Consistency for Quantified Constraint Satisfaction Problems

Peter Nightingale

- Finite domain QCSP Connect-4
- Consistency notions
- WQGAC
- WQGAC-Schema
- Comparing consistencies
- Summary

Connect-4 endgame

∃red1∀black1∃red2∀black2∃red3: redwins(red1,black1,red2,black2,red3)

SAT

Example strategy

Example strategy

Example strategy

- Finite domain QCSP Connect-4
- Consistency notions
- WQGAC
- WQGAC-Schema
- Comparing consistencies
- Summary

Consistency notions

- Hasse diagram
- Ordered by strength
 - Then constraint arity

Local inconsistency Bordeaux, Cadoli and Mancini

> WQGAC (this work)

Ternary Boolean constraints Bordeaux and Monfroy Ternary interval constraints Bordeaux and Monfroy

QAC Stergiou and Mamoulis

- Finite domain QCSP Connect-4
- Consistency notions
- WQGAC
- WQGAC-Schema
- Comparing consistencies
- Summary

WQGAC

- With GAC each value has a supporting tuple
- With WQGAC each value has a supporting tuple for each combination of values of inner universals
 ∃a∀b∃c:a⇔b∧c a b c

Supporting a=0:

WQGAC

- With GAC each value has a supporting tuple
- With WQGAC each value has a supporting tuple for each combination of values of inner universals
 ∃a∀b∃c:a⇔b∧c a b c

Supporting a=1:

WQGAC-Schema

- Based on GAC-Schema (Bessière and Régin)
- Time: O(n²dⁿ)
- Space: O(n²d^{u+1})
- Generalization of GAC-Schema
- Multidirectional

- Finite domain QCSP Connect-4
- Consistency notions
- WQGAC
- WQGAC-Schema
- Comparing consistencies
- Summary

Comparing consistencies

Consistency QAC on the hidden variable encoding

GAC

WQGAC

B,C & M inconsistency **Inference** none

none

1,3,5..7 pruned from grey1

1,3,5..7 pruned from *grey1* 1,3,6,7 pruned from *grey2* 1,3,7 pruned from *grey3* 0.046s, checked 15.2% of all 7⁵ tuples.

Resources used

Comparing consistencies

- WQGAC weak
 - For each value, set of supporting tuples
 - May not be part of one strategy
 - ∀*a*∃*b*∀*c*∈{0,1}

Value of b is different

a=0 supported by:

Summary

- Reasonably powerful algorithm for local reasoning in finite domain QCSP
- Future work
 - Tuple/tree mismatch
 - Different support structure

Thank you

Any questions?