response-Time Analysis [1], [2] was developed for
fixed priority scheduling, and Processor Demand Analysis
[3] was developed for EDF scheduling. Ideally the analysis
derived is exact, in other words both sufficient (pass the test
and satisfy all deadlines) and necessary (fail the test and
miss some deadline). Unfortunately, as many runtime protocols
give rise to computationally complex scheduling problems,
tractable exact analysis is often unobtainable. Inexact but
sufficient analysis must be used instead. Such forms of analysis
are evaluated in terms of how pessimistic they are, i.e. how
likely they are to deem an application unschedulable that
will in fact meet all of its deadlines under the worst-case
conditions.

With this traditional approach, the runtime protocol is typi-
cally a given. Often it has been defined, or even standardized,
with little regard given to its timing behavior or its analysis.
It is not surprising then that exact schedulability analysis is
often intractable. In this paper we investigate how the runtime
protocol itself can be modified so that a form of analysis
that is inexact when applied to the original protocol becomes
more precise when applied to the modified protocol. Even in

situations where exact analysis is still not achievable, if the
level of pessimism in the analysis can be reduced then there
can still be an overall benefit.

When the offline analysis does not change but the runtime
protocol is modified in compliance with it, then obviously
the schedulability guarantees afforded to applications by the
analysis are unaffected; however, the runtime behavior and
characteristics can be significantly enhanced. For example,
resilience (fault tolerance) can be improved and runtime over-
heads may be reduced. If the analysis cannot take advantage
of a particular element of the original runtime protocol then
that element can be removed with no impact on the system’s
guaranteed worst-case performance. We refer to this approach,
of utilising feedback from inexact schedulability analysis in
the design of the runtime protocol, as Analysis-Runtime Co-
design, and employ it in this paper to improve upon the
Adaptive Mixed-Criticality (AMC) scheduling scheme [4].

The AMC scheduling scheme and its analysis are applicable
to mixed criticality systems that are implemented using fixed
priority scheduling on single-core processors. On detecting
high-criticality behavior, the runtime protocol allows the sys-
tem to switch from a mode in which all tasks release jobs,
into a degraded mode in which only the high-criticality tasks
are permitted to release jobs. Analysis of the AMC scheme
makes pessimistic assumptions about the state of the system
when these mode changes occur (see Section IV-B for details).
By modifying the runtime protocol to closely reflect the
analysis, we demonstrate that the system degrades less often
and remains in the degraded mode for a shorter time, resulting
in far fewer low-criticality jobs that either miss their deadlines
or are not executed.

Research into real-time scheduling often seeks to narrow
the gap between the guarantees provided by the schedulability
analysis employed and the precise behavior of the runtime
protocol (i.e. exact schedulability) by improving the analysis,
often at the expense of making it intractable. By contrast, the
analysis-runtime co-design approach proposed in this paper
retains simple tractable analysis and the real-time guarantees
that it provides, while modifying the runtime protocol in such
a way that improves other important performance metrics.
The tradeoff is that the gap between the guarantees provided
by the analysis and the precise behavior of the modified



runtime protocol is narrowed via a reduction in schedulability
according to a theoretical exact test. However, with no viable
means of determining exact schedulability, this disadvantage
may be hypothetical, while the advantages constitute practical
improvements in performance.

The motivation for the specific research presented in this
paper comes from mixed criticality systems in avionics. The
avionics industry has a strong preference for simple scheduling
policies and analyses, with those based on fixed priorities most
commonly used [5], [6]. For mixed criticality systems, AMC
schemes are being adopted [7], [8], underpinned by the simple
yet effective AMC-rtb schedulability analysis [4], which is
considered good enough for industrial use. In this research,
we employ analysis-runtime co-design to modify the runtime
protocol for AMC in such a way that it retains compati-
bility with the AMC-rtb schedulability test, while enabling
substantial improvements in metrics related to low-criticality
task performance. Using the modified runtime protocol reduces
the number of times that degraded mode is entered, the total
time in degraded mode, and most importantly the number of
low-criticality jobs not executed or missing their deadlines to
16.8%, 1.7%, and 2.5% respectively of their values with the
original AMC runtime protocol1. Ultimately, this is a compro-
mise, since exact schedulability is reduced with the modified
runtime protocol compared to the original, see Appendix A
for details. From an industry perspective this compromise
is worthwhile, since the advantages in improved runtime
performance outweigh the marginal gains in schedulability that
would, in any case, necessitate deployment of more complex
schedulability tests.

The remainder of the paper is organized as follows: Section
II discusses related work. Section III introduces the system
model, terminology, and notation. Section IV presents the
modified runtime protocol for the AMC scheme, leveraging
analysis-runtime co-design to improve its effectiveness. A
scenario-based evaluation of the performance of the modified
protocol is given in Section V. Finally, Section VI concludes
with a summary and directions for future research.

II. RELATED WORK

In this section, we outline prior work on mixed criticality
fixed priority scheduling schemes for single-core processors.

Since Vestal’s seminal work [9] in 2007, mixed criticality
systems have become a hot topic of real-time systems research,
see [10], [11] for a comprehensive survey. Many of these
papers focus on scheduling schemes that are based on fixed
priorities, most notably Static Mixed Criticality (SMC) [12]
and Adaptive Mixed Criticality (AMC) [4]. AMC is con-
sidered the most effective fixed priority scheme [13], and
has been extended to account for many additional aspects
including: preemption thresholds [14], [15], multiple criticality

1Results based on a comparison of the mean values obtained in experiments
on 500 task sets with semi-harmonic periods, representative of those found
in automotive and avionics systems, comparisons made between the original
runtime protocol (AMC+) and the modified runtime protocol (AMC-RH), see
Section V-E, Figures 1–3 for further details.

levels [16], criticality-specific periods [17], changes in pri-
ority [18], communications [19], deferred preemption [20],
weakly-hard timing constraints [21], probabilistic task mod-
els [22], context switch costs [23], and robust [24] and semi-
clairvoyant [25] timing behavior. An exact analysis has also
been developed for periodic task sets with offsets [26], [27].

Various forms of degraded service have been proposed for
low-criticality tasks when system behavior departs from what
is normally expected. These include: abandoning all jobs;
letting jobs that have already started complete execution, but
abandoning newly released jobs [12]; extending periods and/or
deadlines [28], [29]; reducing execution times by switching to
simpler versions [30]; dropping jobs from specific tasks [31]–
[33]; and applying weakly-hard constraints, allowing some
jobs to be skipped [21]. Alternative approaches seek to delay
the time at which the system starts dropping new releases of
low-criticality tasks, and also to reduce the time that the system
spends doing so. Delaying the onset of degraded behavior
can be achieved by using off-line sensitivity analysis [34] to
increase all low-criticality execution time budgets while still
retaining a schedulable system [30], [35]–[37].

Online accounting for budget under and overruns can also
be used to delay switching to degraded mode [38]. Further,
the time spent in the degraded mode can be reduced via
online budget accounting resulting in a faster bailout [39], [40]
and recovery. Finally, by using a separate background priority
queue, low-criticality jobs that would have been dropped in
degraded mode can be run in what would otherwise have been
idle time, providing a last chance to meet their deadlines [41].
This mechanism is orthogonal to the fixed priority scheduling
scheme used and can be applied to both AMC [4] and the
Bailout Protocol [39], [40].

Other work considers task-level [31] rather than system-
level mode changes, which selectively restricting releases of
some low-criticality tasks rather than all of them.

There are disparate views within the real-time systems
community as to the timing requirements for mixed criticality
systems, while most works assume that low-criticality tasks
do not have to meet their deadlines and new releases can
potentially be dropped as part of graceful degradation, others
do not [42], [43]. In this paper, we assume that abandoning
new releases of low-criticality tasks is acceptable when system
behavior diverges from what is normally expected.

III. SYSTEM MODEL

In this paper, we assume a mixed criticality system execut-
ing on a single-core processor under various schemes based
on fixed priority preemptive scheduling.

A mixed criticality system is assumed to have two crit-
icality levels: HI and LO. Each task τi is characterised
by its criticality level Li, which is either HI or LO. Each
LO-criticality task τj has a single estimate Cj(LO) of its
Worst-Case Execution Time (WCET). By contrast, each HI-
criticality task τk has two estimates Ck(LO) and Ck(HI)
of its WCET, where Ck(HI) ≥ Ck(LO). Each task τi has a
minimum inter-arrival time or period Ti between releases of its



jobs, and a constrained relative deadline Di, where Di ≤ Ti.
Each task τi is assumed to have a unique priority, with hp(i)
(resp. hep(i)) used to denote the set of tasks with higher (resp.
higher or equal) priority than task τi.

The Real-Time Operating System (RTOS) is required to
provide execution time monitoring and budget enforcement.
The RTOS is assumed to abort any job of a task τi that does
not complete within its execution time budget. This budget
is set to Ci(LO) for a LO-criticality task and Ci(HI) for a
HI-criticality task.
HI- and LO-criticality tasks have different requirements

in terms of the level of assurance required for their timing
guarantees. In any interval of time when the processor is busy
executing tasks:
R1 If all jobs of the tasks comply with their LO-criticality

WCET estimates Ci(LO), then all jobs must be guaran-
teed to meet their deadlines.

R2 If a job of a HI-criticality task τi executes for its
LO-criticality WCET estimate Ci(LO) without signaling
completion, then only HI-criticality tasks are required to
meet their deadlines.

These requirements give rise to the concept of a normal mode
during which all tasks must meet their deadlines, and an
abnormal mode during which only HI-criticality tasks need
meet their deadlines. Abnormal mode extends from the time
at which a job of a HI-criticality task τi has executed for
Ci(LO) without completing until the next idle instant. All
other time intervals equate to normal mode. Schedulability
analysis of mixed criticality schemes provides the necessary
guarantees that these requirements are met.

In this paper, we use the term degraded mode to describe
an interval of time during which a mixed criticality scheduling
scheme does not release new jobs of LO-criticality tasks. To
comply with the above timing requirements, degraded mode
must be contained within abnormal mode (defined above);
however, there need not be a one to one correspondence
between the two. Entry to and exit from degraded mode takes
place under the control of the RTOS and represents a well-
defined runtime behavior of the system. With the original
runtime protocol for AMC [4] degraded mode is entered when
a HI-criticality task executes for its LO-criticality execution
time estimate Ci(LO) without signalling completion. By con-
trast, with SMC [12] the concept of abnormal mode remains,
but there is no degraded mode as such, since releases of
LO-criticality tasks are never abandoned. Finally, with the
modified runtime protocol for AMC proposed in this paper,
degraded mode is entered when a job of a HI-criticality task
τi has not signalled completion by a time equal to its LO-
criticality response time Ri(LO), as measured from the start
of the priority level-i busy period during which it executes.

The concept of a priority level-i busy period [44] is defined
as follows:

(i) It starts at a time s[i] when a job of a task of priority
i or higher (i.e. in hep(i)) is released and there are no
jobs of tasks in hep(i) with execution pending that were
released before time s[i].

(ii) It is a contiguous interval of time during which jobs of
tasks in hep(i) execute.

(iii) It ends at the earliest time t[i] after s[i] when there are
no jobs of tasks in hep(i) that have execution pending
that were released strictly before t[i].

In mathematical terms, busy periods can be viewed as right
half open intervals [s[i], t[i]). Thus the end of one priority
level-i busy period may correspond to the start of the next
priority level-i busy period; the two are however distinct and
are not amalgamated.

IV. ADAPTIVE MIXED CRITICALITY SCHEMES

In this section, we recap on the Adaptive Mixed Criticality
(AMC) scheme [4] and show how the runtime protocol can
be modified to improve the service provided to LO-criticality
tasks by delaying the transition to degraded mode and expe-
diting the return from it.

A. Schedulability Analysis of AMC

The Adaptive Mixed Criticality (AMC) scheme [4] is based
on fixed priority preemptive scheduling. Under the original
runtime protocol for AMC, the system enters degraded mode
when a HI-criticality task τi executes for its LO-criticality
execution time budget Ci(LO) without signaling completion,
and returns from degraded mode when an idle instant occurs2.
During degraded mode, new releases of LO-criticality tasks
are abandoned.

In normal mode, when all tasks comply with their LO-
criticality execution time budgets, then all tasks must be
schedulable. Hence schedulability can be determined using
standard response time analysis for fixed priority preemptive
scheduling [1], [2], evaluated via fixed point iteration:

Ri(LO) = Ci(LO) +
∑

j∈hp(i)

⌈
Ri(LO)

Tj

⌉
Cj(LO) (1)

In abnormal mode, only HI-criticality tasks are required to
meet their deadlines. The worst-case response time Ri(HI)
for a HI-criticality task τi, accounting for the transition to
abnormal mode, is given as follows [4]:

Ri(HI) = Ci(HI) +
∑

j∈hpH(i)

⌈
Ri(HI)

Tj

⌉
Cj(HI)

+
∑

k∈hpL(i)

⌈
Ri(LO)

Tk

⌉
Ck(LO) (2)

where hpH(i) is the set of HI-criticality tasks with priorities
higher than that of task τi, and similarly hpL(i) is the set of
LO-criticality tasks with priorities higher than that of task τi.

The analysis embodied in (1) and (2) is referred to as the
AMC-rtb test [4], where rtb stands for response time bound.

2An idle instant occurs at time t when there are no jobs released prior to
that time that have execution remaining.



B. Applying Analysis-Runtime Co-design

We now apply the technique of analysis-runtime co-design
to modify the runtime protocol for the AMC scheme to match
the worst-case behavior that is accounted for by the above
analysis. The original runtime protocol for the AMC scheme
enters degraded mode when a job of a HI-criticality task τi
has executed for Ci(LO) without completing. By contrast,
the analysis (given by (2)) assumes that jobs of LO-criticality
tasks continue to be released up to a time Ri(LO) from the
start of the priority level-i busy period in which the job of task
τi was released. We therefore modify the runtime protocol to
reflect the behavior assumed by the analysis. The modified
runtime protocol for AMC is specified as follows:

S1: The system starts in normal mode. In normal mode both
LO- and HI-criticality tasks release jobs for execution.

S2: The system enters degraded mode when an active,
i.e. released but unfinished, job of some HI-criticality task
τi reaches a time Ri(LO) after the start of the priority level-i
busy period in which it was released. Jobs of LO-criticality
tasks released in degraded mode are dropped, i.e. not executed.

S3: The system exits degraded mode, i.e. returns to normal
mode, when a job of some HI-criticality task τj completes
and there is no active job of another HI-criticality task τk
that has reached a time Rk(LO) after the start of the priority
level-k busy period in which it was released.

S4: At all times, fixed priority preemptive scheduling is used
to determine which of the active jobs to run.

We refer to the variant of the AMC scheme using the
modified runtime protocol as AMC-RH, since it relies on
monitoring the response times of HI-criticality tasks relative
to the start of the busy period in which they were released.

We now prove that the AMC-rtb analysis given by (1) and
(2) is sufficient to ensure schedulability under AMC-RH for
both LO- and HI-criticality tasks according to requirements
R1 and R2, given in Section III.

First, we note two properties of the analysis that apply to
schedulable systems of constrained-deadline mixed criticality
tasks, i.e. when Ri(LO) ≤ Ri(HI) ≤ Di ≤ Ti, and follow
directly from standard response time analysis for fixed priority
preemptive scheduling [1], [2].

Property P1: Ri(LO), given by (1), corresponds to the
longest priority level-i busy period within which a job of a HI-
criticality task τi can execute, assuming that it and all higher
priority tasks execute for no more than their LO-criticality
execution times.

Property P2: Ri(HI), given by (2), corresponds to the
longest priority level-i busy period within which a job of a
HI-criticality task τi can execute, assuming that: (i) it and all
higher priority HI-criticality tasks execute for no more than
their HI-criticality execution times, and (ii) all higher priority
LO-criticality tasks release jobs only during the first part of
the priority level-i busy period, up to Ri(LO) from when that
busy period started.

Theorem 1. The AMC-rtb analysis given by (1) and (2) is
a sufficient schedulability test for AMC-RH, ensuring that

requirements R1 and R2 are met.

Proof. We separate the proof into two cases corresponding to
requirements R1 and R2.

Case 1: Considers intervals where the processor is busy ex-
ecuting tasks and no job of any task exceeds its LO-criticality
WCET estimate. In this case, requirement R1 applies and jobs
of both LO- and HI-criticality tasks must be guaranteed to
meet their deadlines. Since no job exceeds its LO-criticality
WCET estimate, then (1) bounds the LO-criticality response
time for each task under AMC-RH. Further, it follows from
Property P1 and the runtime protocol employed by AMC-RH
that degraded mode cannot be entered in this case, and so no
LO-criticality jobs are dropped.

Case 2: Considers intervals where the processor is busy
executing tasks and one or more jobs of one or more HI-
criticality tasks execute for their LO-criticality WCET esti-
mates without signaling completion. In this case, requirement
R2 applies and only jobs of HI-criticality tasks need be
guaranteed to meet their deadlines. In the context of this
case, consider an arbitrary priority level-i busy period in
which a single3 job J of a HI-criticality task τi executes.
Note, the end of this priority level-i busy period corresponds
to the completion of job J . Since fixed priority preemptive
scheduling is employed, there can be no interference on job J
due to jobs of lower priority tasks. Further, by definition of a
priority level-i busy period, there can be no interference from
any jobs of higher priority tasks that were released prior to the
start of the busy period. There are two sub-cases to consider.

Case 2a: The length of the priority level-i busy period is
no greater than Ri(LO), in which case Ri(HI) given by
(2) trivially upper bounds the response time of job J , since
Ri(HI) ≥ Ri(LO).

Case 2b: The length of the priority level-i busy period is
greater than Ri(LO). Given the runtime protocol employed by
AMC-RH, the system must necessarily be in degraded mode
from time Ri(LO) after the start of the busy period until job
J completes. From Property P2, it follows that Ri(HI) given
by (2) upper bounds the response time of job J

Note that in Case 2b above, there could be other intervals
of degraded mode prior to Ri(LO) as a consequence of the
behavior of the modified runtime protocol with respect to
jobs of other HI-criticality tasks; however, these additional
degraded mode intervals could only serve to decrease the
interference on job J by preventing the release of jobs of
higher priority LO-criticality tasks.

The AMC-rtb analysis given by (1) and (2) is less precise
for the original runtime protocol for AMC. This imprecision
occurs because releases of jobs with HI-criticality behavior
are not possible prior to a time Ri(LO), as measured from the
start of the busy period, without also potentially substantially
restricting the number of LO-criticality jobs that can be
released and therefore contribute interference. The analysis

3Since deadlines are constrained, then for a schedulable system there can
be at most one job of task τi in each priority level-i busy period.



is more precise for the modified runtime protocol of AMC-
RH, since releases of LO-criticality jobs are still permitted up
to Ri(LO) even when every job of a HI-criticality task in
the priority level-i busy period executes for its HI-criticality
execution time. Nevertheless, the analysis is still not exact for
AMC-RH, as shown by an example in Appendix A that also
serves to illustrate the differences in precision.

The original runtime protocol for AMC [4] assumes that de-
graded mode is entered when a HI-criticality task τi executes
for Ci(LO) without signalling completion, and is exited once
an idle instant occurs. However, considering the schedulability
analysis embodied in (2), it is easy to see that these criteria
are pessimistic. By comparison, the modified runtime protocol
for AMC-RH delays entry into degraded mode for as long as
permitted by the offline analysis and similarly exits degraded
mode as early as permitted.

Procrastinating until Ri(LO) from the start of the busy
period before switching to degraded mode means that the
transition occurs as late as it possibly could do when Ci(LO)
is used as a trigger. Procrastinating enables overruns by some
HI-criticality jobs to be mitigated by underruns of other jobs
meaning that a mode change may not be necessary at all. Fur-
ther, for periodic tasks, when the pattern of job releases does
not follow the worst-case (i.e. the initial synchronous arrival
sequence) then any dynamic slack available is automatically
captured by procrastinating before making the mode change.
Similarly, slack created by jobs of sporadic tasks arriving at
less that their maximum rate is also automatically captured.
Reducing the number of times that degraded mode is entered
and the time spent in that mode has significant advantages in
terms of reducing the number of LO-criticality jobs that miss
their deadlines or do not execute because they are abandoned.

Conversely, monitoring response times instead of execution
times to initiate the transition to degraded mode has a disad-
vantage in terms of more precise schedulability tests. There
are some systems that would be schedulable under AMC
according to exact analysis of the original runtime protocol
that are not schedulable according to exact analysis of the
modified protocol, see Appendix A for an example.

A further variant of the AMC scheme, explored in the
evaluation in Section V, is referred to as AMC-RA. Similar
to AMC-RH, AMC-RA is defined by specifications S1, S2,
and S4; however, specification S3 is replaced by S5 below.

S5: Under AMC-RA, the system exits degraded mode when
a job of some task τj completes and there are no other active
jobs of any task, i.e. there is an idle instant.

Theorem 2. The AMC-rtb analysis given by (1) and (2) is
a sufficient schedulability test for AMC-RA, ensuring that
requirements R1 and R2 are met.

Proof. Proof is identical to that for AMC-RH given in Theo-
rem 1, with the word “AMC-RH” replaced by “AMC-RA”

Appendix B provides a brief summary of how the RTOS can
manage entry to and exit from degraded mode, implementing
the modified runtime protocol of AMC-RH and AMC-RA.

C. Increasing Execution Time Budgets

The performance of AMC-RH and AMC-RA can be further
improved by using sensitivity analysis [34] to make use of off-
line slack [45] to increase the LO-criticality execution time
budgets of HI-criticality tasks as far as possible while still
retaining a schedulable system [30], [35].

The specific method used here is as proposed by Bate et
al. in [39], [40]. First, the execution time budgets of all HI-
criticality tasks are increased as much as possible while ensur-
ing that the system remains schedulable according to the AMC
analysis (i.e. (1) and (2)). This is achieved by forming a binary
search for the largest value of α such that the system remains
schedulable when the Ci(LO) value for each HI-criticality
task τi is replaced by Ci(BU) = min(Ci(HI), αCi(LO)).
Note, we use Ci(BU) rather than Ci(LO) to emphasize
that these are no longer the LO-criticality execution time
estimates associated with those HI-criticality tasks, but rather
execution time budgets that will be used to determine larger
Ri(BU) values that replace the Ri(LO) values, and are used
to trigger the transition to degraded mode at runtime. The
initial lower value of α used for the binary search is 1, since
the system is assumed to be schedulable under AMC to begin
with, and the initial upper value is given by the largest ratio
Ci(HI)/Ci(LO) for any HI-criticality task τi. At each step
of the binary search, Audsley’s Optimal Priority Assignment
algorithm [46] is used along with the single task schedulability
test (i.e. (1) and (2)) to determine if the system is schedulable
for that value of α. By reapplying Audsley’s algorithm on
each step, this ensures that the final assignment also has the
most robust priority ordering [47]. Second, a similar process
is used to further increase, if possible, the Ci(BU) value for
each individual task in turn, since after the first step, some but
not all of the Ci(BU) values may still be increased without
making the system unschedulable. (This is done for all HI-
criticality tasks in order of increasing deadlines).

We refer to the more sophisticated schemes that use in-
creased execution time budgets as AMC-RHS and AMC-RAS
respectively. The behavior of these schemes is effectively the
same as AMC-RH and AMC-RA; however, all occurrences
of Ci(LO) for HI-criticality tasks are replaced by the larger
Ci(BU) values, leading to larger Ri(BU) values that replace
the Ri(LO) values and are monitored in order to trigger transi-
tions to degraded mode. For systems that are schedulable under
classical fixed priority preemptive scheduling (i.e. assuming
that all jobs may take an execution time that corresponds to
their own criticality level i.e. Ci(HI) for HI-criticality tasks,
and Ci(LO) for LO-criticality tasks), AMC-RHS and AMC-
RAS have the useful property that no LO-criticality jobs miss
their deadlines. This is the case, because for such systems
the first step described above results in Ci(BU) = Ci(HI)
for all HI-criticality tasks. In practice, some of the statically
available slack in the system could also be used to provide
LO-criticality tasks with additional headroom for longer than
expected execution, i.e. execution budgets larger than Ci(LO).
This is not explored further in this paper.



D. Lazy execution of Jobs

The performance of AMC-RHS and AMC-RAS can be
further improved by running LO-criticality jobs that would
otherwise be abandoned in degraded mode at background
priorities to give them a last chance to complete by their dead-
lines. This approach was proposed by Iacovelli and Kirner [41]
as a way of augmenting the Bailout Protocol [39], [40], but
can be applied to any scheme based on fixed priorities that
abandons jobs in degraded mode.

The basic idea is one of lazy execution. A separate back-
ground run-queue is used for all jobs of LO-criticality tasks
that would otherwise be abandoned in degraded mode. Instead
of being abandoned, these jobs are added to the background
run-queue and executed according to fixed priority preemptive
scheduling whenever the normal run-queue is empty, i.e. when
the processor would otherwise be idle. If a job from the back-
ground run-queue reaches its deadline before it is completed,
then the job is discarded. Since we consider only constrained-
deadline tasks, only one job of each task can be active at
any given time, and hence jobs of the same task execute in
strict order of arrival regardless of whether they are placed
in the background run-queue or the normal run-queue. We
refer to the schemes that make use of both lazy execution and
increased execution time budgets as AMC-RHSL and AMC-
RASL respectively.

V. SCENARIO-BASED EVALUATION

In this section, we present a simulation and hence scenario-
based evaluation of the performance of the variants of the
AMC scheme introduced in this paper and compare them to
prior work in this area, specifically to variants of the Bailout
Protocol [39], [40] and the original AMC scheme [4], using
an experimental framework with configurations and metrics
similar to those that have previously been used to evaluate the
Bailout Protocol [39], [40] and Lazy Execution [41].

Scenario-based evaluation [48]–[50] complements the eval-
uation of schedulability analysis as the latter only illustrates
under what conditions timing guarantees are met. Rather, we
are interested in how well the different schemes perform in
terms of minimizing the number of jobs of LO-criticality tasks
that are abandoned without executing or miss their deadlines.

A. Evaluation Metrics

The following metrics were used in the evaluation.
(i) Number of HI-criticality Deadline Misses (HDM ): Such

deadline misses should not be experienced with any of
the schemes. This metric is used to check that is the case.

(ii) Jobs Not Executed (JNE): The number of LO-criticality
jobs that were abandoned in degraded mode.

(iii) LO-criticality Deadline Misses (LDM ): The number of
LO-criticality jobs that were executed, but missed their
deadlines.

(iv) Time in Degraded mode (TiD) - The amount of time
spent in degraded mode. (For the variants of the Bailout
Protocol that we compare against, degraded mode equates
to the bailout and recovery modes).

(v) Number of times in Degraded mode (NiD) - How many
times the system entered degraded mode.

Aside from the HDM metric, which should always be zero,
the most important metric is the sum of JNE and LDM ,
which represents the total number of LO-criticality jobs that
are not completed by their deadlines, including those that are
abandoned upon release.

B. Scheduling Schemes

The following mixed criticality scheduling schemes were
compared.

1. AMC-RA – The modified AMC scheme, as described
in Section IV, with transitions to degraded mode when
any HI-criticality task τi reaches, without completing,
its LO-criticality response time Ri(LO) since the start
of the busy period in which it was released. Degraded
mode is exited on an idle instant.

2. AMC-RAS – AMC-RA enhanced by off-line increases
in execution time budgets, see Section IV-C.

3. AMC-RASL – AMC-RAS enhanced via lazy execu-
tion [41] of jobs that would otherwise be abandoned, see
Section IV-D.

4. AMC-RH – The modified AMC scheme, as described
in Section IV, with transitions to degraded mode when
any HI-criticality task τj reaches, without completing,
its LO-criticality response time Rj(LO) since the start
of the busy period in which it was released. Degraded
mode is exited once there is no such active HI-criticality
task in the run queue.

5. AMC-RHS – AMC-RH enhanced by off-line increases
in execution time budgets, see Section IV-C.

6. AMC-RHSL – AMC-RHS enhanced via lazy execu-
tion [41] of jobs that would otherwise be abandoned, see
Section IV-D.

7. AMC+ – The original AMC scheme [4], with return to
normal mode on an idle instant.

8. AMC+S – The AMC+ scheme, enhanced by off-line
increases in execution time budgets, see Section IV-C.

9. AMC+SG – The AMC+ scheme enhanced by both off-
line increases in execution time budgets, and runtime
reclamation of gain time, see Section 5.2 of [40].

10. AMC+SGL – The AMC+SG scheme enhanced via lazy
execution [41] of jobs that would otherwise be aban-
doned, see Section IV-D.

11. BP – The basic Bailout Protocol, see Section 4 of [40].
12. BPS – The Bailout Protocol enhanced by off-line in-

creases in execution time budgets, see Section 5.1 of [40].
13. BPSG – The Bailout Protocol enhanced by both off-line

increases execution time budgets, and runtime reclama-
tion of gain time, see Section 5.2 of [40].

14. BPSGL – BPSG enhanced via lazy execution [41] of jobs
that would otherwise be abandoned, see Section IV-D.

C. Task Set Generation

Task set generation was performed as follows:



• Task Set Cardinality - The number of tasks was fixed,
default n = 20. The number of HI-criticality tasks
n(HI) was set to n · CP where CP is the Criticality
Proportion (default CP = 0.5), with the remaining tasks
assigned LO-criticality.

• Task Utilizations - The Dirichlet-Rescale (DRS) algo-
rithm [51] open source Python software [52] was used
to provide an unbiased distribution of task utilization
values that summed to the target utilization required,
subject to a set of individual constraints. First, HI-
criticality utilization values Ui(HI) were generated for
the n(HI) HI-criticality tasks, such that the total HI-
criticality utilization of those tasks summed to U(HI) =
CP ·CF ·U , where CF is the Criticality Factor (default
CF = 2.0) characterizing the multiplier between HI-
and LO-criticality utilization, and U is the target utiliza-
tion required (default U = 0.8). Second, LO-criticality
utilization values Ui(LO) were generated for all of the
tasks, such that the total LO-criticality utilization of all
tasks summed to U(LO) = U . For LO-criticality tasks,
Ui(LO) was constrained to be in the range [0.0, 1.0],
while for HI-criticality tasks, Ui(LO) was constrained
to be in the range [0.0, Ui(HI)], hence ensuring that
Ui(LO) ≤ Ui(HI).

• Periods and Deadlines - The period of each task was
chosen in one of two ways. Semi-harmonic periods were
chosen at random from a set of harmonics of two base
frequencies (i.e. 25, 50, 100, 250, 500, 1000 and 20, 40,
80, 200, 400, 800ms) as typically found in automotive
and avionics systems [53]. Non-harmonic periods were
chosen at random according to a log-uniform distribu-
tion [54], from a range 10ms to 1 second (rounded to
0.1ms). Task deadlines were set equal to their periods.

• Execution Times - The LO-criticality execution times of
all tasks were given by Ci(LO) = Ui(LO) · Ti, and
the HI-criticality execution times of HI-criticality tasks
by Ci(HI) = Ui(HI) · Ti. Finally, Best-Case Execution
Times (BCET) were chosen at random between 80% and
100% of Ci(LO). (This small variation is representative
of code from Safety Critical Systems).

• Failure Probability (FP ) - At runtime, jobs of HI-
criticality tasks had a probability of FP (default FP =
10−4 = 0.01%) of exceeding their Ci(LO) execution
time.

In all of the experiments, we required that the task sets
chosen had at least one task that was unschedulable according
to exact analysis of fixed priority preemptive scheduling [2]
(i.e. ignoring criticality), but were nevertheless schedulable
according to the AMC-rtb test [4].

D. Simulation

The experiments covered 500 task sets for each of the
configurations considered. For each scheduling scheme, we
simulated the runtime behavior of each task set, starting with
a different random seed. The same random seeds were used
for each of the schemes to ensure a precise like-for-like

comparison. The duration of each simulation run was 1013

time units (of 0.1ms), hence this was sufficient for 106 jobs
of the task with the longest period.

In the simulation on each release, an actual execution
time was chosen for the job as follows. For jobs of LO-
criticality tasks, the value was chosen at random from a
uniform distribution in the range [BCET,Ci(LO)]. For jobs
of HI-criticality tasks, a random boolean variable with a
probability of FP (default 10−4) of returning true was used
to determine if the job would exhibit HI-criticality behavior.
If so, then its execution time was chosen at random from a
uniform distribution in the range [Ci(LO), Ci(HI)], otherwise
the range was [BCET,Ci(LO)]. The probability FP used
to determine if HI-criticality behavior would be exhibited
was deliberately set to a relatively high value by default to
stress the system behavior. In practice such a high value is
perhaps unlikely, but possible, for example if the testing used
to determine LO-criticality execution time estimates did not
actually reveal the worst-case path.

For the schemes making use of statically available slack
to increase execution time budgets, the Ci(BU) parameters
were computed via off-line sensitivity analysis, as described
in Section IV-C, before running the simulator. The Ci(BU)
and corresponding Ri(BU) values were then used by the
simulator to determine when the system should transition to
degraded mode, with the Ci(LO) values used in the selection
of job execution times, as explained above. The simulation
did not include scheduling overheads, while these would have
some impact in practice, all of the schemes compared have
low overheads similar to those incurred by execution time
monitoring and budget accounting.

E. Evaluation Results

The evaluation results are shown using box and whisker
plots. The box represents the range of values between quartiles
(25 and 75 percentiles). The horizontal line in the middle of the
box is the median (50 percentile). The two horizontal whiskers
above and below the box show the 5 and 95 percentiles.

Four types of task sets were considered: (i) strictly periodic
task sets with semi-harmonic periods, (ii) strictly periodic
task sets with non-harmonic periods, (iii) sporadic task sets
with semi-harmonic periods, and (iv) sporadic task sets with
non-harmonic periods. In the case of sporadic task sets, all
LO-criticality tasks were sporadic, while all HI criticality
tasks remained strictly periodic. The schedulability analysis for
sporadic tasks was exactly the same as for periodic tasks. At
runtime, however, at each (periodic) arrival time for a sporadic
task, the probability of releasing its job was 0.5. Thus the job
release pattern mirrored that of strictly periodic behavior, with
the exception that about 50% of the jobs of LO-criticality tasks
were omitted.

The number of HI-criticality Deadline Misses(HDM ) for
all four types of task set and all 14 schemes was zero, hence
these results are not shown in the graphs. The other results are
organized by the type of task set, and then discussed according
to the metric considered.
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Fig. 4. Results for NiD(%) - 80% LO-criticality Utilization: Non-Harmonic
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Fig. 5. Results for T iD(%) - 80% LO-criticality Utilization: Non-Harmonic
Periods.
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Fig. 8. Results for T iD(%) - 80% LO-criticality Utilization: Semi-harmonic
Periods and Sporadic.
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Fig. 9. Results for JNE + LDM(%) - 80% LO-criticality Utilization:
Semi-harmonic Periods and Sporadic.
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Fig. 11. Results for T iD(%) - 80% LO-criticality Utilization: Non-Harmonic
Periods and Sporadic.
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Figs. 1, 4, 7 and 10 illustrate the number of times (NiD(%))
that degraded mode was entered as a percentage of the number
of HI-criticality jobs (i.e. the maximum number of times that
degraded mode could ever be entered), for the four types of
task set. Note, the y-axis scale is identical on these four graphs.
NiD(%) has the same median value of 0.01 for AMC+ and

BP for all task sets. These values simply reflect the configured
Failure Probability FP (of a HI-criticality job executing
for more that its LO-criticality execution time), by default
FP = 10−4 = 0.01%. Utilizing off-line slack to increase
LO-criticality execution time budgets improves performance
for the AMC+S and BPS schemes, with further improvements
obtained by utilizing gain-time in AMC+SG and BPSG.

Observe that NiD(%) is almost exactly the same for each
AMC+ scheme and the equivalent scheme based on the Bailout
Protocol (i.e. for AMC+ and BP, for AMC+S and BPS, and for
AMC+SG and BPSG). This is because the Bailout Policy only
operates once degraded mode is entered, with the same criteria
for transition to that mode as AMC+. Hence, the Bailout Policy
does not act to reduce the number of times that the system
enters degraded mode, only how long it stays in that mode.

The AMC-RA and AMC-RH schemes greatly reduce the
number of times that degraded mode is entered compared to
AMC+ and BP. This is because the AMC-RA and AMC-
RH schemes wait until the LO-criticality response time of
some HI-criticality task is reached from the start of the busy
period in which it is released, rather than transitioning to
degraded mode immediately a HI-criticality task reaches its
LO-criticality execution time budget without completing. This
advantage is further enhanced by utilizing off-line increases in
execution time budgets to provide longer intervals (response
times) before degraded mode is entered in the AMC-RAS
and AMC-RHS schemes. The AMC-RH schemes typically
enter degraded mode slightly more often than their AMC-RA
counterparts. The reason being that the AMC-RA schemes
wait for an idle instant to exit degraded mode. This can
lead to what would otherwise be two separate intervals of
degraded mode under the equivalent AMC-RH scheme being
amalgamated into one interval of degraded mode under the
AMC-RA scheme, hence lowering the number of times that
degraded mode is entered, but increasing the time in that mode.

Figs. 2, 5, 8, and 11 illustrate the time spent in degraded
mode (TiD(%)) as a percentage of the total simulation time.
Note, the different y-axis scale on these four graphs. With non-
harmonic task sets, the workload is typically spread out more
by the de-synchronized job releases, resulting in shorter busy
periods and more frequent idle instants. This is the reason why
the time in degraded mode for all schemes is much shorter for
non-harmonic task sets than with semi-harmonic task sets. It
also explains why the schemes based on the Bailout Protocol
are able to substantially reduce the time in degraded mode
compared to their AMC+ counterparts for semi-harmonic task
sets, but not so much for non-harmonic task sets. In the former
case, the bailout mechanism conveys an advantage, whereas
in the latter case, both types of scheme often exit degraded
mode via an idle instant.

Figs. 2, 5, 8, and 11 also show how the advantage that the
AMC-RA and AMC-RH families of schemes have in entering
degraded mode fewer times, combined in the case of AMC-
RH with not having to wait for an idle instant to exit degraded
mode, translates into a large reduction in the overall time spent
in that mode compared to the BP and AMC+ schemes. Further,
each AMC-RH scheme has a significant advantage over its
AMC-RA counterpart due to its ability to exit degraded mode
without having to wait for an idle instant.

Figs. 3, 6, 9 and 12 show the percentage of LO-criticality
jobs that were not completed (JNE(%) + LDM(%)), either
because they were not executed or because they failed to
complete by their deadline. Note, the different y-axis scale
on these four graphs. These figures show that the baseline
AMC-RA and AMC-RH schemes are highly effective in
reducing the percentage of LO-criticality jobs that are not
completed compared to both the AMC+ scheme and the
Bailout Protocol. Further, by utilizing off-line increases in
execution time budgets to delay the transition to degraded
mode, the AMC-RAS and AMC-RHS schemes outperform
the existing AMC+S and BPS schemes that utilize off-line
slack. As expected, the AMC-RH (resp. AMC-RHS) scheme
outperforms the AMC-RA (resp. AMC-RAS) scheme, since
given the exact same scenario of job releases, it transitions
out of degraded mode no later.

Finally, observe that for all schemes, lazy execution is
highly effective at reducing the percentage of LO-criticality
jobs that are not completed, but has no bearing on the number
of times that degraded mode is entered or on the time spent in
that mode. Lazy execution is less effective for semi-harmonic
task sets due to the longer busy periods and fewer idle intervals
compared to non-harmonic task sets.

Overall, the results shown in Figs. 1 to 12 provide evidence
that the modified runtime protocol for the AMC scheme
introduced in this paper is highly effective in reducing: (i)
the number of times that degraded mode is entered, (ii) the
amount of time that is spent in degraded mode, and hence
(iii) the number of LO-criticality jobs that are unable to
complete execution by their deadlines. In particular, the AMC-
RH schemes outperform the previously published AMC+ and
BP schemes, providing substantially lower median values on
all three performance metrics.

VI. CONCLUSIONS

In mixed criticality systems, schemes such as Adaptive
Mixed Criticality (AMC) [4] employ a degraded mode where
new releases of LO-criticality jobs are abandoned to ensure
that HI-criticality tasks remain schedulable when some of the
jobs of those tasks do not conform to their normal behavior and
hence exceed low assurance bounds on their execution times
(i.e. LO-criticality execution time estimates). The original
runtime protocol for the AMC scheme transitions to degraded
mode whenever a job of a HI-criticality task τi exceeds its
Ci(LO) budget. However, if the rest of the system is not
exhibiting worst-case behavior in terms of task execution times
and the phasing of job releases, then such a transition may be



unnecessarily early leading to many more dropped jobs of LO-
criticality tasks than are in fact necessary to maintain the high
levels of assurance needed to provide HI-criticality tasks with
robust timing guarantees.

Via a consideration of the AMC-rtb schedulability test [4],
we employed analysis-runtime co-design techniques to modify
the trigger conditions for entering and exiting degraded mode
to correspond to the worst case that is accounted for by the
analysis. Thus we modified the runtime protocol to enter and
exit degraded mode based on whether or not there is an active
(i.e. unfinished) job of some HI-criticality task τi that is at
least Ri(LO) (it’s LO-criticality response time) from the start
of the priority level-i busy period during which it was released.

By design, the new scheme, referred to as AMC-RH, can
be analysed more precisely using the AMC-rtb schedulability
test. Further, we showed that the new scheme can also benefit
from increasing the LO-criticality execution time budgets
of HI-criticality tasks until the system is just schedulable.
Thus increasing their LO-criticality response times and hence
further delaying the onset of degraded mode and expediting
return from it. This variant of the scheme is referred to as
AMC-RHS, since it takes advantage of static slack.

A systematic scenario-based evaluation compared the new
scheme, AMC-RH, to the original AMC scheme and also to
the Bailout Protocol [39], [40]. The schemes were judged on
the basis of criteria characterizing the degradation in the level
of service provided to LO-criticality tasks. The new scheme
provided significant advantages in terms of a reduction in: (i)
the number of times degraded mode is entered (NiD), (ii) the
amount of time spent in degraded mode (TiD), and (iii) the
number of LO-criticality jobs that are either not executed or
miss their deadlines (JNE+LDM). Table I shows the values
of these metrics for the Bailout Protocol and the AMC-RH
scheme as a percentage of the values for the original AMC
scheme. Note, these summary results are based on a compar-
ison of the mean values obtained in experiments on 500 task
sets, see Section V-E, Figures 1–6 for further details. In the
case of task sets with semi-harmonic periods, representative
of those found in avionics and automotive systems, the most
important metric (JNE+LDM) was reduced by a factor of 40
using AMC-RH, compared to a reduction by a factor of 3
using the Bailout Protocol.

Semi-harmonic periods Non-harmonic periods
NiD TiD JNE+LDM NiD TiD JNE+LDM

BP 100% 36.9% 34.8% 100% 78.4% 83.4%
AMC-RH 16.8% 1.7% 2.5% 19.9% 4.1% 8.7%

TABLE I
PERFORMANCE COMPARISON WITH RESPECT TO THE ORIGINAL AMC+
SCHEME. (NOTE, SMALLER VALUES IMPLY IMPROVED PERFORMANCE).

Finally, we note that the performance of all of the schemes
can be improved by using an extra background priority queue
to permit LO-criticality jobs that would otherwise have been
dropped in degraded mode to be run in what would otherwise
have been idle time, providing a last chance to meet their
deadlines. However, this use of lazy execution [41], with jobs
of the same task executing at different priorities, impacts

 

Fig. 13. Schedules for original and modified AMC schemes

mutual exclusion protocols [55] and increases blocking effects,
which may hamper its practical application.

APPENDIX A: SCHEDULABILITY

In this appendix, we show that the analysis provided by
the AMC-rtb schedulability test (1) and (2) is not exact for
AMC-RH, but is less pessimistic for AMC-RH than it is for
the original AMC scheme. This can be seen by considering
an example task set as follows: τ1 = {C1(LO) = 1, T1 =
2, D1 = 2, L1 = LO}, τ2 = {C2(LO) = 1, C2(HI) =
5, T2 = 10, D2 = 10, L2 = HI}, and τ3 = {C3(LO) =
C3(HI) = 4, T3 = 100, D3 = 18, L3 = HI}. Note, that
under fixed priority preemptive scheduling, the only viable
priority ordering is for task τ1 to have the highest priority
and task τ3 the lowest. Further, it is easy to see that with this
priority ordering, tasks τ1 and τ2 are schedulable, hence we
focus on the schedulability of the lowest priority task τ3.

From (1), we have R3(LO) = 10, including interference
from 5 jobs of task τ1 (at 1 time unit each) and 1 job of task
τ2 (at 1 time unit). Further, from (2) we have R3(HI) = 19,
including interference from the same 5 jobs of task τ1 released
within R3(LO) (at 1 time unit each) and 2 jobs of task τ2 (at
5 time units each). The test therefore concludes that task τ3
is unschedulable; however, this is not in fact the case.

Figure 13 shows the schedules that result in the worst-case
response time for a job of task τ3 under the original and
modified AMC schemes. In the diagram, job execution within
a task’s LO-criticality WCET estimate Ci(LO) is shown in
light blue, while execution after that estimate is exceeded
is shown in dark blue. Jobs of LO-criticality tasks that are
dropped in degraded mode are shown as an empty box.

Under the original AMC scheme, degraded mode is entered
as soon as any job of task τ2 executes for C2(LO) = 1 without
completing (i.e. exhibits HI-criticality behavior). It can be
verified, by considering the different possible offsets of task



τ2 from the initial release of tasks τ1 and τ3 at t = 0, that
the worst-case interference on task τ3 occurs when task τ2 is
released at t = 6. By t = 6, three jobs of τ1 have executed and
τ3 has executed for 3 time units. A further job of τ1 is also
released at t = 6 and executes, followed by task τ2. At t = 8,
τ2 has executed for C2(LO) = 1 without completing, and so
degraded mode is entered, and hence further releases of the
LO-criticality task τ1 are not permitted. Task τ2 executes for a
further 4 time units, followed by τ3, which completes its final
time unit of execution for a worst-case HI-criticality response
time of 13. (Note, under the AMC scheme, the parameters of
this example are such that it is impossible for task τ3 to be
subject to interference from more than one job of τ2).

Under AMC-RH, each time task τ2 exceeds its LO-
criticality response time R2(LO) = 2, degraded mode is
entered and further jobs of LO-criticality task τ1 are no longer
released until the job of τ2 completes, which happens by its
HI-criticality response time R2(HI) = 6. As a consequence,
each time τ2 exhibits HI-criticality behavior and executes
for C2(HI) = 5 within R3(LO), two jobs of task τ1 are
necessarily skipped. This reduces the total interference on task
τ3 within R3(LO) to effectively three jobs of task τ1 (at 1
time unit each) and one job of task τ2 (at 5 time units), or
other combinations that entail no more interference. Hence
by R3(LO) = 10, task τ3 suffers at most interference of 8
time units and hence executes for 2 time units leaving 2 time
units of execution to complete. With a further 5 time units
of interference from a final job of task τ2, this equates to a
worst-case HI-criticality response time of 17 for τ3, which is
therefore schedulable under AMC-RH.

Observe that for this example, the AMC-rtb analysis pro-
vided by (1) and (2) is considerably more pessimistic for the
original AMC scheme than it is for AMC-RH. If the deadline
on task τ3 were 15, then the task set would be schedulable
under the original AMC scheme, but not under AMC-RH.

In the following we show that the exact value of Ri(HI)
of each HI-criticality task τi under AMC-RH upper bounds
that for the original AMC scheme.

For any scenario (i.e. pattern of task releases) and priority
level-i busy period culminating in the completion of a HI-
criticality task τi in its worst-case HI-criticality response time
under the original AMC scheme, all of the interfering releases
of higher priority LO-criticality tasks would also occur under
AMC-RH (and possibly other releases as well). This is the case
because under AMC-RH, it is not possible (by definition of
the Rj(LO) values used in the runtime protocol) for degraded
mode to be entered until at least one job of some HI-criticality
task τj has executed for its Cj(LO) without completing, which
is the rule that the original AMC scheme uses for entry into
degraded mode. Hence, AMC-RH cannot enter degraded mode
before the original AMC scheme does. Since the original AMC
scheme does not exit degraded mode until an idle instant,
i.e. at or after task τi completes, it follows that the exact
value of Ri(HI) of each HI-criticality task τi under the
original AMC scheme lower bounds that under AMC-RH.
Since the LO-criticality behavior is the same in both cases,

it follows that exact schedulability under the original AMC
scheme dominates that under AMC-RH (dominance rather
than equivalence is assured by the previous example showing
that there exists at least one case where exact schedulability
is worse under AMC-RH).

Finally, the AMC-max test [4] can be used to obtain more
accurate but still inexact schedulability results for the original
AMC scheme. The gains over AMC-rtb in terms of additional
schedulable task sets are relatively small [4] and hence the
majority of subsequent work, including the recent adoption
of AMC by industry [7], [8], has been underpinned by the
simpler AMC-rtb test. The AMC-max test is not compatible
with the modified AMC runtime protocol, due to the way in
which the test is formulated. The AMC-max test considers
jobs of each HI-criticality task τj released prior to the mode
change time at time s as contributing Cj(LO), which is not
necessarily the case with the modified protocol. The modified
AMC runtime protocol makes a trade-off in schedulability
versus an improved level of service for LO-criticality tasks,
which is completely hidden when the AMC-rtb test is used.

APPENDIX B: IMPLEMENTATION

In this appendix, we provide a brief summary of how the
modified AMC runtime protocol can be implemented.

First, the RTOS needs to track the start time s[i] of each
currently active priority level-i busy period, see Section III
for a definition. This can be achieved via O(1) additional
operations on each job release as follows. When a new job
of a task τi is released at time t and task τi is inserted in the
run-queue: (i) if τi is added to the head of the run-queue, i.e. it
has the highest priority of any task with an active job, then
s[i] = t, (ii) otherwise the busy period start time is inherited,
s[i] = s[k], from the task τk that is immediately ahead of task
τi in the run-queue, i.e. task τk is the next higher priority task
with an active job. Note, correct tracking of busy period start
times requires that tasks with simultaneous job releases are
added to the run-queue in priority order, highest priority first.

Second, the RTOS needs to manage entry to and exit from
degraded mode via a programmable timer interrupt and an
ordered expiry-queue of absolute response time expiry values:
s[i] +Ri(LO) for the tasks with active jobs. When a job of a
HI-criticality task is released, its response time expiry value is
inserted (requiring O(log n) operations) into the expiry-queue.
While the system is in normal mode, the programmable timer
is set such that it will interrupt at the expiry time indicated
by the value at the head of the expiry-queue, if any. When
the timer interrupt goes off, the system enters degraded mode.
On completion of a job of a HI-criticality task, its response
time expiry value is removed from the expiry-queue (requiring
O(1) operations). Further, with AMC-RH, if the system is in
degraded mode and the expiry time now at the head of the
expiry-queue has not yet been reached or the expiry-queue is
empty, then degraded mode is exited and the timer interrupt
reset. For AMC-RA, degraded mode is only exited on an idle
instant, i.e. when the run-queue becomes empty.
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