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Abstract

A permutation is square-free if it does not contain two consecutive factors of length
two or more that are order-isomorphic. A permutation is bicrucial with respect to
squares if it is square-free but any extension of it to the right or to the left by any
element gives a permutation that is not square-free.

Avgustinovich et al. studied bicrucial permutations with respect to squares, and
they proved that there exist bicrucial permutations of lengths 8k+1, 8k+5, 8k+7 for
k ≥ 1. It was left as open questions whether bicrucial permutations of even length,
or such permutations of length 8k + 3 exist. In this paper, we provide an encoding of
orderings which allows us, using the constraint solver Minion, to show that bicrucial
permutations of even length exist, and the smallest such permutations are of length 32.
To show that 32 is the minimum length in question, we establish a result on left-crucial
(that is, not extendable to the left) square-free permutations which begin with three
elements in monotone order. Also, we show that bicrucial permutations of length 8k+3
exist for k = 2, 3 and they do not exist for k = 1.

Further, we generalize the notions of right-crucial, left-crucial, and bicrucial per-
mutations studied in the literature in various contexts, by introducing the notion of
P -crucial permutations that can be extended to the notion of P -crucial words. In
S-crucial permutations, a particular case of P -crucial permutations, we deal with per-
mutations that avoid prohibitions, but whose extensions in any position contain a
prohibition. We show that S-crucial permutations exist with respect to squares, and
minimal such permutations are of length 17.

Finally, using our software, we generate relevant data showing, for example, that
there are 162,190,472 bicrucial square-free permutations of length 19.

1 Introduction

A factor of a word is a number of consecutive letters in the word. A word w avoids a word u
if w does not contain u as a factor. Let S be a set of prohibited factors, that is, factors to be
avoided. A word w over a finite alphabet A is right-crucial (resp., left-crucial) with respect
to S if it avoids the prohibitions, but adjoining a new letter from A to the right (resp., left)
of w gives a word that does not avoid the prohibitions. Clearly, studying right-crucial words
can be turned to studying left-crucial words, and vice versa (through reversing all words in
question). A word is bicrucial if it is both right- and left-crucial.

We say that a word w contains a k-th power if w contains a factor XX · · ·X with k
non-empty words X. The case k = 2 corresponds to squares in words, and their study
was initiated by Axel Thue in [17] in 1906. A word w contains an abelian k-th power, if w
contains a factor X1X2 · · ·Xk where Xi is a permutation of X1 for 2 ≤ i ≤ k. Paul Erdős
[7] introduced the notion of abelian squares (the case of k = 2) in 1961. Right-crucial and
bicrucial words with respect to squares, abelian squares, and, more generally, k-th powers
and abelian k-th powers were studied in [1, 4, 6, 8, 12, 14]. These studies belong to the area
of combinatorics on words.
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Avgustinovich et al. [2] extended the notion of squares, as well as the notion of (right-
,bi)crucial words, from words to permutations by merging the respective notions in com-
binatorics on words and the theory of permutation patterns (see [13] for a comprehensive
introduction to the theory); precise definitions will be given below. More studies in this
direction were conducted in [3].

Avgustinovich et al. [2] showed that right-crucial permutations exist of any length larger
than 6, while existence of bicrucial permutations was only shown for lengths 8k + 1, 8k +
5, 8k + 7 for k ≥ 1 (the shortest such permutation is of length 9). The question on whether
there exists bicrucial permutations of even lengths and of length 8k + 3 for some k ≥ 1 was
open for about three years. In this paper, we will show that bicrucial permutations of even
length exist (the smallest such permutation is of length 32), and that bicrucial permutations
of length 8k+3 exist for k = 2, 3 and they do not exist for k = 1. Our main tool in obtaining
the results is an encoding of orderings (see Subsection 3.2) and the constraint solver Minion.

Note that what we call “right-crucial permutations” are known as “crucial permutations”
in the literature. In this paper we generalize the notion of right-crucial and bicrucial permu-
tations to P -crucial permutations with respect to a given set of prohibitions, where P is a
possibly infinite set of non-negative integers. A particular example of P -crucial permutations
is S-crucial (standing for Super-crucial) permutations which avoid prohibitions but extend-
ing them in any position leads to a prohibition. This notion has an obvious counter-part in
the case of words. We will show that the minimum S-crucial permutation with respect to
squares is of length 15 (see Section 2.4).

The paper is organized as follows. In Section 2 we discuss all objects of interest stating
some known results, and our new results on them. In Section 3 we discuss software used
to obtain most of our results. Finally, in Section 4 we discuss some directions for further
research.

In this paper, we need the following notions. The reverse of a permutation π = π1π2 · · · πn

is the permutation r(π) = πnπn−1 · · · π1, while the complement of π is the permutation
c(π) = (n+ 1− π1)(n+ 1− π2) · · · (n+ 1− πn). For example, if π = 2134 then r(π) = 4312
and c(π) = 3421. When we say “up to symmetry” in counting problems, we mean the
following. If a permutation π has been already counted as a permutation satisfying given
properties, then the permutation c(π) is not to be considered. Also, in the cases when π has
a given property if and only if r(π) has that property, then r(π) and c(r(π)) = r(c(π)) are
not to be considered as well.

2 Objects of interest and our results

We consider permutations of sets of positive integers. For example, π = 2637 is a permutation
of the set {2, 3, 6, 7}. Let σ be a permutation of {1, 2, . . . , k}. We say that a permutation π of
a set of size k forms the pattern σ if the elements of π are in the same relative order as those
of σ. For example, the permutation π = 2637 forms the pattern σ = 1324, because both π
and σ have their smallest and largest elements in the first and last positions, respectively,
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and next largest and next smallest elements in the second and third positions, respectively.
In what follows, for a permutation π = π1π2 · · · πn in question, we will write π[x, y] =

π[s, t] to indicate that the pattern formed by the elements of π in positions x, x + 1, . . . , y
is equal to that formed by the elements of π in position s, s+ 1, . . . , t. In xπ′, an extension
of π to the left (defined properly below), we assume x to be in position 0, while in π′y, an
extension of π to the right (again, defined properly below), we assume y to be in position
n+ 1. For example, in the permutation π =492517638 we have π[1, 2] = π[3, 4] (because 49
and 25 form the same pattern 12) and π[4, 6] = π[7, 9] (because 517 and 638 form the same
pattern 213). Where it is clear from context what π is, we may abuse notation by omitting
it and writing (for example) [4, 6] = [7, 9].

We will be referring to tables showing the number of permutations satisfying various
properties. These were calculated using constraint programming techniques and a constraint
solver called Minion [11]. We give more detail about our approach below, in Section 3.2. For
now we just mention that we report a metric of search cost called nodes. Minion (along with
many other constraint solvers) performs a depth-first exploration of a rooted binary tree.
The root represents the initial state and left branches represent an (exploratory) assignment
of a variable. Solutions are found at leaf nodes. Minion reports the number of left branches
as its node count.

2.1 Square-free permutations

We use the one-line notation to represent permutations. A factor of a permutation π is one or
more consecutive elements in π. For example, 4273, 36 and 1 are factors in the permutation
5142736.

A permutation is square-free if it does not contain two consecutive factors of length two
or more that are in the same relative order, that is, that are order-isomorphic. For example,
the permutation 243156 is square-free, while the permutation 631425 contains the square
3142 (indeed, 31 is order isomorphic to 42). Another example of a permutation that does
not avoid squares is 742563891 as it contains the squares 425638, 5638 and 563891. The
number of square-free permutations of length n, for n = 1, 2, . . . , 18, is

1, 2, 6, 12, 34, 104, 406, 1112, 3980, 15216, 68034, 312048, 1625968, 8771376,
53270068, 319218912, 2135312542, 14420106264

and this is the sequence A221989 in the On-Line Encyclopedia of Integer Sequences, OEIS
[20]. See also Table 1. It is known [2] that the number of square-free permutations of length
n is nn(1−εn) where εn → 0 when n → ∞.
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n Solutions Nodes Solutions Nodes Solutions Nodes
Searched up to Symmetry Searched π = r(c(π)) Searched

up to Symmetry
3 6 11 2 4 1 2
4 12 29 3 11 0 3
5 34 90 10 33 3 9
6 104 296 26 93 0 17
7 406 1147 105 276 7 23
8 1112 3845 278 932 0 10
9 3980 14505 1011 3936 32 117
10 15216 57680 3804 14534 0 130
11 68034 256501 17065 60237 113 402
12 312048 1209914 78012 313175 0 21
13 1625968 6244642 406795 1764062 606 2913
14 8771376 34262121 2192844 8714313 0 434
15 53270068 204080489 13318687 47248481 2340 11593
16 319218912 1260657446 79804728 318506973 0 36
17 2135312542 - 533838106 2336505587 19941 107779

Table 1: Enumerating square-free permutations of length n using the constraint programming
approach (cf. Section 3.2). Every number is obtained by direct computer enumeration except
for n = 17 solutions, which is calculated as 4 times the number of solutions up to symmetry
minus twice the number of reverse-complemented solutions. Numbers of solutions form
A221989, A238937 and A238942 in [20].

It is easy to see [2] that for a permutation π = π1π2 · · · to avoid squares of length 2,
there must exist i ∈ {0, 1, 2, 3} so that for every non-negative integer t, the inequalities

πi+4t < πi+4t±1 and πi+4t+2 > πi+4t±3 (1)

hold. Schematically, the four possible kinds of square-free permutations (according to the
choice of i) are as follows:

i = 1 ... i = 0 ...

i = 3 ... i = 2 ...

where a dot represents an element in π and the order of elements represented by two non-
consecutive dots is irrelevant, whereas each pair of consecutive dots is comparable (a lower
dot represents a smaller element).

For better understanding of the properties of square-free permutations, we enumerated
such permutations up to symmetry. These values are presented in Table 1. These sequences
were not known to the OEIS [20], and to the best of our knowledge, these results are new.

5

http://oeis.org/A221989
http://oeis.org/A238937
http://oeis.org/A238942


We note that solutions up to symmetry were used in Table 1 to calculate the total number
of square-free permutations in the case of n = 17. The inclusion-exclusion principle is used
here: each symmetrically distinct π gives four permutations through combinations of c and
r, unless π = c(r(π)) (equivalently, π = r(c(π))), in which case it gives two. Also, note that
the 0s in the next to the rightmost column in Table 1 follow from the zigzag structure of
square-free permutations.

2.2 Right- and left-crucial permutations with respect to squares

In this subsection we define the notion of right-crucial permutations with respect to squares
which was previously known [2] as crucial permutations with respect to squares.

Let π = π1π2 · · · πn be a permutation of length n. An extension of π by an element
x ∈ {1, 2, . . . , n+1} in position i ∈ {0, 1, . . . , n} is the permutation π′

1π
′

2 · · · π
′

ixπ
′

i+1π
′

i+2 · · · π
′

n

of length n+ 1, where π′

i = πi if πi < x and π′

i = πi + 1 otherwise. In particular, the case of
i = 0 is called an extension of π by x to the left and the case i = n is called an extension of
π by x to the right.

A permutation is right-crucial with respect to squares if it is square-free but any extension
of it to the right by any element gives a permutation that is not square-free. We also
say that such a permutation is a right-crucial square-free permutation. For example, the
permutation 2136547 is right-crucial with respect to squares. It is shown in [2] that right-
crucial permutations with respect to squares exist of any length larger than 6. All the
right-crucial permutations with respect to squares of length 7 are listed below:

2136547, 2137546, 2146537, 2147536, 2156437, 2157436, 2167435,
3146527, 3147526, 3156427, 3157426, 3167425, 3246517, 3247516,
3256417, 3257416, 3267415, 3421675, 3521674, 3621574, 3721564,
4156327, 4157326, 4167325, 4256317, 4257316, 4267315, 4356217,
4357216, 4367215, 4521673, 4531672, 4532671, 4621573, 4631572,
4632571, 4721563, 4731562, 4732561, 5167324, 5267314, 5367214,
5467213, 5621473, 5631472, 5632471, 5641372, 5642371, 5721463,
5731462, 5732461, 5741362, 5742361, 6721453, 6731452, 6732451,
6741352, 6742351, 6751342, 6752341.

The number of right-crucial permutations of length n with respect to squares, for n =
7, 8, . . . , 17, is

60, 140, 518, 1444, 8556, 31992, 220456, 984208, 7453080, 39692800, 289981136

and this is the sequence A221990 in the OEIS [20]. See also Table 2.
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n Solutions Nodes Solutions Solutions Nodes
Searched up to Symmetry π = r(c(π)) Searched

up to Symmetry
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0
6 0 0 0 0 0
7 60 262 30 0 16
8 140 658 70 0 25
9 518 2978 259 5 60
10 1444 9135 722 0 232
11 8556 44110 4278 0 46
12 31992 157334 15996 0 61
13 220456 1109525 110228 168 1841
14 984208 5008522 492104 0 845
15 7453080 46370720 3726540 0 4113
16 39692800 251929277 19846400 0 113
17 289981136 1939299692 144990568 3522 81951

Table 2: Enumerating right-crucial permutations of length n with respect to squares. In
this case, π being a solution only guarantees that c(π) is, but not r(π). The solutions up to
symmetry is always exactly half the total number of solutions, and that number is used in
the centre column without an additional search. The first column of solutions is A221990 in
[20].

The notion of a left-crucial permutation with respect to squares can be defined similarly.
Namely, a permutation is left-crucial with respect to squares if it is square-free but any
extension of it to the left by an element gives a permutation that is not square-free. Taking
into account that the reverse of a permutation preserves the property of avoiding squares, it
is equivalent to study right-crucial and left-crucial permutations (in particular, the numbers
of these permutations of length n are the same for any n).

The following proposition follows directly from the zigzag structure of square-free per-
mutations described in Subsection 2.1.

Proposition 1. If π is a left-crucial (resp., right-crucial) permutation with respect to
squares, and σ = xπ′ (resp., σ = π′x) is its extension to the left (resp., right), then a
prohibited square in σ is either of length 4, or of length multiple of 8.

We prove the following theorem, whose analogue for right-crucial permutations is easy to
obtain by applying the reverse operation to permutations that turns, in particular, position
0 to position n.
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Theorem 2. Suppose π is a left-crucial permutation with respect to squares. If extending
π to the left to give π1 results in a square of length 16 (that is, in π1[0, 7] = π1[8, 15]) then
there is no extension π2 to the left of π that results in a square of length 24 (that is, in
π2[0, 11] = π2[12, 23]).

Proof. We have that for some extension π1 of π, π1[0, 7] = π1[8, 15], and, in particular,
π[4, 7] = π[12, 15] (any subset of the former relation must have the same relative order).
However, if another extension of π named π2 gives a square of length 24, we would have to
have that π2[0, 7] = π2[12, 19], in particular, π[4, 7] = π[16, 19], which leads to π[12, 15] =
π[16, 19], a contradiction (two consecutive factors would be equal in π, but π is square-
free).

Proposition 3. Suppose π = π1π2 · · · πn is a left-crucial permutation with respect to squares
such that either π1 < π2 < π3 or π1 > π2 > π3. Then among its all possible n+ 1 extensions
to the left, we will meet squares of at least four different lengths.

Proof. Assume that π1 < π2 < π3; the other case can be considered analogously. Extending
π to the left by 1 will obviously give a square S1 of length 4 formed by the pattern 12.
Further, extending π to the left by π1 + 1, we get a permutation that begins with the
pattern 2134, that is, with the four letters that are order-isomorphic to 2134. But then the
respective square S2 in this extension (there is one because π is left-crucial) also begins with
the pattern 2134, and thus, S2 is different from S1. Now, extending π by π2 + 1, we will
obtain a permutation beginning with the pattern 3124, and thus the respective square S3

also begins with the pattern 3124 and it is different from S1 and S2. Finally, extending π
by n+ 1 will give a permutation that begins with the pattern 4123, and thus the respective
square S4 also begins with the pattern 4123 and it is different from S1, S2 and S3.

Theorem 4. Suppose π = π1π2 · · · πn is a left-crucial permutation with respect to squares
such that either π1 < π2 < π3 or π1 > π2 > π3. Then the length of π, n, is at least 31.

Proof. We can assume that π1 < π2 < π3; the other case can be considered analogously. By
Proposition 1, possible squares are of lengths 4, 8, 16, 24, 32, etc. By Proposition 3 we have
at least four different squares, and by Theorem 2 we cannot have both of 16 and 24 length
squares involved. This leads us to having at least one square of length at least 32. Thus, π
is of length at least 31.

2.3 Bicrucial permutations with respect to squares

In this subsection we define the notion of bicrucial permutations with respect to squares which
was previously known [2] as maximal permutations with respect to squares.

A permutation is called bicrucial with respect to squares if it is both right-crucial and left-
crucial. We also call such permutations bicrucial square-free permutations. It was proved in
[2] that there exist bicrucial permutations with respect to squares of odd lengths 8k+1, 8k+
5, 8k + 7 for k ≥ 1. Computer experiments show that the smallest bicrucial permutations
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n Solutions Nodes Solutions Nodes Solutions Nodes
Searched up to Symmetry Searched π = r(c(π)) Searched

up to Symmetry
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 0 97 0 0 0 0
8 0 126 0 0 0 0
9 54 607 16 33 5 9
10 0 351 0 0 0 0
11 0 1665 0 0 0 0
12 0 1422 0 0 0 0
13 69856 298659 17548 48558 168 365
14 0 63292 0 0 0 0
15 2930016 14793584 732504 1981923 0 0
16 0 3475684 0 0 0 0
17 40654860 382563747 10165476 33999226 3522 8361
18 0 - 0 0 0 0
19 162190472 - 40547618 124608134 0 0
20 0 - 0 0 0 0
21 ≥ 1156065982 - ≥ 578032991 ≥ 2091556603 287834 772800
22 0 - 0 0 0 0
23 ≥ 1250325828 - ≥ 625162914 ≥ 1849967660 0 0
24 ? - ≥ 0 ≥ 1021275473 0 0
25 ≥ 28100262 - ≥ 0 ≥ 991823284 14050131 32022959
26 0 - 0 43972617 0 0

Table 3: Enumerating bicrucial square-free permutations of length n. The first column of
solutions is the sequence A238935 in [20]. From n = 18 on we did not run experiments for
the first column, but can make deductions from the other columns. The strongest possible
deductions are shown: a precise number based on the later columns where those runs com-
pleted; or ≥ to indicate that twice the number in the centre or right hand column is a lower
bound; or ‘?’ to indicate that no useful deduction can be made. In the middle columns a ≥
indicates that a run was started but did not finish in the time available: therefore the given
numbers are lower bounds. In two cases Minion found no solutions within its time limit, and
this is indicated by ≥ 0. We used the SSAC preprocessing option and then the dom/wdeg
heuristic: for more details see Subsection 3.2.

with respect to squares are of length 9, and the number of such permutations of length n,
for n = 9, 10, . . . , 20, is

54, 0, 0, 0, 69856, 0, 2930016, 0, 40654860, 0, 162190472, 0.

See Table 3: in some cases note that direct computations were too time consuming, and
these numbers were computed from the numbers of symmetrically distinct solutions. Recall
that each symmetrically distinct π gives four permutations through combinations of c and
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r, unless π = c(r(π)) (equivalently, π = r(c(π))), in which case it gives two. An interesting
point in that table is that sometimes we could not solve a problem at one size but could
solve it at a larger size. While the smaller problem has fewer variables and constraints it
nevertheless requires more search.

Even though there do not exist any bicrucial square-free permutations of length n = 8k+3
when k = 1, there do exist such permutations of length n = 8k + 3 for k = 2 and k = 3, for
example,

143289756(14)(11)(10)(17)(19)(16)(13)(15)(18)(12) (1)

and

312(27)(26)6(24)(25)54(11)(23)(12)8(10)(16)97(17)(21)(19)(14)(18)(20)(15)(13)(22), (2)

respectively. Thus, we have the following theorem that answers the respective question in
[2].

Theorem 5. Regarding the case n = 8k+3, there are no bicrucial square-free permutations
of length 11, while such permutations of lengths 19 and 27 exist.

Proof. The theorem follows from our computer experiments that, in particular, led us to
discovery of permutations (1) and (2). However, we will justify here why these permutations
are not extendable to the left or to the right leaving to the Reader proving the fact that they
are square-free.

• For the permutation (1), extending it to the left by any element larger than 1 will
give a square of length 4 formed by the pattern 21 (that is, [0, 1] = [2, 3] in this case
following the notation in the beginning of this section), while extending it to the left
by 1 we obtain a square of length 16 formed by the pattern 12543786 (that is, in this
case [0, 7] = [8, 15]). On the other hand, extending the permutation to the right by
an element larger than 12 we obtain a square of length 4 formed by the pattern 12
(that is, in this case [17, 18] = [19, 20]), while extending it to the right by any other
element we obtain a square of length 8 formed by the pattern 3421 (that is, in this
case [13, 16] = [17, 20]).

• For the permutation (2), extending it to the left by any element less than 4 we obtain
a square of length 4 formed by the pattern 12 (that is, in this case [0, 1] = [2, 3]), while
extending the permutation to the left by any other element we obtain a square of length
8 formed by the pattern 4312 (that is, in this case [0, 3] = [4, 7]). As for extending to
the right, doing so by an element less than 22 we obtain a square of length 4 formed by
the pattern 21, while extending to the right by any other element we obtain a square
of length 16 formed by the pattern 52463178 (that is, in this case [13, 20] = [21, 28]).

What we found to be especially striking is that bicrucial square-free permutations of
even length do exist, despite what the data in Table 3 suggest. We record this result in the
following theorem.
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Theorem 6. Bicrucial square-free permutations of even length exist. The shortest such
permutation is of length 32.

Proof. An example of a bicrucial square-free permutation of length 32 is

(28)(30)(31)(23)(22)(24)(29)(27)(19)(25)(26)(17)(13)(18)(21)(20)(14)(16)(32)879(15)(12)5(10)(11)31462.

The fact that the permutation above is proper was checked by computer. However, we
demonstrate here that it is not extendable either to the left or to the right while skipping
explanation why it is square-free. Indeed, extending the permutation to the right by any
element > 2 we get a square of length 4 involving the pattern 12 (for example, extending to
the right by 4, the rightmost four elements will be 5724, which is a square), while extending
it by element 1 or 2, we will obtain [26, 29] = [30, 33] (the respective pattern is 3421). See
Table 4 for squares appearing while extending the permutation to the left.

Left-extension by element Square length Half of square pattern
< 29 4 12
29, 30 8 2134
31 32 (15)(12)(14)(16)768(13)(11)49(10)2135

32, 33 16 84672135

Table 4: Squares appearing while extending the permutation of length 32 to the left.

The fact that the permutation of length 32 is the shortest possible out of bicrucial square-
free permutations of even length was checked by computer. However, we provide here an
argument justifying this fact.

Let π be a bicrucial permutation of even length. The key observation is that because of
the zigzag structure described in Subsection 2.1, π either begins or ends with three elements
in a monotonic order (either increasing or decreasing). If necessary, we can apply the reverse
operation to be able to assume without loss of generality that π begins either with three
increasing or three decreasing elements. But then by Theorem 4, the length of π is at least
32 (it must be even).

To see more properties of bicrucial square-free permutations, we enumerate symmetrically
distinct such permutations, that is, ensuring that for each bicrucial permutation π, the
permutations π, r(π), c(π) and r(c(π)) = c(r(π)) are collectively counted exactly once.
The results are presented in Table 3 in the central columns. We also find the number of
symmetrically distinct bicrucial square-free permutations on the set of permutations invariant
under taking the composition of the reverse and complement operations, that is, the set of
permutations π such that π = r(c(π)) = c(r(π)). Note that if π has this property then so
does the permutation c(π): again we only count one of these permutations. These results
are presented in Table 3 in the right hand columns.
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Note that each symmetrically distinct bicrucial square-free permutation gives four dif-
ferent permutations, with the exception of permutations unchanged under the composition
of taking the reverse and complement. These latter permutations give two different per-
mutations. Once again, by the inclusion-exclusion principle, for each n, the number of
bicrucial square-free permutations is four times the number in the central column of Table 3
minus twice the number in the right hand column of Table 3. This serves as a check for
k = 9, 13, 15, 17 and allows us to extend the sequence A221990 in [20] for n = 19, with
4 · 40, 547, 618 = 162, 190, 472, which is recorded in Table 3. We are sometimes able to pro-
vide all solutions up to symmetry when we cannot enumerate them in full, simply because
the search space is (approximately) four times smaller.

2.4 P -crucial and S-crucial permutations with respect to squares

The following notions of P -crucial and S-crucial permutations are defined for the first time
in this paper. First we must define an extension of a permutation π in position i ∈ {0 . . . n}
by symbol q. The symbol q is inserted at position i where i = 0 indicates that q is added to
the left of the permutation, and i = n means q is added to the right. Each symbol in π that
is < q remains the same in the extended permutation, and symbols ≥ q are increased by 1.

Given a set of non-negative integers P and a set of prohibitions Q, a permutation is
called P -crucial with respect to Q, if it avoids the prohibitions but any of its extensions in
position i results in a permutation containing a prohibition from Q, whenever i ∈ P . Sets
P and Q can either be finite or infinite. In particular, Q can be a set of prohibited factors,
for example, the set of all squares considered in this paper. If P = {0} then P -crucial
permutations are just left-crucial permutations, and thus we deal with a generalisation of
this notion. However, to have the most general definition, in particular, generalising the
notion of right-crucial and bicrucial permutations, we allow P to be defined using the length
of permutations. For example, we can say that P refers to positions 1, n − 3 and n − 2
in a permutation of length n. Similarly, right-crucial permutations correspond to the case
P = {n}, while bicrucial permutations correspond to the case P = {0, n}.

S-crucial permutations are P -crucial permutations with P = {0, 1, 2, . . .}, that is, any ex-
tension of an S-crucial permutation in any position will lead to an occurrence of a prohibition.
S in “S-crucial” stands for “Super”.

The notions of P -crucial and S-crucial permutations with respect to a given set of pro-
hibitions can be easily extended to the case of words, which is not in the scope of this
paper. Our immediate interest is in S-crucial permutations with respect to squares and in
the question whether such permutations exist. It is immediate from definitions that

S-crucial permutations ⊆
bicrucial permutations = right-crucial permutations ∩ left-crucial permutations.
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2.5 S-crucial permutations with respect to squares

Taking into account the double zigzag structure of square-free permutations described in
Subsection 2.1, one sees that in order to test if a given square-free permutation is S-crucial
or not, we only need to check what happens when extending the permutation in positions
i = 0, 1, n−1, n. Indeed, inserting the new element in any other position will obviously break
the double zigzag structure (no matter what the element will be) and therefore will cause
the obtained permutation to contain a square. Thus, in the case of prohibited squares, S-
crucial permutations accept an equivalent definition as P -crucial permutations with respect
to squares, where P = {0, 1, n− 1, n} for permutations of length n.

Theorem 7. S-crucial permutations with respect to squares exist, and the shortest such
permutation is of length 17. There are 1568 S-crucial permutations with respect to squares
of length 17.

Proof. The following permutation of length 17 is S-crucial with respect to squares:

24315(11)(10)69(12)87(13)(17)(15)(14)(16),

which can be checked by confirming that it is square-free but all of its extensions in positions
0, 1, 16 and 17 produce squares. Our proof otherwise relies on computer experiments reported
in Table 12 showing that no S-crucial permutation with respect to squares exist of length
less than 17, and the total for n = 17.

P min length # of min length Type of permutations Table
{0}, {n} 7 60 left- & right-crucial (Subsec. 2.2) 2

{1}, {n− 1} 7 82 6
{0, 1}, {n− 1, n} 15 54854 7
{0, n− 1}, {1, n} 7 20 8

{0, n} 9 54 bicrucial (Subsec. 2.3) 3
{1, n− 1} 7 18 9

{0, 1, n− 1}, {1, n− 1, n} 16 553428 10
{0, 1, n}, {0, n− 1, n} 17 550976 11

{0, 1, n− 1, n} 17 1568 S-crucial (Subsec. 2.5) 12

Table 5: P -crucial permutations with respect to squares.

2.6 More on P -crucial permutations with respect to squares

As is mentioned above, S-crucial permutations coincide with {0, 1, n − 1, n}-crucial permu-
tations, because extending square-free permutations in positions different from those in the
set {0, 1, n−1, n} will automatically give a square. Thus, for any P , P -crucial permutations
with respect to squares are equivalent to A-crucial permutations with respect to squares for
some A ⊆ {0, 1, n − 1, n}. The case of empty A is not interesting, and thus we essentially

13



have 15 classes to consider of P -crucial permutations with respect to squares. Moreover,
because of the reverse operation, some of these 15 classes are equivalent to study. For ex-
ample, as we know, studying left-crucial permutations (P = {0}) is equivalent to studying
right-crucial permutations (P = {n}). In Table 5 we summarize our knowledge on P -crucial
permutations with respect to squares that is based on computer experiments.

3 Generating (right-,bi)crucial permutations with re-

spect to squares

In Subsection 3.1 we discuss our original approach to deal with square-free permutations,
and in Subsection 3.2 we discuss an optimisation via encoding orderings.

3.1 An approach to generate square-free permutations

We define the left parent (resp., right parent) of a permutation π ∈ Sn, the set of permu-
tations of length n, as the unique permutation in Sn−1 order-isomorphic to the sequence of
the first (resp., last) n − 1 letters of π. The left children (resp., right children) of σ ∈ Sn−1

are all π ∈ Sn such that σ is a right (resp., left) parent of π.
Clearly the parents of a square-free permutation are square-free; a right-crucial permu-

tation is one with no square-free right children and a bicrucial permutation is one with no
square-free children at all.

Our construction algorithm is iterative. At each step we assume that we have a data
structure representing the square-free permutations of lengths n − 2 and connecting each
of them with all of its children (of length n − 1). This necessarily includes all square-free
permutations of length n − 1. We now compute all the square-free permutations of length
n as follows. For each square-free permutation α of length n− 2, each left child σ of α and
each right child τ of α we form all permutations π which have σ as left parent and τ as
right parent. There are either one or two of these. Such a π can only fail to be square-free
if n is even, greater than 2, and π is a repeat of a pattern of length n/2. Any shorter
repeated pattern would be contained in at least one of σ and τ . This condition can be
checked efficiently. We record all π which pass this check, both as square-free permutations
of length n and as children of σ and τ , thereby preparing for the next iteration. A suitable
data structure for the permutations of length zero and one can be constructed “by hand” to
start the process.

After this computation, we can easily read off from our data structure all the square-free
permutations of length n and the right-crucial and bicrucial permutations of length n− 1.

We used the Computational Algebra system GAP [10]. The calculation can be completed
up to n = 18 in a few hours on a computer with 512GB RAM. Memory, rather than
time, is the main barrier to continuing. However, in order to achieve our results for longer
permutations, we had to come up with a different idea of generating permutations in question,
which is discussed in the following subsection.
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3.2 Representing permutations in constraint programming

Constraint programming is a means of solving finite domain combinatorial problems [19].
It is the subject of much research and many fast and efficient solvers are available. In
particular we use Minion, a solver developed at St Andrews [11]. As well as fast solving, it
is critical that problems are modelled effectively. Modelling is the process of converting an
abstract specification of a problem to a constraint satisfaction problem that can be searched
effectively. To help with the modelling process we use Savile Row, an automated modelling
assistant [16]. Savile Row allows us to express models in a higher level language than the
input language of Minion.

The question we have in front of us is how to model permutations in a way that can be
represented in a constraint solver and reasoned with effectively in the context of square-free
permutations. This is an unusual application, because the properties of the permutation
being used are not the normal ones. Normally in constraints one is interested in the value
of each element of the permutation, and using them in some way. Here, we are interested
only in the relative ordering of elements. So, we do not need to know efficiently that the
permutation maps (say) 4 to 3, but we must be able to detect efficiently that the partial
permutation (say) 2813 represents the same ordering as 5824 but is different from 1823.
Standard representations of permutations in constraint solving are not amenable to this
form of reasoning.

Therefore, we constructed a new model of permutations in constraints which is efficient
for the current application. Assume that we have permutations stored in two arrays A and
B (although in practice they may be two segments of the same array). The encoding idea is
straightforward. An ordering is uniquely defined by the binary inequalities between elements.
To exploit this we use “reification”, see, e.g., [15]. The reified value of a particular constraint
is its truth value treated as a boolean: i.e., the reified value is 1 if the constraint is false
and 0 if the constraint is true. We introduce a new boolean variable for the reified value of
each inequality. That is, we have a variable ai,j such that ai,j = T ≡ A[i] < A[j]. Similarly,
bi,j = T ≡ B[i] < B[j]. Then we have the simple observation that the ordering of A and B
with respect to < is the same if and only if ai,j = bi,j for all i and j. This forms the basis
of our encoding of square-free permutations: stating that no adjacent parts of permutations
may be the same. For cruciality constraints we state that for each possible value added at
the relevant position, at least one pair of identical parts of permutations must result.

In our experiments we used Minion version 1.6. In most cases we used it with standard
settings. However in two experiments we gained significant value from other settings. In
Tables 3 and 12 we used a specific preprocessing option and search heuristic. The SSAC pre-
processing option was given to Minion, which performs Singleton-Singleton-(generalized)Arc-
Consistency before search starts. SAC (singleton arc consistency) sets each variable to each
possible value in turn, and if this leads to failure we can undo this and assert the variable
cannot take this value [18]. SSAC doubles this, i.e., setting each variable to each possible
value and then calling SAC, removing values after failure. This is an extremely expensive
preprocessing step but we found sometimes that it reduced search so much it was worthwhile.
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It also combines well with the dom/wdeg heuristic available in Minion, which we used in
these cases.

In all cases, if π satisfied the given property, c(π) must. To calculate numbers of solutions
up to symmetry, we used one of two approaches. If c(π) is the only symmetry we can simply
halve the number of solutions found in complete search, since a permutation of length > 1
is never self-complementing. In some cases r(π) is a symmetry: specifically for square-free
permutations, and P-crucial permutations for P = {0, n}, {1, n − 1} or {0, 1, n − 1, n}.
In these cases we excluded all but a canonical solution from each equivalence class, using
the standard ‘lex leader’ approach [5]. This is efficient because of the use of specialized
constraints for lexicographical ordering [9].

We have not reported run-times in detail, but as an example, the n = 17 run in Table 3
required 54,858 cpu seconds, just under 15.25 cpu hours. This is a rate of just under 7,000
nodes per second. A key advantage of constraint programming is the massively reduced
RAM requirements compared to Section 3.1. Because of this we are able to solve much
larger problems: for example in Table 12 we are able to settle all questions for n = 22 and
one for n = 26, compared to a maximum of n = 18 with the earlier approach.

4 Open questions and some conjectures

It would be interesting to find the missing (exact) solutions in Tables 3 and 12. Also, we
would like to state the following conjectures.

Conjecture 8. There exist bicrucial permutations with respect to squares of length 8k + 3
for k ≥ 2.

Conjecture 9. There exist arbitrary long bicrucial square-free permutations of even length.

If Conjecture 9 is true, it is interesting to know whether such permutations exist for each
even length greater than 30.

Conjecture 10. There exist arbitrary long S-crucial permutations with respect to squares.

Table 12 gives our empirical investigations into this question. While there were no S-
crucial permutations of length 18, 19, 20 or 22, we did find (at least) 144,586 symmetrically
distinct solutions at n = 21.

Finally, a general program of research here is the study of classes of P -crucial permuta-
tions with respect to a given set of prohibitions S (different from squares considered in this
paper). One can study such objects in the way we study, say, right-crucial and bicrucial
permutations, that is, to try to classify lengths for which respective P -crucial permutations
exist, or at least to try to show that arbitrary long such permutations exist. Also, considering
words instead of permutations for various (natural) sets P and S is yet another interesting
research direction.
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A Additional results

n Solutions Nodes Solutions Solutions Nodes
Searched up to Symmetry π = r(c(π)) Searched

up to Symmetry
3 0 0 0 0 0
4 0 6 0 0 5
5 0 10 0 0 7
6 0 15 0 0 13
7 82 351 41 3 28
8 272 1862 136 0 25
9 766 5955 383 0 112
10 3788 19687 1894 0 248
11 14096 75932 7048 58 617
12 74568 322940 37284 0 61
13 281232 1358128 140616 0 2894
14 2026184 7636544 1013092 0 848
15 9430962 42623572 4715481 961 13787
16 79497550 400446913 39748775 0 113
17 422657308 2274985904 211328654 28 101644

Table 6: Results for {1} and {n− 1}-crucial permutations. Node counts from former.

In this appendix we include full tables of results for all forms of cruciality not given in
full detail in the main part of the paper. These tables are referred to in the main text by
Table 5. The tables in this Appendix take one of two forms. As mentioned in the main
text, for some sets P we have that if π is P -crucial then it is guaranteed that r(π) is also.
In these cases a separate run is required to identify the number of symmetrically distinct
solutions. Tables 9 and 12 are of this form. Where reversal symmetry is not guaranteed (the
remaining tables), the tables are different in two ways. First, no separate run is necessary to
count symmetrically distinct solutions: the total is always half the total number of solutions.
Second, the table can be computed in one of two ways. For example, Table 6 shows numbers
of {1}- and {n−1}-crucial permutations. While it is guaranteed that the number of solutions
of each type is the same, the number of nodes searched may be different depending on which
type was run. For precision, we indicate in each table which node count we are reporting.
For example, in Table 6 we give node counts for {1}-crucial permutations. The choice of
which case is reported is arbitrary.
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n Solutions Nodes Solutions Solutions Nodes
Searched up to Symmetry π = r(c(π)) Searched

up to Symmetry
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0
6 0 0 0 0 0
7 0 102 0 0 16
8 0 161 0 0 25
9 0 244 0 0 34
10 0 351 0 0 232
11 0 485 0 0 46
12 0 649 0 0 61
13 0 846 0 0 122
14 0 1079 0 0 845
15 54854 1020814 27427 0 4113
16 722114 24479482 361057 0 113
17 5144632 118675744 2572316 28 53501

Table 7: Results for {0, 1} and {n− 1, n}-crucial permutations. Node counts from former.

n Solutions Nodes Solutions Solutions Nodes
Searched up to Symmetry π = r(c(π)) Searched

up to Symmetry
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0
6 0 0 0 0 0
7 20 111 10 0 16
8 96 530 48 0 25
9 0 1266 0 0 39
10 1444 7815 722 0 232
11 0 1294 0 0 46
12 10080 66223 5040 0 61
13 0 98871 0 0 1135
14 0 351920 0 0 845
15 2988 1883376 1494 0 4113
16 25781024 160519095 12890512 0 113
17 2138998 294150147 1069499 28 56458

Table 8: Results for {0, n− 1} and {1, n}-crucial permutations. Node counts from latter.
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n Solutions Nodes Solutions Nodes Solutions Nodes
Searched up to Symmetry Searched π = r(c(π)) Searched

up to Symmetry
3 0 0 0 0 0 0
4 0 6 0 3 0 3
5 0 10 0 3 0 3
6 0 15 0 6 0 6
7 18 225 6 68 3 12
8 0 1385 0 347 0 10
9 0 4677 0 1288 0 52
10 0 13971 0 2936 0 130
11 8972 64562 2272 16749 58 294
12 0 199164 0 64118 0 21
13 281232 1216051 70308 371785 0 1403
14 0 3754582 0 1312833 0 434
15 3094458 32430311 774095 7744341 961 6828
16 1194800 257503934 298700 67920867 0 36
17 6056996 1714652389 1514263 524235669 28 52973

Table 9: Results for {1, n− 1}-crucial permutations.

n Solutions Nodes Solutions Solutions Nodes
Searched up to Symmetry π = r(c(π)) Searched

up to Symmetry
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0
6 0 0 0 0 0
7 0 102 0 0 16
8 0 161 0 0 25
9 0 244 0 0 34
10 0 351 0 0 232
11 0 485 0 0 46
12 0 649 0 0 61
13 0 846 0 0 122
14 0 1079 0 0 845
15 0 841776 0 0 4113
16 553428 23833969 276714 0 113
17 5424 107571076 2712 28 53437

Table 10: Results for {0, 1, n− 1} and {1, n− 1, n}-crucial permutations. Node counts from
former.
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n Solutions Nodes Solutions Solutions Nodes
Searched up to Symmetry π = r(c(π)) Searched

up to Symmetry
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0
6 0 0 0 0 0
7 0 83 0 0 16
8 0 126 0 0 25
9 0 479 0 0 43
10 0 351 0 0 232
11 0 1665 0 0 46
12 0 1422 0 0 61
13 0 110752 0 0 1243
14 0 63292 0 0 845
15 0 7381558 0 0 4113
16 0 3471394 0 0 113
17 550976 282598708 275488 28 56784

Table 11: Results for {0, 1, n} and {0, n − 1, n}-crucial permutations. Node counts from
latter.

n Solutions Nodes Solutions Nodes Solutions Nodes
Searched up to Symmetry Searched π = r(c(π)) Searched

up to Symmetry
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 0 0 0 0 0 0
8 0 0 0 0 0 0
9 0 0 0 0 0 0
10 0 0 0 0 0 0
11 0 0 0 0 0 0
12 0 0 0 0 0 0
13 0 0 0 0 0 0
14 0 0 0 0 0 0
15 0 0 0 0 0 0
16 0 0 0 0 0 0
17 1568 9214495 406 823 28 55
18 0 0 0 0 0 0
19 0 17819710 0 0 0 0
20 0 0 0 0 0 0
21 ≥ 289172 timeout ≥ 144586 ≥ 5795227 timeout
22 0 0 0 0 0 0
23 timeout timeout 0 0
24 timeout timeout 0 0
25 timeout timeout timeout
26 timeout timeout 0 0

Table 12: Results for {0, 1, n−1, n}-crucial permutations (also called S-crucial permutations
in the main text). A timed out run is one which failed to find any solutions before 6 hours
cpu time were used on our machine. Note that problems do not get monotonically harder,
presumably because some sizes, e.g., 22, are intrinsically easier to search than other sizes.
Interestingly, no solutions were found for 21 in regular search. However, because 144,586 were
found up to symmetry before the timeout: all of these and their complements are S-crucial
permutations so we obtain the lower bound given in the first column. These experiments
were run with SSAC preprocessing and dom/wdeg heuristic.
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