Consistency for Quantified Constraint
Satisfaction Problems

Peter Nightingale

School of Computer Science, University of St Andrews, Scotland, KY16 9SX
pn@dcs.st-and.ac.uk

Abstract. The generalization of the constraint satisfaction problem with
universal quantifiers is a challenging PSPACE-complete problem, which
is interesting theoretically and also relevant to solving other PSPACE
problems arising in AI, such as reasoning with uncertainty, and multi-
player games. In this paper I define two new levels of consistency for
QCSP, and give an algorithm to enforce consistency for one of these def-
initions. The algorithm is embedded in backtracking search, and tested
empirically. The aims of this work are to increase the facilities avail-
able for modelling and to increase the power of constraint propagation
for QCSPs. The work is motivated by examples from adversarial games,
contrasting the different levels of consistency by their ability to prune
unfruitful moves.

1 Introduction

The finite quantified constraint satisfaction problem (QCSP) is a generalization
of the finite constraint satisfaction problem (CSP), in which variables may be
universally quantified. The CSP is a very successful paradigm for solving many
real world problems. The QCSP can be used to model problems containing un-
certainty, in the form of variables which have a finite domain but whose value is
unknown at solution time. Therefore a QCSP solver finds solutions suitable for
each value of these variables.

A QCSP has a quantifier sequence which quantifies (existentially, 3, or uni-
versally, V) each variable in the instance. For each possible value of a universal
variable, we find a solution for the later variables in the sequence. Therefore
the solution is no longer a sequence of assignments to the variables, but a tree
of assignments where the variables are set in quantification order, branching
for each value of the universal variables. A route from the root node to a leaf
node assigns all variables such that all constraints are satisfied. This is known
as a winning strategy, and can be exponential in size. This generalization in-
creases the computational complexity': QCSP is PSPACE-complete rather than
NP-complete.

There has been a great deal of work on quantified Boolean formulae (QBF),
which is the PSPACE-complete generalization of Boolean satisfiability (SAT).

! Under the usual assumption that PCNPCPSPACE.

SAT is complementary to CSP, and has better optimized solvers at the cost of a
much less expressive language. As a result, many NP-complete problems cannot
be sensibly modelled in SAT but can in CSP. QCSP has the potential to have
the same advantages over QBF as CSP has over SAT.

The QCSP can be used to model PSPACE-complete problems from areas
such as multiplayer games, planning with uncertainty and model checking. For
the first two of these, the models can have a similar character, where we need to
find successful actions whatever the actions of the opponent or changes in the
environment, and our actions are interleaved with opponent actions or changes
in the environment. In QCSP, our actions are represented with existential vari-
ables and the others are represented with universal variables, and the quantifier
sequence interleaves the two. The constraints express that the outcome is suc-
cessful, i.e. the player wins or the goal is met. Intuitively, this corresponds to the
question: Does there exist an action, such that for any eventuality, does there
exist a second action, such that for any eventuality, etc, I am successful?

The aim of this paper is to contribute to the tools available to model prob-
lems such as these. Bordeaux and Monfroy [3] define arc-consistency for QCSP,
and give algorithms for two classes of constraints: QBF (Quantified Boolean For-
mulae) with quantified (generalized)arc-consistency rules for constraints such as
a = -band a = bV ¢; and BAF (Bounded Arithmetic Formulae) with interval
consistency rules for constraints such as a = b+ ¢. For both these schemes, con-
straints of arity greater than three are broken down. Mamoulis and Stergiou [1]
extended arc-consistency for binary constraints from CSP to QCSP. Non-binary
constraints can be encoded using an adapted hidden variable encoding (defined
below). Unfortunately, when breaking down a longer constraint into binary or
ternary constraints, propagation may be lost. In this paper I introduce a general
consistency algorithm for quantified constraints of any arity, based on Bessiére
and Régin’s GAC-Schema [5,8].

greylVblackl3grey2¥black23grey3 : greywins(greyl, blackl, grey2, black2, grey3)

Fig. 1. Connect-4 endgame

Connect-4 For example consider the Connect-4 endgame in figure 1. The aim of
Connect-4 is to make a line of four counters, vertically, horizontally or diagonally.
The two players take turns, and can only place a counter at the bottom of a
column on the board. It is played on a board with six rows and seven columns.
It is grey to move, and it can be seen that columns 2 and 4 are the only moves
allowing grey to win in 3 moves if black defends perfectly?. The seven such
winning sequences are 2-2-4-4-5, 2-2-5-4-4, 4-4-5-2-2, 4-4-5-2-6, 4-4-5-6-2, 4-4-
2-2-5 and 4-4-2-5-2. As shown below the figure, this problem can be modelled
as a QCSP, with 5 variables representing the column numbers of the 5 moves,
with just one 5-ary constraint representing that grey wins. This is similar to a
5-move lookahead constraint, but with the additional restriction that grey must
win within the 5 moves. Ideally, the propagation algorithm would be able to
restrict all three of the grey move variables. GAC infers nothing. I define two
stronger levels of consistency, WQGAC, which infers that greyl € {2,4}, and
the stronger SQGAC, which also infers grey2 € {4, 5}, and grey3 € {2,4,5,6}.
I give an algorithm for WQGAC in section 4. The example is unusual in that
global reasoning and the equivalent local reasoning on the greywins constraint
are equivalent, since there is only one constraint.

2 Definitions

Definition 1. Quantified Constraint Satisfaction Problem
A QCSPP =(X,D,C, Q) is defined as a set of n variables X = {x1,...,z,},

a set of current domains D = {D,, ..., D, } where D; is the finite set of all values
which x; can take, a conjunction C of constraints between variables in X, and a
quantifier sequence Q = @11, ..., oLy, where ¢; is a quantifier, I (existential,

‘there exists’) or ¥ (universal, ‘for all’).
Before defining the semantics of a QCSP, it is necessary to define constraints.

Definition 2. Constraint

A constraint C € C on the ordered set of variables Xc = (x;,...,%;) has an
associated set Cs C DY x ... x D? of tuples which specify allowed combinations
of values for the variables in Xc, where DY is the initial domain of i.

Cs may be represented implicitly, for example by an algebraic expression.

Definition 3. QCSP semantics

If C is empty, the problem is true. If @ = 1, paxo ... then P is true iff there
exists a value a € Dy such that the problem P' = (X, D,C', Q") with Q' = ¢xa,...
and C' = C[z1 = a)® is true. If Q = Vx1, $2Z2 - .. then P is true iff for all values
a € Dy the problem P' = (X,D,C’', Q') with Q' = ¢xa,... and C' =C[z1 = a] is
true.
2 Black chooses, whenever possible, a move which prevents grey from winning imme-

diately afterwards.
3 Where C[z1 = a] denotes the instantiation of a to z1.

CSPs are most commonly solved by interleaving constraint propagation and
search. Work on QCSPs has followed the same path so far [1,2,3], and I take the
same approach here. I define some local consistency conditions based on a single
constraint C. The following definitions of consistency are taken from Lépez-Ortiz
et. al. [9] and generalized to the quantified case. When a variable is instantiated,
it is considered to have a unit domain.

Definition 4. Support

Given some constraint C, a value a € D; for a variable x; € X¢o has domain
support in C iff there exists a tuple t € Cs such that t; = a * and Vz; € Xo :
t; € D;. Similarly, o partial assignment p (which is o set of pairs (x;,a)) over
C has domain support in C iff there exists a tuple t € C's such that for all pairs
(zi,a) inp, t; =a and Vz; € Xc : t; € D;.

Definition 5. Generalized arc-consistency (GAC)
A constraint C is generalized arc-consistent iff for each x € X, each value
a € D, has a domain support in C.

Consistency is achieved for the entire problem by removing inconsistent domain
values. For the running example in figure 1, GAC is not able to prune any values.
It is possible to define stronger local consistencies in the presence of universal
variables. In the definition of a constraint, the variables Xo = (z;,...,z;) are
ordered in the same way as the quantifier sequence. Intuitively, if some variable
z; has an inner variable z; which is universal, then each value of x; must have
domain support for each value of x;, by the semantics of the QCSP. If z; has
more than one inner universal variable, each value must have domain support
for all possible choices of values for the inner universals, hence the definition of
domain support over partial assignments is used. This is a stronger consistency
than GAC because each literal (a variable and value pair, (x,a)) may require
many tuples to support it.

Definition 6. Weak Quantified GAC

A constraint C is weak quantified GAC (WQGAC) iff for each variable x €
Xc and value a € D,, with inner universal variables x;,z;,..., each partial
assignment p = {(z, a), (z;,b), (x;,¢c)|b € D;,c € D; ...} has domain support.

For the example in figure 1, WQGAC is able to prune the following values from
greyl :1,3,5,6,7, but is unable to prune the other existential variables.

The definition of WQGAC is not the strongest possible for quantified GAC, as
this example illustrates: consider a constraint with variables Vz;,3zs,Vz3, 32,4,
and all variables have initial domain D? = {0,1}. The set Cs is given below:

V.’L'l EL’L'Q v.733 3.734

—==ol o
Ol = —=O
k=l K]
=l=olo

% t), is used to refer to the element of ¢ corresponding to variable .

For the literal ;1 = 0, a tuple is required for each value of 3. The first two
tuples in the table meet the requirement. However, the value for x5 is different,
so these two tuples could not form part of the same winning strategy for the
QCSP. There does not exist a value of x5 such that all values of x5 can be
extended to a satisfying assignment. WQGAC can make no inferences, however
the definition can be strengthened to SQGAC, which finds the constraint false.

Definition 7. Strong Quantified GAC

A constraint C is strong quantified GAC (SQGAC) iff for each variable x €
Xc and value a € D,, with inner universal variables x;,x;,..., each partial
assignment p = {(z,a),(z;,b)|b € D;,(z;,c)|c € Dj,...} has domain support
and all the supporting tuples can form part of the same winning strategy. For
any two supporting tuples T and 7' this is the case ¢ff INVi < X : 7, =7/ AT #
Ty AV(xz2) (i.e. the leftmost difference between the tuples must correspond to a
universal variable).

A QCSP P is (W/S)QGAC iff each constraint C' € C is (W/S)QGAC. This allows
us to locally reason about non-binary arbitrary constraints in the problem and
therefore avoid expensive reasoning on the whole problem. This local reasoning
can be interleaved with search to provide a sound and complete solver for QCSP.

For the example in figure 1, SQGAC is able to prune from all three existential
variables, in contrast to WQGAC. SQGAC can infer grey2 € {4,5}, and grey3 €
{2,4,5,6}. Any value which cannot form part of a winning strategy covering C
are pruned, therefore I believe that SQGAC is the strongest form of consistency
which considers each constraint individually and posts only unary constraints.

The definition of WQGAC is designed to be enforced by an algorithm that
processes tuples, specifically one generalized from a general GAC algorithm for
CSP. The motivation for this weaker definition is therefore an engineering con-
cern. It may also be the case that WQGAC has a lower complexity than SQGAC.
The definition of SQGAC in similar terms to WQGAC allows comparison be-
tween the two. I believe that SQGAC is equivalent to the definition of local
inconsistency given by Bordeaux et. al. 2005 [4], and the definition of quantified
arc-consistency given by Bordeaux and Monfroy [3].

In CSP, the hidden variable encoding [6] encodes a non-binary constraint into
n binary constraints and one extra (hidden) variable representing the supporting
tuples.

Definition 8. The hidden variable encoding

Encoding non-binary constraint C over variables xq,...,x, into n binary
constraints, with additional variable v. The quantification of the variables does
not affect the encoding. The additional variable v represents the supporting tuple,
so its initial domain is the set of all supporting tuples for C. A binary constraint
r; links variable x; to v. A literal x; = a conflicts with the tuple v = 7 in
r; iff 7 # a. Variables x1,...,z, retain their quantification. v is existentially
quantified after x1,...,x, since a supporting tuple must exist for the assignment
tox1,...,%p.

If a domain removal is made from one of the variables x;, the constraint r; then
propagates the changes to v, removing tuples which are no longer valid. This
propagates back to the other x variables, establishing GAC when all constraints
are satisfied. The encoding scales with the size of the tuple set, potentially d"
where d is the domain size [6].

3 Comparing effectiveness of local consistencies

In this section, the running example of figure 1 (expressed with one constraint
as shown below the figure) and the arithmetic expression in equation (1) (refor-
mulated in equation (2)) are used to compare different levels of consistency.

dz € {1..5},Vy € {1..5},3z € {1..5} : 2z + 5y + 32 = 30 (1)
2xXx=1%t,59Xy=1t2,3 X2 =13, t1 +ty =14, t3+1t4 =30 (2)
| Consistency [Form of constraint | Inference ||[Form of constraint [Inference]
Figure 1 Equation (1)
BAF Equation (2) none
QAC Hidden variable none Hidden variable none
encoding encoding
GAC |unchanged none unchanged none
WQGAC |unchanged greyl #1,3,5,6,7 ||unchanged False
greyl #1,3,5,6,7
SQGAC |unchanged grey2 # 1,2,3,6,7 ||lunchanged False
greyd3 #1,3,7

Table 1. Comparison of consistency levels

Table 1 shows the inferences of each algorithm for these two examples. The
binary quantified arc-consistency defined by Mamoulis and Stergiou is referred to
as QAC. GAC refers to ignoring the quantifiers and applying a GAC algorithm.

Lemma 1. GAC on a constraint C' and QAC on the hidden variable encoding
of C are equivalent.

Proof. From the definition of GAC, each consistent pair (z;,a) where x; € X¢o
and a € D; must have domain support in C| i.e. there exists some tuple ¢t € Cg,
where t; = a and Vj : t; € D;. In the hidden variable encoding, each constraint
r; is a one-to-many mapping from values (z;,a) to tuples t € Cs where t; = a.
Therefore if {x;,a) remains after performing AC, then there exists a tuple ¢
where t; = a. If AC is performed to completion on all r constraints, a tuple ¢ is
removed from the domain of the hidden variable iff t; ¢ D;. Therefore we have
that (z;, a)is supported by a tuple ¢t € Cs where t; = a and Vj : t; € D;, which
is equivalent to GAC.

Of the consistency rules given by Bordeaux and Monfroy [3], the BAF rules can
be sensibly applied to equation 1, by reforming it as equation 2. Unfortunately
they do very little inference, as shown in table 1.

4 A general schema for enforcing WQGAC

This section describes the proposed WQGAC-Schema, algorithm, derived from
GAC-Schemal[5], a successful framework for GAC. In this section most attention
will be given to the differences between WQGAC-Schema and GAC-Schema.
On constraints with no universal variables, the behaviour of WQGAC-Schema
is identical to GAC-Schema. The key feature of (WQ)GAC-Schema is multidi-
rectionality, defined below.

Definition 9. Multidirectionality

1. WQGAC-Schema never looks for a support for a partial assignment p on a
constraint C' when a tuple supporting p has already been found, and

2. it never checks whether a tuple is a support for a value when it has already
been checked for another value [8].

The main change to GAC-Schema is to replace the notion of support to match
the definition of WQGAC: that a value of some variable must be supported for
all sequences of values of inner universal variables. The modified data structures
Sc, S and lasto are described below.

— Sc(p) contains tuples that have been found to satisfy C' and which include
the partial assignment p. Each tuple supports n partial assignments, so when
a tuple is found, it is added to all n relevant sets in S¢c. The current support
T for p is included, and is removed when it is invalidated. Domain removals
may invalidate other tuples A # 7 contained in S¢, but A may not be removed
immediately, so when searching for a new current support for p, S¢(p) may
contain invalid tuples.

— S(7) contains the set of partial assignments for which 7 is the current sup-
port.

— lastc(p) is the last tuple returned by seekNextSupport as a support for the
partial assignment p; nil otherwise. This is used to allow seekNextSupport to
continue searching at the point where it left off in the lexicographic ordering
of tuples.

Point (1) of multidirectionality is taken into account with the S¢ data structure.
The seekInferableSupport procedure (algorithm 4) ensures that a new support is
not sought if one is already stored in S¢. Point (2) is dealt with by the individual
constraint representations described in section 5.

Algorithm 1 procedure establishWQGAC
procedure establishWQGAC(): Boolean
Sc=0,S=0
for each variable z;:
for each value a € D;:
if not findSupport(z;, {{z;:,a)}):
if not exclude(z;, a): return false

return true

Initialization To initialize the above data structures, the required supports
must be found for all pairs (z;,a), and recorded appropriately (or the value a
must be removed from D;). This is achieved with establishWQGAC (algorithm
1), which calls findSupport for each pair {(x;,a) (algorithm 2). If findSupport
cannot find all supports for (z;,a), establishWQGAC calls exclude(x;, a), which
returns false if the removal falsifies the QCSP (possibly by domain wipeout of an
existential or pruning a universal). The Boolean returned by establishWQGAC
represents whether the QCSP has been falsified.

The procedure findSupport is recursive. The first parameter is a variable z;,
which is incremented to z;y1 for the recursive calls. A partial assignment p is
recursively built up. For universal variables, a recursive call is made for each
value in the current domain, hence all possible sequences are built.

When the last variable in the constraint is reached, if p is not already sup-
ported a support 7 is sought. If found, the findSupportedPA(7) procedure is
called which returns the set @ of all n partial assignments that 7 supports. For
each variable z;, 7 supports the partial assignment including z; and all inner
universals: ¢ = (i, 7i) U U5 iav(s,)(%j5 75)- 7 is then added to Sc(q). If 7 is the
first support for ¢, ¢ is added to S(7).

Propagation After initialization, removing an element from a domain may
result in one or more supports becoming invalid. The procedure propagate(x;,
a) (algorithm 3) replaces the invalid supports if possible, otherwise prunes the
unsupported values. The procedure generatePA generates the set of partial as-
signments containing (z;,a) for all possible sequences of inner universal assign-
ments. This is the set whose supports are invalidated by the removal. For each of
these partial assignments p, Sc¢(p) contains all the tuples 7 containing p which
were previously supporting something and are now invalid. 7 is removed from
Sc, then all the partial assignments r which are currently supported by 7 are
processed: if r is still valid, a new support is required. S¢(r) may contain an-
other valid support: this would be discovered by seekInferableSupport. If not,
seekNextSupport is called to find the next support in lexicographic order. If one
is found, it is added to the relevant sets in S¢ and S, and lastc is updated. If
no support for r is found, the appropriate value is pruned.

The procedure seekInferableSupport (algorithm 4) searches the set S¢(p) to
find a valid support for p which was found earlier to support some other partial

Algorithm 2 procedure findSupport

procedure findSupport(z;: variable, p: partial assignment): Boolean
if 4 = n: {base case: if we have reached the last variable}
if Sc(p) # 0:
return true {already supported}
T=seekNextSupport(p, nil)
if 7 = nil: return false
lastc(p) =7
Q=findSupportedPA(7)
for ¢ in :
if Sc(q) = nil:
add ¢ in S(7) {i.e. 7 is the first support}
add 7 in Sc(q)
return true
else: {recursive case}
if V(.’I}H_l):
for value v € Djy1:
p=pU (Zit+1,v) {add z;41 = v to the partial assignment}
if not findSupport(z;+1, p): return false
return true
else:
return findSupport(z;+1, p)

Algorithm 3 procedure propagate

procedure propagate(x;: variable, a: value): Boolean
P =generatePA(x;, a)
for each partial assignment p € P:
for each tuple 7 € Sc(p)
x =findSupportedPA(7)
for each partial assignment g € x: remove 7 from Sc(q)
for each partial assignment r € S(7):
if r valid given current domains:
o =seekInferableSupport(r)
if o # nil:
add r in S(o)
else:
o=seekNextSupport(r, lastc(r))
if o # nil:
add r in S(o)
lastc(r) =0
a =findSupportedPA (o)
for each partial assignment s € a:
add o in Sc(s)
else:
(z;,b)=outermost literal of r
if not exclude(z;,b): return false
return true

Algorithm 4 procedure seekInferableSupport

procedure seekInferableSupport(p: partial assignment): tuple
for o € Sc(p):

if 3k o1 ¢ Dy: remove o from Sc(p)

else: return o
return nil

Algorithm 5 procedure seekNextSupport for the predicate instantiation

procedure seekNextSupport(p: partial assignment, 7: tuple): tuple
if 7 # nil:
(1, dummy) = nextTuple(p, 7, |7|)
else:
7 = smallest valid tuple containing p
T = seekCandidateTuple(p, 7,1)
while 7 # nil:
if fo(r):
return 7
else:
(T, k) = nextTuple(p, T, |XC|)
7 = seekCandidateTuple(p, 7, k)

return nil

assignment. It clears invalid tuples from the set as they are found. This satisfies
part 1 of the the definition of multidirectionality (definition 9).

These procedures make up the general WQGAC-Schema. The procedure
seekNextSupport, called in findSupport and propagate, is instantiated differ-
ently to deal with different types of constraint.

5 How to deal with specific constraint representations

WQGAC-Schema can be instantiated to deal with predicates (arbitrary expres-
sions) and with lists of allowed or disallowed tuples.

Predicates The constraint is defined by an arbitrary expression for which no
specific propagation algorithm is known. The user provides a black box func-
tion fo(7), which returns true iff the tuple 7 satisfies the constraint, false oth-
erwise. This is used in the seekNextSupport procedure shown in algorithm 5.
seekNextSupport(p: partial assignment, 7: tuple) returns the smallest (in lexi-
cographic order) tuple greater than 7 which is checked to be allowed by C. The
only change from the GAC-Schema version in [5] is that the variable y and value
b have been replaced everywhere with p.

The procedure seekCandidateTuple (algorithm 6) uses the lastc data struc-
ture to jump forward, skipping tuples which have already been checked and
found not to satisfy C. This satisfies part 2 of multidirectionality (definition

Algorithm 6 procedure seekCandidateTuple

procedure seekCandidateTuple(p: partial assignment, 7:tuple, k: index): (tuple, in-
dex)
while 7 # nil and k < |7|:
q = (x, 7) {construct a partial assignment starting with index k}
for all i s.t. k < i < |r|:
if V(z;): ¢ = q + (zi,) {add all inner universal assignments}
A = lastc(q)
if A\ # nil:
split =1
while 7Top15¢ = Aspris: split = split + 1
if split > |7| or Teprit < Asprit:

if split < k:
(1, k') = nextTuple(p, 7, k)
k=K -1

else

(7,k") = nextTuple(p, 7, |7|)
k=min(k, k' — 1)
E=k+1

return 7

9). Together with the other part, a tuple will not be checked more than once,
therefore limiting the total number of checks to d™.

A candidate is a valid tuple which has not been checked. The procedure
seekCandidateTuple(p, 7, k) returns the smallest candidate greater than or equal
to 7, assuming 7 is valid and includes p and the prefix 71__1 is a possible prefix
for a candidate.

The change to the algorithm is that when retrieving the relevant entry of
lastc, the algorithm constructs a partial assignment ¢ from (xy, 7%) and the in-
ner universal assignments. The intuition is that 7 contains ¢ so for A = lastc(q),
if A >, 7 then 7 has already been checked or jumped over when searching for sup-
port for ¢. If the difference between \ and 7 occurs before k, nextTuple(p, T, k) is
called which ensures that the prefix 71 is increased while respecting p. Other-
wise, nextTuple(p, 7, |7|) is called to get the valid tuple following A. k decreases
to the smallest index where the value of 7 has changed. Bessiére and Régin give
a sketch proof which shows that seekCandidateTuple cannot miss any candi-
dates when jumping forwards with the calls to nextTuple [5]. This applies here
unchanged, apart from the substitution of p for the variable and value y, b.

The procedure nextTuple(p, 7, k) finds the next valid tuple 7' >;, 7 where
7' includes p and has the property 7{ , # 71..x. The returned £’ is the position
of the first difference between 7'and 7: 7| ,, | = 71.p—1 and 73, # 7.

Positive constraints Here the set of allowed tuples (Cs) is given explicitly.
Again, this is generalized from the algorithm given by Bessiére and Régin [5],
with the data structure from Mohr and Masini [10]. In practice this will only be
practical for very loose constraints, but it has better time complexity than the

Algorithm 7 procedure seekNextSupport for the positive instantiation

procedure seekNextSupport(p: partial assignment, dummy): tuple
while elt(p) # nal:

o = Cs(elt(p))

if o is valid against current domains: return o

elt(p) = next(elt(p))
return nil

predicate instantiation. The set Cg is sorted by partial assignment, to match the
requirements of supporting a value. For each pair {x;,a), the tuples matching
{z;,a) are divided into each possible sequence of inner universal assignments.
(This does not increase the asymptotic space consumption because each tuple
of length n has n references to it.) The seekNextSupport procedure is given in
algorithm 7.

Negative constraints The set of disallowed tuples is given explicitly. Bessiére
and Régin give an efficient method based on hashing which uses the predicate
instantiation and can be used without any modification [5].

Other instantiations Bessiére and Régin’s more recent work instantiates GAC-
Schema to process a conjunction of constraints (a subproblem) [8], which gives
the same capabilities as the predicate instantiation but with much greater effi-
ciency — the search performed by the predicate instantiation is like a generate-
and-test, whereas the subproblem instantiation can use CSP propagation algo-
rithms to prune the inner search space. Adapting the subproblem instantiation
remains for future work.

6 Space and time complexities

The space and time properties of WQGAC-Schema+predicate are compared
with GAC-Schema+predicate. Let C' have arity n and contain variables with
domain size d. GAC-Schema+predicate requires O(n?d) space, with the greatest
cost being the S data structure. WQGAC-Schema maintains more supports:
for a constraint with 4 < n universal variables, WQGAC-Schema maintains sup-
port for O(nd“*!) partial assignments compared to nd values for GAC-Schema.
Therefore there are potentially O(nd¥*+1) tuples stored. Since each tuple supports
n partial assignments, S¢ contains n references to it, giving a space requirement
of O(n2d**!). However, there can be no more than d” tuples, so if d* < nd*+!
then the space requirement is O(nd").

To obtain an upper bound for the time, consider some tuple 7. Because
of multidirectionality, 7 will only be processed once. If fo(7) =false, the cost
of processing 7 is the same as the cost of running fc which I assume will be
O(n). If fo(r) =true then a reference to 7 is added to n sets in Sc¢ and to
one set in S and one entry in lastc. 7 can be processed up to n times by the

seekInferableSupport procedure, which verifies 7 against current domains, taking
n time. When 7 is invalidated by a domain removal, it is removed from n sets in
Sc (taking constant time per removal). For d” tuples, this gives an upper bound
of O(n?d™). However, since falsified tuples are removed from S¢ by propagate,
seekInferableSupport is likely to find the first tuple in the list is a valid one, so
the cost is close to nd™.

The other cost of enforcing multidirectionality is in seekNextSupport and
seekCandidateTuple. For each variable x; and each value a, the space of assign-
ments to other variables (size d"!) is divided up among the partial assignments
supporting (z;, a), but the whole space is covered. I assume no jumping forward
is possible. Finding the lexicographically next tuple takes constant time®, so the
total time taken is O(nd x d"~') = O(nd").

The same line of reasoning can be followed for GAC-Schema+predicate.
Bessiére and Régin claim an upper bound of O(d"), presumably assuming some
O(n) operations to be constant time for any reasonable n.

7 Examples

In this section the predicate instantiation of WQGAC-Schema is tested on some
example games. Firstly the algorithm is tested on Connect-4 endgames, for con-
straints with 3, 5 and 7 variables. This shows its effectiveness in minimizing the
number of tuples tested, and also gives some indication of time requirements.
Secondly it is embedded in backtracking search, and tested on an encoding of
noughts and crosses.

CPU times are given for an implementation in Java, running with the Java
5.0 HotSpot compiler on a Pentium 4 3.06GHz with 1Gb of memory. Although
some attention was paid to efficiency in the implementation, this was not the
main concern and the CPU times could be improved.

Connect-4 endgames To illustrate the strength of WQGAC and the efficiency
of WQGAC-Schema, I give some endgames for the game Connect-4. The predi-
cate instantiation of WQGAC-Schema, is used.

The first and simplest endgame is shown in figure 2(a). It is grey to move, and
the question is: can grey win whatever move black makes? Grey can win in two
moves if black defends perfectly. Representing a move by the column number,
grey wins with the sequence 5-2-2. The problem is modelled as shown below,
with three variables (representing the column number of the move) and one
constraint, which forbids black winning or drawing. If a grey (black) cheats (by
placing a counter in a full column) then the constraint is unsatisfied (satisfied),
that is black (grey) wins the game.

Agrey1Vblack13grey?2 : greywins(greyl, blackl, grey2)
5 Average symbol changes required to increment a tuple: a = 3.7, (d—1)i/d" (sum of
number of symbol changes times their probability). As n — co, @« = 1+ 1/(d —1).
Asd— o0, a — 1.

000-

(2) ® (b)
00
® ®
® 0000

Fig. 2. Connect-4 Endgames

This approach of encoding all game rules into one constraint is not feasible
for the full game of Connect-4, since the constraint in that case would be far
too large for WQGAC-Schema to handle. The full game could be encoded as
a conjunction of constraints, with local reasoning performed on each constraint
with WQGAC-Schema, as with the noughts and crosses example below.

WQGAC-Schema determines the two moves grey must make in 0.008s (table
2(a)). From 7% = 343 possible tuples, 99 are tested against the predicate.

The second endgame is the running example in figure 1. Grey can win in three
moves if black defends perfectly, and in two moves if black makes a mistake.
There are five move sequences where black defends perfectly: 2-2-4-4-5, 2-2-
5-4-4, 4-4-5-2-2, 4-4-5-2-6 and 4-4-5-6-2. Table 2(running example) shows three
consecutive actions on the greywins constraint. (Asserting a value includes calling
propagate to exhaustion.) Apart from two additional move variables, the model
remains the same as above.

The total number of tuples is 7° = 16807, of which 2554 were tested in
total, which is 15.2%. The algorithm is effective in minimizing the number of
tests. This example also shows the weakness of WQGAC: when first establishing
WQGAC, only the outermost variable is pruned. SQGAC would be able to prune
grey2:1,2.3,6,7 and greyd : 1,3,7 as well.

The third endgame, shown in figure 2(b), is used to test WQGAC-Schema
with a longer constraint. There are seven variables in total, and again grey has
the first move. Apart from two additional move variables, the model remains the
same. In this case it is easy for grey to win so the greywins constraint is loose,
and establishing WQGAC only prunes the cheating move (table 2(b)). SQGAC
is also unable to prune. While moves such as greyl : 6,7 are wasted, grey is
still able to win. The grey player can waste a move at any turn so no pruning is
possible. During the three actions, the algorithm tests a very small percentage
of tuples, although time is becoming a problem. To execute the three actions
requires (at peak) 4097 kilobytes of memory.

Noughts and crosses WQGAC-Schema is embedded in a backtracking search
procedure, in which variables are instantiated in quantification order, and uni-

| Action |’I‘uples tested|T0tal tested %|Values pruned |CPU time|

Board (a)
establishWQGAC() 99 28.9% greyl :1,2,3,4,6,7 and| 0.008s
grey3:1,3,4,5,6,7
Running example (figure 1)
establishWQGAC() 2196 greyl:1,3,5,6,7 0.046s
assert greyl # 2 207 15.2% none 0.008s
assert blackl =4 151 grey2:1,2,3,4,6,7 and| 0.016s
grey3:1,3,4,5,7
Board (b)
establishWQGAC() 20611 greyl : 6 0.167s
assert greyl =4 12796 4.1% none 0.133s
assert blackl = 4 629 grey2:1,3,4,6,7 0.018s

Table 2. Connect-4 results

versal variables branch for every value, closely following definition 3. The propa-
gation algorithm is constraint-oriented, maintaining a queue of (C, z;, a) records
to be processed®. Noughts and crosses (tic tac toe) is played on a 3 x 3 board.
The aim is to make a line of three counters, including diagonal lines. The two
players take turns to place a counter on any free slot. The first player is crosses
(x), followed by noughts (o). The aim is to find if crosses can win however
noughts defends, therefore the constraints are all satisfied if crosses wins the
game, and some constraint is unsatisfied if crosses cheats or noughts wins or
draws. The case where noughts cheats is discussed below. All the constraints are
implemented with WQGAC-Schema+predicate.

To test the potential benefit of enforcing WQGAC on high-arity constraints,
I compare two models. First the game is modelled with 9 move variables (with
alternating quantification) each with domain size 9. The state of the board is
represented with 9 variables per move, b? . € {x,o,nil} where pos € 1..9.
w' € {x,o,nil} indicates the winner at move i, and Boolean variables zl
and ol’ indicate if a player has a line at move i. The quantifier sequence is
om?3bt o, wi, (z or 0)l* where o = 3 for x moves and V for o moves.

The moves are modelled with 8 variables m?, the board states with 9 vari-
ables per move, bfm € {x,0,nil} where pos € 1.9, w' € {x, o, nil} indicates the
winner at move i, and Boolean variables zl? and ol’ indicate if a player has a line
at move i. The quantifier sequence for the first 6 moves is omi3b¢ o, w?, (x or o)l!
where ¢ = 3 for X moves and V for o moves. For X moves, there are 11 con-

straints: Vpos : (m' = pos) = (b} = nil A b}, = x), findline(b]_g,xl"),
wins(w*~", zl*,w"). For o moves, we have: ¥Ypos : (bi;} = nil Am' = pos) =

(b,, = o), findline(b? 4,0l?), wins(w® 1, 0l%, w). For the first 4 moves, the find-

oS -
line constraints are omitted, and w'* = nil and w® # o. For values a of m’

where the corresponding board position is already filled (i.e. cheating moves), a

% The queue is a stack. No attempt was made to optimize queue behaviour.

is not contained in any nogoods’. Such values are dynamically pruned by the
pure value rule [2]. When searching with this model, only the move variables are
instantiated by the search algorithm, all others are set by propagation. The value
ordering is line by line, left to right on the board. At the root node, establishing
WQGAC for all constraints took 19ms. The search explored 4107 internal nodes
in 26.205s.

In the second model, the final three moves are represented with a single
constraint, over variables w%,b$ o, m” m8. All other variables and constraints
for these moves are eliminated. In particular, m® is removed because it is unit.
To avoid cheating moves, m” has only 3 values and m® only 2, and these are
mapped to the free slots. The constraint is satisfied iff noughts wins the game. To
establish WQGAC now takes 134ms, and the search explores 3403 internal nodes
explored in 13.782s. To an extent, this shows the potential of consolidating a set
of constraints into a single high-arity constraint, because better propagation is
achieved and the time to reach local consistency at each node is reduced.

The results above should not be oversold because WQGAC-Schema was used
for all constraints. A simpler algorithm may be more efficient for shorter con-
straints, aiding the first model more than the second.

8 Conclusion

Generalized arc-consistency has been well studied and is very important in CSP.
To my knowledge, this is the first time a GAC-like consistency has been brought
to QCSP. I have defined two new levels of consistency based on GAC, and have
developed an algorithm for one. This is empirically tested on game problems and
embedded in backtracking search.

9 Acknowledgements

This work is funded by EPSRC, and I would like to thank my supervisor Ian
Gent, Ian Miguel and the anonymous reviewers who all made helpful comments
on this paper. I would like to thank Bjorn Assmann for help with footnote 4.

References

1. Nikos Mamoulis and Kostas Stergiou, Algorithms for Quantified Constraint Satis-
faction Problems, in Proc. 10th CP, pages 752-756, 2004.

7 If the remainder of the game is satisfiable for all non-cheating moves, then it must
also be satisfiable for move a since no counter is placed, therefore the remainder of
the game is easier to win for noughts. Therefore move a can only falsify the remain-
der of the game if some non-cheating move does as well. Because of the universal
quantification, this is equivalent to the desired semantics: that for a cheating move
the remainder of the game is satisfied.

10.

Ian P. Gent, Peter Nightingale and Kostas Stergiou, QCSP-Solve: A Solver for
Quantified Constraint Satisfaction Problems, to appear in Proc. 19th IJCAI, 2005.
Lucas Bordeaux and Eric Monfroy, Beyond NP: Arc-Consistency for Quantified
Constraints, in Proc. 8th CP, pages 371-386, 2002.

Lucas Bordeaux, Marco Cadoli and Toni Mancini, CSP Properties for Quantified
Constraints: Definitions and Complexity, in Proc. 20th AAAT, pages 360-365, 2005.
Christian Bessiére and Jean-Charles Régin, Arc consistency for general constraint
networks: preliminary results, in Proc. 15th IJCAI, pages 398-404, 1997.

Nikos Mamoulis and Kostas Stergiou, Solving Non-binary CSPs Using the Hidden
Variable Encoding, in Proc. 7th CP, pages 168-182, 2001.

Tan Gent and Andrew Rowley, Encoding Connect-4 using Quantified Boolean For-
mulae, APES Technical Report APES-68-2003, 2003.

Christian Bessiére and Jean-Charles Régin, Enforcing Arc Counsistency on Global
Constraints by Solving Subproblems on the Fly, in Proc. 5th CP, pages 103-117,
1999.

. Alejandro Loépez-Ortiz, Claude-Guy Quimper, John Tromp and Peter van Beek, A

Fast and Simple Algorithm for Bounds Consistency of the AllDifferent Constraint,
in Proc. 18th IJCAI, pages 306-319, 2003.

Roger Mohr and Gérald Masini, Good Old Discrete Relaxation, in Proc. 8th ECAI,
pages 651-656, 1988.

