
Extending Simple Tabular
Reduction with Short Supports

Christopher Jefferson, Peter
Nightingale

University of St Andrews

Constraints, GAC

• Suppose we have finite-domain variables x1,
x2, x3 with domains x1:{1,..,11}, x2, x3:{1,..,10}

• Constraint: (x1 = x2 OR x1 = x3)

• Generalised Arc-Consistency (GAC) requires
that each value of each variable is contained
in a satisfying tuple of the constraint

• To establish GAC: x1 ≠ 11

Support

• Suppose we have finite-domain variables x1,
x2, x3 with domains x1:{1,..,11}, x2, x3:{1,..,10}

• Constraint: (x1 = x2 OR x1 = x3)

• Traditional definition of GAC support: a
satisfying tuple of the constraint

• Value x1→11 has no support, and is deleted

• Value x1→1 is not deleted because it has
support 1, 1, 3 (for example).

Short Support

• The key idea used in this paper:

• Suppose a constraint can be satisfied by an
assignment to a small subset of its variables

– This assignment is a short support

• Exploit these short supports to maintain GAC
more efficiently

Short Support – Example

• Consider the running example again

• Domains x1:{1,..,11}, x2, x3:{1,..,10}

• Constraint: (x1 = x2 OR x1 = x3)

• Short support: (x1 → 1, x2 → 1)

• Any extension of this short support to cover x3
is a full-length support

– Assuming we always use values in the domain

• Supports x1 → 1, x2 → 1, and all values of x3

Short Support – Explicit and Implicit

• Consider the running example again

• Domains x1:{1,..,11}, x2, x3:{1,..,10}

• Constraint: (x1 = x2 OR x1 = x3)

• Short support: (x1 → 1, x2 → 1)

– Explicitly supports x1 → 1, x2 → 1

– Implicitly supports all values of x3

Short Support

• Previously applied in GAC-Schema-like
algorithms:
– SHORTGAC (IJCAI 2011), then refined to HAGGISGAC

(JAIR 2013)

– HAGGISGAC is orders of magnitude faster than
GAC-Schema when using short supports

– HAGGISGAC a little faster than GAC-Schema with
full-length supports (for an unrelated reason)

• Bigger goal: match the speed of hand-written
propagators

SHORTSTR2

• A new GAC algorithm extending STR2+ with short
supports
– Short supports are a perfect fit for STR2(+)

– STR2(+) already optimises fully supported variables
• The variable is removed from loops

• For each short support:
– Variables with implicit support are marked as fully

supported

– Variable-value pairs with explicit support are treated
exactly as in STR2+

• Given full-length supports, virtually identical to STR2+

Simple Tabular Reduction

• STR maintains a sparse set of the satisfying
tuples

 Tup Index <x1, x2, x3>

1 <1,2,3>

2 <1,3,1>

3 <2,1,3>

4 <2,3,2>

5 <3,1,2>

6 <3,2,1>

Set Index Tup Index

1 3

2 4

3 1

4 5

5 6

6 2

LIMIT

• Suppose x3, 1 is pruned

• Tuples 3,4,1,5 are in the set and 6,2 are out

Simple Tabular Reduction
Tup Index <x1, x2, x3>

1 <1,2,3>

2 <1,3,1>

3 <2,1,3>

4 <2,3,2>

5 <3,1,2>

6 <3,2,1>

Set Index Tup Index

1 3

2 4

3 1

4 5

5 6

6 2

LIMIT

• Now suppose x2, 2 is pruned

• STR algorithms iterate through tuples 3, 4, ...

Simple Tabular Reduction
Tup Index <x1, x2, x3>

1 <1,2,3>

2 <1,3,1>

3 <2,1,3>

4 <2,3,2>

5 <3,1,2>

6 <3,2,1>

Set Index Tup Index

1 3

2 4

3 5

4 1

5 6

6 2

LIMIT

• Now suppose x2, 2 is pruned

• STR algorithms iterate through tuples 3, 4, 1, ..

• Set now contains 3, 4, 5

Simple Tabular Reduction

• STR(2)(+) worst case complexity is terrible –
O(n2dn+1)

• Why are STR algorithms fast for some
constraints?

• After just a few calls, set has been reduced
enormously

• An extremely eager incremental propagator

Tuple Compression

• Take a set of full-length tuples and create a
(non-unique) set of short supports

– NP-hard to find a minimal set

• We propose a simple, fast greedy algorithm

Tuple Compression

1, 2, *, 1
1, 2, *, 2
1, 2, *, 3

• Using * to represent any-value

• Arity 4 constraint, each domain {1,2,3}

• Basic step is to take d (short) tuples and
compress to one short tuple:

• Apply this rule to exhaustion

1, 2, *, *

ShortSTR2 vs STR2+

• ShortSTR2 with tuple compression as a drop-
in replacement for STR2+

• Whole solver speed-up– ranges from 0.99 to
1.75

Problem class Compression ratio Speed-up ShortSTR2 compared to STR2+

Half 1.87 1.75

modifiedRenault 5.35 0.99

Rand-8-20-5 1.01 1.05

bddSmall 1.90 1.13

Renault 6.31 1.06

bddLarge 1.80 1.21

cril 1.19 1.11

Short Supports vs Full Length

• On Conway’s Life and similar

• Problems are almost entirely one table
constraint repeated

• Benefit of short supports varies

Problem ShortSTR2 node rate
Greedy compression

ShortSTR2 node rate
Full length supports

Life 4,970 3,960

Brian’s Brain 532 75

Immigration 4,930 3,590

QuadLife 483 >4GiB Memory

ShortSTR2 vs HAGGISGAC

p a ShortSTR2 HAGGISGAC

30 5 92,500 44,100

30 10 142,000 70,700

30 20 111,000 67,000

30 50 87,200 55,000

30 100 67,600 45,200

30 200 53,700 46,100

• Pigeonhole problem generalised to vectors of
variables

• Vector not-equal constraints
• p is number of ‘pigeons’, a is number of variables

per vector

ShortSTR2 vs HAGGISGAC

p a ShortSTR2 HAGGISGAC

5 100 592,000 1,790,000

10 100 250,000 653,600

20 100 119,000 158,800

30 100 67,600 45,200

40 100 43,700 18,000

50 100 31,900 10,900

• Pigeonhole problem generalised to vectors of variables
• Vector not-equal constraints
• p is number of ‘pigeons’, a is number of variables per

vector
• Neither dominates the other - complementary

ShortSTR2 vs HAGGISGAC

• HAGGISGAC is orders-of-magnitude faster than
Constructive Or and GAC-Schema (JAIR 2013)

– When constraint is amenable to short supports

– Element, Lex ordering, Square packing

• HaggisGAC approaches specialised
propagators – particularly lex ordering

ShortSTR2 vs specialised propagator

• We compared to the Watched Element
propagator on quasigroup problems

• 2x to 4x slower than hand-written propagator

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

7 8 9 10

WatchElement-
1D

ShortSTR2-2D

ShortSTR2-1D

Conclusions

• ShortSTR2 is a new GAC algorithm that
extends STR2+ using short supports
– Could be used as a drop-in replacement for

STR2(+)

• Complementary to HAGGISGAC in performance
– Much simpler than HAGGISGAC

• Generic propagators as fast as specific hand-
written ones?
– Getting closer

