
Selecting SAT Encodings for Pseudo-Boolean
and Linear Constraints: Preliminary Results

Felix Ulrich-Oltean1[0000−0001−5162−5826],
Peter Nightingale1[0000−0002−5052−8634], and
James Alfred Walker1[0000−0003−2174−7173]

Department of Computer Science, University of York, York, United Kingdom
{fvuo500,peter.nightingale,james.walker}@york.ac.uk

Abstract. Many constraint satisfaction and optimisation problems can
be solved effectively by encoding them as instances of the Boolean Satis-
fiability problem (SAT). However, even the simplest types of constraints
have many encodings in the literature with widely varying performance,
and the problem of selecting suitable encodings for a given problem in-
stance is not trivial. We explore the problem of selecting encodings for
pseudo-Boolean and linear constraints using a supervised machine learn-
ing approach. We show that it is possible to select encodings effectively
using a standard set of features for constraint problems, however we ob-
tain better performance with a new set of features specifically designed
for the pseudo-Boolean and linear integer constraints. We briefly discuss
the relative importance of instance features to the task of selecting the
best encodings.

Keywords: SAT encodings · machine learning · global constraints

1 Introduction

Many constraint satisfaction and optimisation problems can be solved effectively
by encoding them as instances of the Boolean Satisfiability problem (SAT). Mod-
ern SAT solvers are remarkably effective even with large formulas, and have
proven to be competitive with (and often faster than) CP solvers (including
those with conflict learning). However, even the simplest types of constraints
have many encodings in the literature with widely varying performance, and the
problem of predicting suitable encodings is not trivial.

We explore the problem of selecting encodings for constraints of the form∑n
i=1 qixi � k where � ∈ {<,≤,=, 6=,≥, >}, q1 . . . qn are integer coefficients, k is

an integer constant and xi are decision variables. We separate these constraints
into two classes: pseudo-Boolean (PB) when all xi are Boolean variables or inte-
ger variables with two values; and linear integer when there exists an xi variable
with more than two possible values. We treat these two classes separately, se-
lecting one encoding for each class when encoding an instance.

We select from a set of state-of-the-art encodings, including all four encodings
of Bofill et al [8,9] which are extensions of the Generalized Totalizer [15], Binary



2 F. Ulrich-Oltean et al.

Decision Diagram [2], Global Polynomial Watchdog [6], and Sequential Weight
Counter [13]. All four of these encodings are for pseudo-Boolean constraints with
at-most-one (AMO) sets of terms (where at most one of the corresponding xi

variables are true). The AMO sets come from an integer variable or are detected
automatically [5] as described in Section 2.1.

The context for this work is Savile Row [19], a constraint modelling tool
that takes the modelling language Essence Prime and can produce output for
various types of solver, including CP, SAT, and recently SMT [12]. When en-
coding to SAT, for each constraint type in the language, Savile Row either
decomposes it (e.g. allDifferent) or applies the chosen SAT encoding (or the
default if no choice is made).

We use a supervised machine learning approach, trained with a corpus of
50 problem classes with 622 instances. We show that it is possible to select
encodings effectively, approaching the performance of the virtual best encoding
(i.e. the best possible choice for each instance), using an existing set of features
for constraint problem instances. Also we obtain better performance by adding
a new set of features specifically designed for the pseudo-Boolean and linear
integer constraints.

1.1 Preliminaries

A constraint satisfaction problem (CSP) is defined as a set of variables X, a
function that maps each variable to its domain, D : X → 2Z where each domain
is a finite set, and a set of constraints C. A constraint c ∈ C is a relation over
a subset of the variables X. The scope of a constraint c, named scope(c), is the
sequence of variables that c constrains. A constraint optimisation problem (COP)
also minimises or maximises the value of one variable. A solution is an assignment
to all variables that satisfies all constraints c ∈ C. Boolean Satisfiability (SAT)
is a subset of CSP with only Boolean variables and only constraints (clauses) of
the form (l1 ∨ · · · ∨ lk) where each li is a literal xj or ¬xj . A SAT encoding of a
CSP variable x is a set of SAT variables and clauses with exactly one solution
for each value in D(x). A SAT encoding of a constraint c is a set of clauses
and additional Boolean variables A, where the clauses contain only literals of
A and of the encodings of variables in scope(c). An encoding of c has at least
one solution corresponding to each solution of c. Generalised arc consistency
(GAC) for a constraint c means that for a given partial assignment, all values
are removed from the domain of each variable in scope(c) if they cannot appear
in any extended assignment satisfying c. A SAT encoding enforces GAC if this
domain reduction in the source CSP is reflected in the encoding’s SAT variables
and clauses.

2 Learning to Choose SAT Encodings

First we describe the palette of encodings for linear integer and pseudo-Boolean
constraints, then our approach to selecting encodings using problem instance
features and machine learning.



Selecting SAT Encodings for PB and Linear Constraints 3

2.1 SAT Encodings

Recall that we are considering constraints of the form
∑n

i=1 qixi � k where
� ∈ {<,≤,=, 6=,≥, >}, q1 . . . qn are integer coefficients, k is an integer constant
and xi are decision variables. We use 5 encodings and each can be applied to
either pseudo-Boolean or linear integer constraints, giving 25 configurations in
total. The first 4 are encodings of PB(AMO) constraints [8,9], which are pseudo-
Boolean constraints with non-intersecting at-most-one (AMO) groups of terms
(where at most one of the corresponding xi variables are true in any solution).
Encodings of PB(AMO) constraints can be substantially smaller and more effi-
cient to solve than the corresponding PB constraints [8,9,5]. For the 4 PB(AMO)
encodings the constraints must be placed in a normal form where all coefficients
are positive, only ≤ is allowed, and each xi must be Boolean (i.e. must have a
corresponding SAT variable). All PB(AMO) encodings require a direct encoding
of integer CSP variables, and when an integer variable (with d values) appears in
a linear integer constraint it is replaced with an AMO group of d−1 terms repre-
senting each value except the smallest (which is cancelled out). Full details of the
conversion of integer terms and normalisation are given elsewhere [5]. Also, au-
tomatic AMO detection [5] (which applies constraint propagation to find AMO
groups among the Boolean terms of the original constraint) is enabled in our ex-
periments. Automatic AMO detection has been shown to substantially improve
solving time in some cases [5].

The Multi-valued Decision Diagram (MDD) encoding [8] (a generalisation of
the BDD encoding for PB constraints [2]) uses an MDD to encode the PB(AMO)
constraint. Each layer of the MDD corresponds to one AMO group. BDDs and
MDDs are a popular choice for encoding sums to SAT since they can compress
equivalent states in each layer. The Generalized Global Polynomial Watchdog
(GGPW ) encoding [9] (generalising the GPW [6]) is based on bit arithmetic and
is polynomial in size, however unit propagation on GGPW does not achieve GAC
on the original constraint. The Generalized Generalized Totalizer (GGT ) [9] en-
codes the PB(AMO) constraint with a binary tree, where the leaves represent
the AMO groups and each internal node represents the sum of all leaves be-
neath it. GGT is able to compress equivalent states at its internal nodes. It
generalises the Generalized Totalizer [15]. The Generalized Sequential Weight
Counter (GSWC ) [9] (based on the Sequential Weight Counter [13]) encodes the
sum of each prefix sub-sequence of the AMO groups. Unit propagation on the
MDD, GGT, and GSWC encodings enforces GAC on the original constraint c
when c is a PB [9] but not when c contains integer terms or is an equality or
disequality. GGPW does not have this property.

Finally, the Tree encoding is related to GGT however it is not a PB(AMO)
encoding. Given a constraint c, each term is shifted such that its smallest value
becomes 0, and k is adjusted accordingly. A binary tree is constructed with each
term (integer or Boolean) attached to a leaf. Internal nodes represent the sum of
the leaves beneath them. The order encoding is required for integer leaf nodes1

1 Savile Row generates the direct or order encoding for variables as required [18].



4 F. Ulrich-Oltean et al.

and is also used for internal nodes. Each internal node is connected to its two
children using the order encoding of linear constraints [22]. Tree can directly
encode constraints with integer terms, equality and disequality, but does not
benefit from automatic AMO detection. Unit propagation on Tree enforces GAC
on the original constraint c when c is not an equality or disequality.

The set of 5 encodings is diverse but not exhaustive. Ab́ıo et al proposed
a BDD-based encoding for linear constraints [3], however it has been directly
related to the MDD encoding [10]. Log encodings such as the one used by Pi-
catSAT [23] may be more effective in some cases. For our experiments we use
an extended version of Savile Row 1.9.0 [18]. All constraints other than lin-
ear integer and PBs use the default encoding as described in the Savile Row
manual.

2.2 Instance Features

We use the 95 features extracted by the fzn2feat tool produced by Amadini
et al. [4] as a starting point. We use fzn2feat directly in our experiment, but
we have also re-implemented the set of 95 features as closely as possible within
Savile Row, applied to the model directly before encoding to SAT. In addition,
we propose 27 new features that are specific to linear integer or PB constraints
(and we generate these for both classes of constraint, giving 54 new features in
total). The new features are:

– The number of (linear or PB) constraints (1 feature)
– For the number of terms in each constraint: min, max, mean, median, inter-

quartile range, non-parametric skew, overall sum (7)
– The overall sum of all the coefficients (1)
– For the minimum coefficient in each constraint: min, mean (2)
– For the maximum coefficient in each constraint: max, mean (2)
– For the median coefficients: median, non-parametric skew, Shannon’s en-

tropy (3)
– For the sums of coefficients: non-parametric skew, inter-quartile range (2)
– For the inter-quartile range of coefficients: median, non-parametric skew (2)

– For the coefficients’ quartile skewness (Q3−Q2)−(Q2−Q1)
Q3−Q1

: mean, min, max

(3)
– For the number of distinct coefficient values: mean, max (2)
– For the ratio of distinct coefficient values to number of coefficients: mean,

max (2)

2.3 Problem Corpus

We used all problems from a recent paper with a corpus of 65 constraint models
and a total of 757 instances [12]. This collection has a very skewed distribution
of instances per problem class, ranging from just 1 to 100. We addressed this by
adding some problem instances to existing classes and by limiting the number
of instances per class to 50. We also added two problems (Hamiltonian Cycle



Selecting SAT Encodings for PB and Linear Constraints 5

and Balanced Academic Curriculum) from recent XCSP3 competitions [1]. We
dropped instances from the corpus if they contained no linear integer or PB
constraints.

2.4 Training and Prediction

We have evaluated several classifier models from the scikit-learn library [20]
and have found that RandomForestClassifier performs best for our purposes.
The implementation is based on Breiman’s random forests [11], but uses an
average of predicted probabilities from its decision trees rather than a simple
vote. We use randomised search with 5-fold cross-validation to set the hyper-
parameters (criterion, number of estimators, maximum tree depth and maximum
features).

If a classifier makes a poor prediction, the consequences vary. It is possible
that the chosen encodings lead to a running time which is very close to that
of the ideal choice; the opposite is also true and mis-classification can be very
expensive. To address this issue, we follow a similar approach to the pairwise
classification used in AutoFolio [17]: we train a random forest model for each
pair of encoding configurations. When making predictions, each model chooses
between its two candidates. The configuration with most votes is chosen; if two
or more configurations have equal votes, we select the one which produced the
shortest total running time over the training set. This approach effectively creates
a predicted ranking of encodings from the features and leads to better prediction
performance than using a single random forest classifier.

0 5 10 15 20 25
Portfolio size

1.0

1.5

2.0

2.5

3.0

To
ta

l P
AR

2 
tim

e 
/ v

irt
ua

l b
es

t

GGPW_MDD (3.11)

GGPW_GGPW, Tree_Tree (1.72)

GGPW_GGT, Tree_Tree, GGPW_GGPW (1.41)

GGPW_GGT, Tree_Tree, GGPW_GGPW, GGPW_MDD (1.24)

GGPW_GGT, Tree_Tree, GGPW_GGPW, GGPW_MDD, GGPW_GSWC (1.15)

Fig. 1. The virtual best PAR2 run-time on our corpus for all portfolio sizes as a multiple
of the overall virtual best; the resulting portfolios (of li pb configurations) are shown
for sizes 1 to 5.

To facilitate this pairwise training and prediction approach, we reduce our
portfolio of encoding choices to 5, thus needing to train 10 models (rather than
300 if we had used all 25 choices). We seek to retain the performance complemen-
tarity described in [16] from a much reduced portfolio size. We build the port-
folio using a greedy approach, beginning with a single encoding configuration in



6 F. Ulrich-Oltean et al.

the portfolio and then successively adding in whichever remaining configuration
would lower the virtual best PAR2 time (PAR2 is defined in Section 3.2) by the
biggest margin. We do this until we have our portfolio of 5. We repeat the pro-
cess using each of the 25 configurations as the starting element and finally select
the best-performing portfolio from these 25 portfolios. Figure 1 shows that this
portfolio reduction has a small impact on the virtual best performance across
our corpus – the virtual best time for a portfolio of size 5 is within 15% of the
same measure across all 25 configurations.

3 Empirical Investigation

3.1 Solving Problem Instances and Extracting Features

We ran Savile Row on each instance in the corpus with each of the 25 encod-
ing configurations. The CNF clause limit was set to 5 million and the Savile
Row time-out to 1 hour. We switched on automatic detection of At-Most-One
constraints [5]. We used the Kissat solver 1.0.3 [7]. Kissat was the winner of the
main track of the SAT Competition 2020. Default settings were used for Kissat,
and it was run with a separate time limit of 1 hour. The experiment was run
on the Viking research cluster with Intel Xeon 6138 20-core 2.0 GHz processors;
we set the memory limit for each job to 8 GB. We took the median of 5 runs
(with 5 distinct random seeds) for each configuration to average out stochastic
behaviour of the solver. To extract the features we ran each problem instance
once with the Savile Row feature extractor and once to generate standard
FlatZinc (using the -flatzinc flag) followed by fzn2feat [4].

3.2 Labelled Datasets and the Training/Test Split

The first step is to process our total (Savile Row + Kissat) runtimes and filter
the corpus. We mark a result as timed out if the total runtime exceeds 1 hour.
We use PAR2 times, i.e. assigning 2 × time limit to any result which takes
longer than our time-out limit. We exclude instances for which all configurations
time out, as well as instances which end up requiring no SAT solving; Savile
Row can sometimes solve a problem in pre-processing through its automatic
re-formulation and domain filtering. At this point, 622 instances of 50 problem
classes remain in the corpus; the number of instances for each problem class is
shown in Figure 2.

We build four datasets of features: f2f for the fzn2feat features, f2fsr for the
equivalent features extracted directly from Savile Row’s internal model prior
to SAT encoding, lipb for our new features of linear integer and pseudo-Boolean
constraints alone, and combi for f2fsr and lipb combined. Each row in each of
these datasets represents one instance, and includes the names of the model and
parameter files as well as the instance features. To enable training of one of the
pairwise models (as described in Section 2.4), we label each row with the better
configuration (of the two under consideration).



Selecting SAT Encodings for PB and Linear Constraints 7

ki
lle

rS
ud

ok
u2

ca
rS

eq
ue

nc
in

g
kn

ig
ht

s
la

ng
fo

rd op
d

kn
ap

sa
ck

so
ne

t2
bi

bd
-im

pl
ie

d
ef

pa
im

m
ig

ra
tio

n
ha

nd
ba

ll7
n_

qu
ee

ns
m

rc
ps

p-
pb

bi
bd

br
ia

ns
Br

ai
n

n_
qu

ee
ns

2
lif

e
m

ol
na

rs
bp

m
p

bl
ac

kH
ol

e
se

m
ig

ro
up

pe
gS

ol
ita

ire
Ta

bl
e

pe
gS

ol
ita

ire
St

at
e

pe
gS

ol
ita

ire
Ac

tio
n

pe
ac

ea
bl

eA
rm

yO
fQ

ue
en

s1
m

ag
icS

qu
ar

e
go

lo
m

b
qu

as
iG

ro
up

5I
de

m
po

te
nt

pe
ac

ef
ul

Ar
m

yQ
ue

en
s3

qu
as

iG
ro

up
6

qu
as

iG
ro

up
7

qu
as

iG
ro

up
5N

on
Id

em
po

te
nt

qu
as

iG
ro

up
4N

on
Id

em
po

te
nt

qu
as

iG
ro

up
4I

de
m

po
te

nt
ba

cp
qu

as
iG

ro
up

3I
de

m
po

te
nt

wa
te

rB
uc

ke
t

qu
as

iG
ro

up
3N

on
Id

em
po

te
nt

di
sc

re
te

To
m

og
ra

ph
y

so
lit

ai
re

_b
at

tle
sh

ip
tic

kT
ac

kT
oe

sp
or

ts
Sc

he
du

lin
g

so
ne

t
gr

oc
er

y
so

ko
ba

n
fa

rm
_p

uz
zle

1
nu

rs
e

pl
ot

tin
g

di
et

co
nt

riv
ed

Problem class

0
5

10
15
20
25
30
35
40
45
50

Nu
m

be
r o

f i
ns

ta
nc

es

Fig. 2. The number of instances for the different problem classes (models) in the corpus
after dropping instances that were fully solved by Savile Row or timed out for all
encoding configurations.

We run the split, train, predict process 10 times on each of the four datasets,
using seeds {1 . . . 10} to co-ordinate the splits so that we compare the prediction
power of the different feature sets using the same training and test sets. For each
split, train, predict process, we split each dataset into an 80% training set and
a 20% test set using simple uniform random sampling.

3.3 Evaluating the Performance of Predicted Encodings

To evaluate the impact of using the learnt encoding choices, we calculate two
benchmarks commonly used in algorithm selection [16]: the Virtual Best Con-
figuration (VBC) time is the total time taken to solve the instances in the 10
test sets if we always made the best choice from our portfolio of configurations;
the Single Best Configuration (SBC) time is how long it would take using the
one configuration which performs fastest on our entire corpus – in our case this
is the 〈li → GGPW , pb → MDD〉 configuration. In addition we refer to: the
time taken using Savile Row’s default (Def) configuration, which is the Tree
encoding for both linear integer and pseudo-Booleans, and finally the Virtual
Worst Configuration (VWC) to indicate the overall variation in performance
of the encodings in the portfolio. We can then report the solving time for the
predicted encodings, for each of the four feature sets. We also record the time
taken to extract the features; the predicted time with this added time cost is



8 F. Ulrich-Oltean et al.

Table 1. Total PAR2 times over the 10 test sets as a multiple of the virtual best
configuration time. We show the times for the virtual best (VBC), virtual worst (VWC),
single best (SBC), and default (Def) configurations, followed by the timings using
predictions made on our four feature sets, without and with feature extraction (FE)
time. The best time (including FE) is shown in bold.

Benchmarks Predicted Predicted + FE Time

VBC VWC SBC Def f2f f2fsr lipb combi f2f f2fsr lipb combi

1.00 6.66 2.72 3.78 1.76 1.89 1.67 1.60 1.80 1.91 1.69 1.62

reported using the suffix +FE. In all cases we calculate the total time for each
one of the 10 test sets, then sum the 10 test sets to obtain the overall total time.

3.4 Results and Discussion

We found that the machine learning predictors work well, and that their perfor-
mance approached that of the virtual best configuration. Table 1 shows summary
statistics for each feature set. The mean PAR2 time to solve the test sets is re-
ported, scaled so that the virtual best configuration (VBC) would be 1 (e.g. a
value of 2 in Table 1 means double the time of the VBC). The generic CSP fea-
ture sets f2f and f2fsr improve on the SBC, but the new features are significantly
better and the best result was obtained by combi, combining f2fsr and lipb. In a
recent survey, Kerschke et al. state that “State-of-the-art per-instance algorithm
selectors for combinatorial problems have demonstrated to close between 25%
and 96% of the VBS-SBS gap” [16]. In these terms, f2f has closed 53% of the
VBC-SBC gap, and combi has closed 64% of the gap.

Figure 3 shows the performance profile of each predictor, the VBC, the de-
fault setting of Savile Row (Def), and the SBC (on the 10 test sets). Instances
are sorted by VBC solving time to place the most difficult instances first on the
x -axis. The default configuration of Tree Tree is clearly performing poorly for
many of the most difficult instances, despite being the configuration that is most
frequently the best. The SBC (GGPW MDD) performs much better on the most
difficult instances. It may be a factor that Tree is the only encoding that is not
able to take advantage of automatic AMO detection (which reduces the size of
encodings without changing their propagation properties and is known to help
substantially with difficult instances of some classes [5]).

Figure 4 shows (for each predictor and the VBC) the frequency of select-
ing each of the 5 configurations in the portfolio. It is notable that all predic-
tors choose Tree Tree more frequently than the VBC does. They underpredict
GGPW GGT and GGPW GSWC. Correcting these imbalances in some way
could lead to better performance.



Selecting SAT Encodings for PB and Linear Constraints 9

0 200 400 600 800 1000 1200
Instances Solved

0

25

50

75

100

125

150

175

200

Cu
m

ul
at

iv
e 

PA
R2

 T
im

e 
(h

rs
)

FeatureSet
Def
SBC
VBC
f2f+FE
f2fsr+FE
lipb+FE
combi+FE

Fig. 3. Cumulative PAR2 time over the 10 test sets, with instances sorted (by VBC
solving time) to place the most difficult instances first on the x -axis. We show the times
for the virtual best (VBC), single best (SBC) and default (Def) configurations, and the
timings using predictions made on our four feature sets with feature extraction (FE)
time.

f2f f2fsr lipb combi VBC
Feature Set

0

200

400

600

800

1000

1200

Fr
eq

ue
nc

y

config
Tree_Tree
GGPW_GGPW
GGPW_MDD
GGPW_GGT
GGPW_GSWC

Fig. 4. Frequency of each configuration (li pb) predicted for the 10 test sets when using
each feature set. We also show the virtual best configuration for comparison.



10 F. Ulrich-Oltean et al.

3.5 Feature Importance

The random forest classifier provided by scikit-learn [20] can report the rel-
ative importance of the features in the training phase. We extract the Gini
(impurity-based) feature importance from every pairwise training phase (5 en-
coding configurations lead to 10 pairs) across all 10 runs. The most important
features are shown in Figure 5. There is huge variability in the relative impor-
tance of any given feature across the different train/test splits and across the
different pairwise match-ups. Nevertheless we can make some observations.

The relative overall importance of features decreases very slowly, meaning
that there are no outstanding features which discriminate far better than others.
We show only 25 features for readability, but this trend continues for the other
features too.

We suspect that the classifier is, to a large extent, recognising problem classes
rather than picking out traits of LI/PB constraints. For instance notice that in
the combi set, none of the lipb features make the top 25. The highest ranked
lipb feature (pbs x sum which gives the total number of terms in all PBs in an
instance) is in 28th place. Recall the distribution of instances across problem
classes shown in Figure 2: there are some problems with very few instances (10
have only 1 instance). This means that many problem classes will only have
instances exclusively in either the train or the test, making the classification
harder.

Considering our new lipb features we are encouraged that using these alone
was enough to outperform the classification performance of the generic instance
features (f2f and f2fsr), although, as seen previously in Figure 3, the best per-
formance was achieved by combining the LI/PB and generic features.

We note that of our new lipb features, the top few seem to make markedly
more difference than the rest – this may simply reflect that there are fewer
features in this set (54 compared to 95 or 149). Of the 5 most discriminating
features in this set 4 are related to the size of the pseudo-Boolean constraints:
pbs x sum is the total number of terms across all PBs, pbs w sum the sum of all
coefficients in PBs, pbs w avg the mean number of terms in PBs and pbs count
gives the number of PBs.

One final observation we make is that choice of SAT encoding for pseudo-
Boolean constraints appears more important, or at least harder to make, than
for linear integer constraints. When constructing our portfolio of 5 encodings
(see Figure 1), the GGPW encoding was selected for LI constraints in 4 of
the 5 configurations, whereas all 5 options were present in the PB slot. This
observation is also backed up by the higher ranking of pbs features as opposed
to sums in the lipb set.

4 Related Work

MeSAT [21] and Proteus [14] both select SAT encodings using machine learning.
MeSAT has two encodings of linear integer constraints: the order encoding [22];



Selecting SAT Encodings for PB and Linear Constraints 11

c_
ra

tio

v_
ra

tio

v_
av

g_
de

g

c_
av

g_
de

g

c_
cv

_d
om

v_
cv

_d
om

de
g

c_
en

t_
do

m

v_
en

t_
do

m

c_
av

g_
do

m
de

g

v_
en

t_
do

m
de

g

c_
lo

gp
ro

d_
do

m

v_
cv

_d
eg

v_
en

t_
de

g

c_
su

m
_d

om
de

g

c_
en

t_
de

g

c_
cv

_d
eg

c_
m

ax
_d

eg

v_
av

g_
do

m
de

g

v_
cv

_d
om

c_
m

ax
_d

om

v_
av

g_
do

m

c_
cv

_d
om

de
g

v_
lo

gp
ro

d_
do

m

c_
su

m
_a

ri

c_
av

g_
do

m

0.000

0.025

0.050

0.075

0.100

Im
po

rta
nc

e
Feature set: f2f

v_
av

g_
de

g

v_
cv

_d
om

de
g

c_
en

t_
de

g

v_
av

g_
do

m
de

g

c_
en

t_
do

m

c_
av

g_
do

m
de

g

v_
nu

m
_c

on
st

s

v_
en

t_
do

m
de

g

v_
ra

tio

v_
en

t_
do

m

v_
en

t_
de

g

c_
av

g_
do

m

c_
ra

tio

v_
av

g_
do

m

v_
ra

tio
_b

ou
nd

ed

v_
cv

_d
om

c_
av

g_
de

g

c_
en

t_
do

m
de

g

c_
su

m
_d

om

c_
m

ax
_d

om

v_
su

m
_d

om
de

g

c_
cv

_d
om

de
g

c_
cv

_d
om

v_
cv

_d
eg

c_
cv

_d
eg

0.00

0.02

0.04

0.06

0.08

Im
po

rta
nc

e

Feature set: f2fsr

pb
s_

x_
su

m

pb
s_

w_
su

m

pb
s_

x_
av

g

pb
s_

x_
sk

ew

pb
s_

co
un

t

pb
s_

w_
to

t_
sk

ew

pb
s_

w_
se

pr
_a

vg

pb
s_

x_
iq

r

pb
s_

w_
to

t_
iq

r

pb
s_

x_
m

ed

su
m

s_
w_

se
p_

av
g

su
m

s_
x_

av
g

pb
s_

x_
m

ax

su
m

s_
x_

m
in

su
m

s_
w_

se
pr

_a
vg

pb
s_

x_
m

in

su
m

s_
x_

su
m

su
m

s_
x_

m
ed

su
m

s_
w_

m
ax

_a
vg

su
m

s_
x_

m
ax

pb
s_

w_
se

pr
_m

ax

su
m

s_
w_

su
m

su
m

s_
w_

se
p_

m
ax

su
m

s_
w_

sk
ew

_a
vg

su
m

s_
x_

sk
ew

0.000

0.025

0.050

0.075

0.100

Im
po

rta
nc

e

Feature set: lipb

v_
av

g_
de

g

c_
av

g_
do

m
de

g

c_
en

t_
de

g

v_
cv

_d
om

de
g

v_
nu

m
_c

on
st

s

v_
av

g_
do

m
de

g

v_
ra

tio

c_
ra

tio

c_
en

t_
do

m

v_
en

t_
de

g

v_
en

t_
do

m
de

g

c_
av

g_
do

m

v_
ra

tio
_b

ou
nd

ed

v_
en

t_
do

m

v_
av

g_
do

m

v_
cv

_d
eg

v_
su

m
_d

om
de

g

c_
su

m
_d

om

v_
cv

_d
om

c_
av

g_
de

g

c_
en

t_
do

m
de

g

c_
m

ax
_d

om

v_
su

m
_d

om

c_
cv

_d
om

c_
lo

gp
ro

d_
do

m

0.00

0.02

0.04

0.06

Im
po

rta
nc

e

Feature set: combi

Fig. 5. Gini importance of features for classification. Each box plot summarises 100
training epochs arising from 10 pairwise settings and 10 trials. The mean feature im-
portance is shown by a small circle. Only the top 25 features are shown here (by median
importance). The lipb features were introduced in this paper in Section 2.2. The f2f
features from fzn2feat are described at https://github.com/CP-Unibo/mzn2feat/.

https://github.com/CP-Unibo/mzn2feat/


12 F. Ulrich-Oltean et al.

and an encoding based on enumeration of allowed tuples of values (which uses
a direct encoding of the CSP variables). It is not clear whether high-arity sums
are broken up before encoding. MeSAT selects from three configurations using a
k-nearest neighbour classifier using 70 CSP instance features. They report high
accuracy (within 4% of the virtual best configuration), however the single best
configuration is only 18% slower than the virtual best. Proteus makes a sequence
of decisions: whether to use CSP or SAT; the choice of SAT encoding; and the
SAT solver to use. The portfolio contains three SAT encodings: direct, support,
and a hybrid direct-order, however the encoding of linear integer constraints is
not specified [14]. Results show that the choice of encoding (combined with the
choice of SAT solver) is important and that machine learning methods can be
effective in their context.

5 Conclusions and Future Work

We have shown that it is possible to close much of the performance gap between
the single best and virtual best encodings by using machine learning to select
encoding configurations based on instance features. General instance features
such as those provided by fzn2feat [4] perform well; however the introduction
of features specific to linear integer and pseudo-Boolean constraints has enabled
us to improve the quality of predictions. We observe that there is more scope
for performance gains in selecting encodings for pseudo-Boolean than for linear
integer constraints.

We hope to build on these promising results by considering other constraint
types for which multiple SAT encodings exist. It may also be beneficial to expand
the problem corpus to have a more even distribution of problem instances per
class and to broaden the range of constraint models represented.

Acknowledgements

Felix Ulrich-Oltean is supported by grant EP/R513386/1 from the UK Engi-
neering and Physical Sciences Research Council. We are very grateful to Nguyen
Dang for helpful conversations about portfolio approaches. The experiments were
undertaken on the Viking Cluster, which is a high performance compute facility
provided by the University of York. We are grateful for computational support
from the University of York High Performance Computing service, Viking and
the Research Computing team.

References

1. 2019 XCSP3 Competition (2019), http://www.cril.univ-artois.fr/XCSP19/
2. Ab́ıo, I., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E., Mayer-

Eichberger, V.: A New Look at BDDs for Pseudo-Boolean Constraints.
Journal of Artificial Intelligence Research 45, 443–480 (Nov 2012).
https://doi.org/10.1613/jair.3653

http://www.cril.univ-artois.fr/XCSP19/
https://doi.org/10.1613/jair.3653


Selecting SAT Encodings for PB and Linear Constraints 13

3. Ab́ıo, I., Mayer-Eichberger, V., Stuckey, P.J.: Encoding linear constraints with im-
plication chains to CNF. In: International Conference on Principles and Practice of
Constraint Programming. pp. 3–11. Springer (2015). https://doi.org/10.1007/978-
3-319-23219-5 1

4. Amadini, R., Gabbrielli, M., Mauro, J.: An enhanced features extractor for a port-
folio of constraint solvers. In: Proceedings of the 29th Annual ACM Symposium on
Applied Computing. pp. 1357–1359. SAC ’14, Association for Computing Machin-
ery, New York, NY, USA (Mar 2014). https://doi.org/10.1145/2554850.2555114

5. Ansótegui, C., Bofill, M., Coll, J., Dang, N., Esteban, J.L., Miguel, I., Nightingale,
P., Salamon, A.Z., Suy, J., Villaret, M.: Automatic detection of at-most-one and
exactly-one relations for improved SAT encodings of pseudo-boolean constraints.
In: International Conference on Principles and Practice of Constraint Program-
ming. pp. 20–36. Springer (2019). https://doi.org/10.1007/978-3-030-30048-7

6. Bailleux, O., Boufkhad, Y., Roussel, O.: New Encodings of Pseudo-Boolean Con-
straints into CNF. In: Kullmann, O. (ed.) Theory and Applications of Satisfiability
Testing - SAT 2009. pp. 181–194. Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2 19

7. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Para-
cooba, Plingeling and Treengeling entering the SAT Competition 2020.
In: Balyo, T., Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda,
M. (eds.) Proc. of SAT Competition 2020 – Solver and Benchmark De-
scriptions. Department of Computer Science Report Series b, vol. B-2020-
1, pp. 51–53. University of Helsinki (2020), http://fmv.jku.at/papers/

BiereFazekasFleuryHeisinger-SAT-Competition-2020-solvers.pdf

8. Bofill, M., Coll, J., Suy, J., Villaret, M.: Compact MDDs for Pseudo-Boolean
Constraints with At-Most-One Relations in Resource-Constrained Schedul-
ing Problems. In: Proceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence. pp. 555–562. International Joint Confer-
ences on Artificial Intelligence Organization, Melbourne, Australia (Aug 2017).
https://doi.org/10.24963/ijcai.2017/78

9. Bofill, M., Coll, J., Suy, J., Villaret, M.: SAT encodings of pseudo-boolean con-
straints with at-most-one relations. In: International Conference on Integration
of Constraint Programming, Artificial Intelligence, and Operations Research. pp.
112–128. Springer (2019). https://doi.org/10.1007/978-3-030-19212-9

10. Bofill, M., Coll, J., Suy, J., Villaret, M.: An MDD-based SAT encoding for
pseudo-Boolean constraints with at-most-one relations. Artificial Intelligence Re-
view 53(7), 5157–5188 (2020). https://doi.org/10.1007/s10462-020-09817-6

11. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (Oct 2001).
https://doi.org/10.1023/A:1010933404324

12. Davidson, E., Akgün, Ö., Espasa, J., Nightingale, P.: Effective Encodings of Con-
straint Programming Models to SMT. In: Simonis, H. (ed.) Principles and Prac-
tice of Constraint Programming. pp. 143–159. Lecture Notes in Computer Science,
Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-
030-58475-7 9

13. Hölldobler, S., Manthey, N., Steinke, P.: A Compact Encoding of Pseudo-Boolean
Constraints into SAT. In: Glimm, B., Krüger, A. (eds.) KI 2012: Advances in
Artificial Intelligence. pp. 107–118. Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33347-7 10

14. Hurley, B., Kotthoff, L., Malitsky, Y., O’Sullivan, B.: Proteus: A Hierarchi-
cal Portfolio of Solvers and Transformations. In: Simonis, H. (ed.) Integration

https://doi.org/10.1007/978-3-319-23219-5_1
https://doi.org/10.1007/978-3-319-23219-5_1
https://doi.org/10.1145/2554850.2555114
https://doi.org/10.1007/978-3-030-30048-7
https://doi.org/10.1007/978-3-642-02777-2_19
http://fmv.jku.at/papers/BiereFazekasFleuryHeisinger-SAT-Competition-2020-solvers.pdf
http://fmv.jku.at/papers/BiereFazekasFleuryHeisinger-SAT-Competition-2020-solvers.pdf
https://doi.org/10.24963/ijcai.2017/78
https://doi.org/10.1007/978-3-030-19212-9
https://doi.org/10.1007/s10462-020-09817-6
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/978-3-030-58475-7_9
https://doi.org/10.1007/978-3-030-58475-7_9
https://doi.org/10.1007/978-3-642-33347-7_10


14 F. Ulrich-Oltean et al.

of AI and OR Techniques in Constraint Programming. pp. 301–317. Lecture
Notes in Computer Science, Springer International Publishing, Cham (2014).
https://doi.org/10.1007/978-3-319-07046-9

15. Joshi, S., Martins, R., Manquinho, V.: Generalized Totalizer Encoding for Pseudo-
Boolean Constraints. In: Pesant, G. (ed.) Principles and Practice of Constraint
Programming. pp. 200–209. Lecture Notes in Computer Science, Springer Interna-
tional Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-23219-5 15

16. Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated Algorithm
Selection: Survey and Perspectives. Evolutionary Computation 27(1), 3–45 (Mar
2019). https://doi.org/10.1162/evco a 00242

17. Lindauer, M., Hoos, H.H., Hutter, F., Schaub, T.: AutoFolio: An Automatically
Configured Algorithm Selector. Journal of Artificial Intelligence Research 53, 745–
778 (Aug 2015). https://doi.org/10.1613/jair.4726

18. Nightingale, P.: Savile Row 1.9.0 Manual, https://savilerow.cs.st-andrews.

ac.uk/index.html

19. Nightingale, P., Akgün, Ö., Gent, I.P., Jefferson, C., Miguel, I., Spracklen, P.:
Automatically improving constraint models in Savile Row. Artificial Intelligence
251, 35–61 (Oct 2017). https://doi.org/10.1016/j.artint.2017.07.001

20. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

21. Stojadinović, M., Marić, F.: meSAT: Multiple encodings of CSP to SAT. Con-
straints 19(4), 380–403 (Oct 2014). https://doi.org/10.1007/s10601-014-9165-7

22. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP into
SAT. Constraints 14(2), 254–272 (Jun 2009). https://doi.org/10.1007/s10601-008-
9061-0

23. Zhou, N.F., Kjellerstrand, H.: Optimizing SAT encodings for arithmetic con-
straints. In: International Conference on Principles and Practice of Constraint
Programming. pp. 671–686. Springer (2017). https://doi.org/10.1007/978-3-319-
66158-2 43

https://doi.org/10.1007/978-3-319-07046-9
https://doi.org/10.1007/978-3-319-23219-5_15
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1613/jair.4726
https://savilerow.cs.st-andrews.ac.uk/index.html
https://savilerow.cs.st-andrews.ac.uk/index.html
https://doi.org/10.1016/j.artint.2017.07.001
https://doi.org/10.1007/s10601-014-9165-7
https://doi.org/10.1007/s10601-008-9061-0
https://doi.org/10.1007/s10601-008-9061-0
https://doi.org/10.1007/978-3-319-66158-2_43
https://doi.org/10.1007/978-3-319-66158-2_43

	Selecting SAT Encodings for Pseudo-Boolean and Linear Constraints: Preliminary Results

