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ABSTRACT. The AllDifferent constraint is a crucial component of any constraint toolkit,
language or solver, since it is very widely used in a variety of constraint models. The liter-
ature contains many different versions of this constraint, which trade strength of inference
against computational cost. In this paper, we focus on the highest strength of inference, en-
forcing a property known as generalised arc consistency (GAC). This work is an analytical
survey of optimizations of the main algorithm for GAC for the AllDifferent constraint. We
evaluate empirically a number of key techniques from the literature. We also report im-
portant implementation details of those techniques, which have often not been described
in published papers. We pay particular attention to improving incrementality by exploiting
the strongly-connected components discovered during the standard propagation process,
since this has not been detailed before. Our empirical work represents by far the most
extensive set of experiments on variants of GAC algorithms for AllDifferent. Overall,
the best combination of optimizations gives a mean speedup of 168 times over the same
implementation without the optimizations.

1. INTRODUCTION

Constraints are a powerful and natural means of knowledge representation and infer-
ence in many areas of industry and academia. Consider, for example, the production of a
university timetable. This problem’s constraints include: the maths lecture theatre has a
capacity of 100 students; art history lectures require a venue with a slide projector; no stu-
dent can attend two lectures simultaneously. Constraint solving of a combinatorial problem
proceeds in two phases. First, the problem is modelled as a set of decision variables, and
a set of constraints on those variables that a solution must satisfy. A decision variable rep-
resents a choice that must be made in order to solve the problem. The domain of potential
values associated with each decision variable corresponds to the options for that choice.
In our example one might have two decision variables per lecture, representing the time
and the venue. For each class of students, the time variables of the lectures they attend
may have an AllDifferent constraint on them to ensure that the class is not timetabled to
be in two places at once. The second phase consists of using a constraint solver to search
for solutions: assignments of values to decision variables satisfying all constraints. The
simplicity and generality of this approach is fundamental to the successful application of
constraint solving to a wide variety of disciplines such as scheduling, industrial design and
combinatorial mathematics [29].

The AllDifferent constraint expresses that a vector of variables take distinct values. It
is a crucial component of any constraint system, since it is very widely used in a variety
of constraint models, for diverse problems such as quasigroup construction and comple-
tion, sports scheduling, timetabling and golomb ruler construction. The literature contains
many different versions of this constraint, which trade strength of inference against com-
putational cost. Indeed, choosing an appropriate level of consistency is sometimes vital
to solving a CSP efficiently [26]. Van Hoeve surveys various strengths of inference [28],
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including the weak and fast pairwise decomposition described in Section 6.1.2, bound and
range consistency, and generalised arc consistency (GAC). The classic GAC algorithm for
the AllDifferent constraint is given by Régin [21]. In this paper, we focus on the high-
est strength of inference (enforcing GAC). Limiting ourselves to GAC allows us to study
various optimizations in great depth, but does mean that the scope of the paper does not
include optimizations of bounds and range consistency algorithms.

This work is an analytical survey of optimizations of the main algorithm for generalised
arc consistency (GAC) for the AllDifferent constraint. While based on a survey of pub-
lished optimizations, we extend the literature in three ways. First, we provide extensive
implementation details of the optimizations we cover. Such details are often omitted from
initial publications, for example for reasons of space. Providing such details should save
future workers from having to reinvent the wheel. Second, we provide extensive empirical
analyses to show the value or otherwise of the techniques we survey. Importantly, we are
able to evaluate optimizations in combination with each other. Third, we go into particular
detail on techniques which have not been described in the literature before, and some new
techniques we introduce here. In the former category, we show how to explore incremen-
tality in strongly connected components during search. In the latter category, we introduce
methods for reducing the number of necessary propagations using dynamic triggers, and
an optimization for the case where variables are assigned.

In Section 2 of this paper, we review key background material, present Régin’s algo-
rithm at a high level, and survey optimizations for it that have been proposed in the lit-
erature. We discuss incremental matching, domain counting, the use of a priority queue,
staged propagation, processing strongly connected components independently, important
edges, advisors, and fixpoint reasoning. In Section 3 we give implementation details for
the algorithm. The detailed survey of key implementation issues is one of the contributions
of this paper.

In Section 4, we give extensive details of how to exploit strongly connected components
(SCCs) to improve efficiency in AllDifferent propagation. In Régin’s algorithm, we find a
set of SCCs in a graph formed from allowed values and a matching between variables and
values. Edges between distinct SCCs represent impossible values. As we move down a
branch in the search tree, an SCC can only remain the same or split into new SCCs. Thus,
when we remove a variable-value pair, we need only study the individual SCC which
contained the deleted variable-value pair. Since this may contain only a small fraction
of all the variables in the original constraint, we can greatly reduce the amount of work
that this incremental propagation requires. This paper presents this technique in detail for
the first time, since it has previously been in the folklore rather than the literature. We
show empirically that this is a very valuable optimization in Section 6. We also give a
further, minor, optimization to the computation of SCCs, for the common case that we
have assigned a variable to a value.

In Section 5, we show how to exploit “dynamic triggers” for GAC AllDifferent. In a
standard algorithm we have to do some work when any value is deleted. Katriel proved
that there is a small set of variable-value pairs such that no propagation is possible if any
other value is deleted [16] and gave a probabilistic algorithm to exploit the idea. We
extend this idea to a technique which maintains GAC deterministically, while reducing
the number of times the propagator is called. This can be implemented in Minion using
dynamic triggers [10]. We show in fact marginally better performance on a version where
we implement dynamic triggers internally within the AllDifferent propagator. This has
the added advantage that it is portable to solvers which do not have a dynamic trigger
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infrastructure. We give full details in Section 5 with experimental results in Section 6.4.
We conclude that the technique is of benefit mainly where GAC AllDifferent performs
badly, so it may not be generally useful.

Our empirical work in Section 6 represents by far the most extensive set of experiments
on variants of GAC algorithms for AllDifferent. We implement most (although not all)
of the optimizations we have surveyed. Implementations are based on the state-of-the-art
Minion constraint solver [9]. Our comparisons are never with a straw-man implementa-
tion, as all techniques use the same implementation except for the addition of optimizations
or the replacement of one technique with another. Our results make a number of points.
In some cases, we confirm standard advice from the literature on how to implement GAC
AllDifferent. We show in Section 6.3 that incremental matching can reduce runtime, and
that as an expensive constraint the AllDifferent constraint should be propagated in a sep-
arate queue after cheaper constraints. Also, we show that it is worthwhile to combine
the GAC AllDifferent algorithm and a cheaper algorithm into a hybrid staged propagator.
Against existing advice from the literature, we show that a simpler matching algorithm can
be more effective than a more complex one. And, although not reported in the literature
before, we show that exploiting strongly connected components is particularly beneficial,
with an average speedup of about 3 times. We summarise our advice to future implementers
in Section 7.

Compared with a vanilla implementation of Régin’s algorithm, our best combination of
techniques is always better than not using them, and can speedup search by thousands of
times. We get a mean speedup of 168 times over the vanilla implementation. We hope
that our survey will help other implementers to obtain these speedups in their systems, and
stimulate researchers to invent even more effective optimizations.

2. BACKGROUND

2.1. Preliminaries. A CSP P = 〈X ,D ,C 〉 is defined as a set of n variables X =
〈x1, . . . ,xn〉, a set of domains D = 〈D1, . . . ,Dn〉 where Di ( Z, |Di| < ∞ is the finite set
of all potential values of xi, and a conjunction C = C1∧C2∧·· ·∧Ce of constraints.

Within CSP P = 〈X ,D ,C 〉, a constraint Ck ∈ C consists of a sequence of r > 0
variables Xk = 〈xk1 , . . . ,xkr〉 with respective domains Dk = 〈Dk1 , . . . ,Dkr〉 s.t. Xk is a
subsequence1 of X , Dk is a subsequence of D , and each variable xki and domain Dki

matches a variable x j and domain D j in P . Ck has an associated set CS
k ⊆ Dk1 ×·· ·×Dkr

of tuples which specify allowed combinations of values for the variables in Xk.
Although we define a constraint Ck to have scope 〈xk1 , . . . ,xkr〉, when discussing a partic-

ular constraint we frequently omit the k subscript, and refer to the variables as 〈x1, . . . ,xr〉,
and to the domains as 〈D1, . . . ,Dr〉.

An AllDifferent constraint is a constraint Ck of any arity, where CS
k contains all tuples

where the values are all distinct. Throughout, we use r as the arity of the AllDifferent
constraint in question. We use d to represent the number of domain values involved in the
constraint: d = |D1∪ . . .∪Dr|.

A literal is defined as a variable-value pair, xi 7→ j such that xi ∈X and j ∈ Z. To
prune a literal is to remove the value j from the domain Di. In the context of a constraint
Ck, we refer to a tuple τ of values as being acceptable iff τ ∈CS

k , and valid iff |τ|= r and
∀ j : τ[ j] ∈ Dk j (i.e. each value in the tuple is in its respective domain).

1We use subsequence in the sense that 〈1,3〉 is a subsequence of 〈1,2,3,4〉.
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(e) The three strongly-connected components

FIGURE 2.1. Examples of graphs

Graph theory. Régin’s AllDifferent algorithm [21] makes use of results from graph theory,
in particular maximum bipartite matching [3] and strongly connected components [27].

We consider bipartite graphs and digraphs. A bipartite graph G = 〈V,E〉 is defined as
a set of vertices V and a set of edges E ⊆V ×V , where the edges are interpreted as having
no direction, there are no duplicate edges, and the vertices can be partitioned into two sets
V1 and V2 such that no two elements in the same set are adjacent. Figure 2.1(a) shows an
example of a bipartite graph, where V1 = {1,2,3} and V2 = {4,5,6}.

A matching of a bipartite graph is a set of edges M ⊆ E such that no two edges connect
to the same vertex. Figure 2.1(b) shows an example of a matching of cardinality two, where
the bold, dotted edges are in the matching. A maximum matching (also called a maximum
cardinality matching) is a matching with the maximum cardinality. Figure 2.1(c) shows a
maximum matching for the example bipartite graph. In this case, the maximum matching is
unique. There are many algorithms which can compute a maximum matching in a bipartite
graph, for example Hopcroft-Karp [14] and Ford-Fulkerson [6].

A digraph is also a pair G = 〈V,E〉 of a set of vertices V , and a set of edges E ⊆V ×V .
Edges are interpreted as having direction. Figure 2.1(d) shows an example of a digraph.
A strongly connected component (SCC) is a maximal set of vertices of a digraph with the
property that there is a path from any vertex to any other in the set. It follows that there are
cycles within the SCCs, and no cycles with edges between SCCs. The set of SCCs forms
a partition of the vertices of the digraph. Tarjan’s algorithm can be used to efficiently
compute the SCCs of any digraph in linear time [27]. For figure 2.1(d), the three SCCs are
{1,2,4,5}, {3} and {6}, as shown in figure 2.1(e).

2.2. Régin and Costa’s algorithm. As pointed out by Knuth and Raghunathan [18], it is
well known that the problem of finding a system of “distinct representatives” is equivalent
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to bipartite matching. In the context of constraint solving, Régin [21] exploited this equiva-
lence to construct the classic GAC algorithm for the AllDifferent constraint. A very similar
algorithm was published by Costa [7] simultaneously. Régin’s algorithm has a better time
bound. From here on, we will only consider Régin’s algorithm.

The algorithm uses results from graph theory, in particular a theorem by Berge [3] (ch.
7, page 125), in an algorithm with two major stages: finding a maximal matching from vari-
ables to distinct values, and finding the strongly connected components of a digraph. The
algorithm is usually incremental, but for simplicity we summarize it in a non-incremental
form:

(1) Find a maximum valid matching M from variables to distinct values. The Hopcroft-
Karp [14] or Ford-Fulkerson [6] algorithms may be used for this.

(2) If |M|< r, the constraint is unsatisfiable.
(3) Construct the residual graph R from M and the variable domains. This digraph has

the property that edges between strongly-connected components of R correspond
to literals which can be pruned. R is defined below (definition 2.2).

(4) Compute the strongly connected components (SCCs) of R. Tarjan’s algorithm [27]
may be used for this.

(5) Prune variable-value pairs where the corresponding edge traverses two SCCs in G,
and the pair is not contained in M. 2

2.2.1. Informal description of the algorithm. Consider the following example.

x1,x2 ∈ {1 . . .2},x3,x4 ∈ {2 . . .6} : AllDifferent([x1 . . .x4])

Computing the matching. The bipartite variable-value graph is shown in figure 2.2(a).
Each variable is represented by a vertex, each value is represented by a vertex, and a
variable xi and value j are connected by an edge iff j is in the domain of xi. This graph is
denoted B. The first stage of the algorithm above is to construct a maximum matching in
this graph.

We can consider the bipartite maximum matching problem as a maximum flow problem
in a digraph. Maximum flow is the problem of finding the maximum rate at which a
material can be shipped from a source vertex to a sink, along the edges in the digraph,
without violating capacity constraints on the edges. The digraph is constructed from B by
adding a source vertex s and a sink t. The set of edges is as follows: s to all variables
x1 . . .x4, each value 1 . . .6 to the sink t, and each edge in B is translated to a directed edge
from the variable vertex to the value. This yields the graph in figure 2.2(b), which we refer
to as the flow graph. For the purpose of finding a maximum flow, each edge has capacity
1.

The Ford-Fulkerson method [6] (chapter 27) can be used to find a maximum flow in the
flow graph from s to t. The algorithm finds an augmenting path, which is a path which can
be used to increase the flow. For example, s→ x1→ 1→ t is an augmenting path in figure
2.2(b). The algorithm applies the augmenting path to increase the flow, and computes a
second flow graph. A second augmenting path is sought in the second flow graph, and in
this way Ford-Fulkerson iteratively finds and applies augmenting paths until no such path
exists. Hence there is a sequence of flow graphs, culminating in a final flow graph which
represents a maximum flow from s to t.

2In some cases an edge will be contained in the matching but will also traverse two SCCs. This occurs when
an edge is vital [21]. For example when a variable is assigned, the variable and the value are each contained in a
singleton SCC, but the assignment must be contained in M.
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FIGURE 2.2. Graph for maximum flow algorithm
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FIGURE 2.3. Two possible final flow graphs

Each edge of any flow graph is either used in the flow from s to t, or unused. An
unused edge can carry a new flow of size one, in the direction of the edge in the first flow
graph. Conversely, a used edge can carry a new flow in the opposite direction, and become
unused. Therefore, in all flow graphs, the direction of used edges is reversed relative to
their direction in the first flow graph.

When an augmenting path is applied, each used edge in the path becomes unused and
vice versa. This has the effect of reversing the direction of all edges in the path, to create
the next flow graph in the sequence.

One possible final flow graph is shown in figure 2.3(a), representing the matching xi = i
for all i ∈ 1 . . .r. The final flow graph represents a maximum matching, which is used in
the next stage of the AllDifferent algorithm.

At this point, the algorithm must test whether the maximum matching covers all vari-
ables. If it does not, then the constraint cannot be satisfied, since every variable must be
assigned some value (line 2 in the algorithm above).
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Computing the SCCs. Consider figure 2.3(a) again. If we take any cycle in this graph, and
reverse the direction of all its edges, then we have another flow graph which represents a
different maximal matching. For example, if the cycle t → 4→ x4 → 5→ t is reversed,
we change the assignment of x4 to 5 in the matching. Reversing the cycle 3→ x3→ 4→
x4 → 3 corresponds to swapping values 3 and 4 in the matching. This is very similar to
one iteration of the Ford-Fulkerson algorithm, the difference being that the flow from s
to t remains constant, because the path starts and ends at the same vertex. For the cycle
3→ x3→ 4→ x4→ 3, the result of reversing the cycle is shown in figure 2.3(b).

It is possible to generate all maximum matchings by finding cycles in the final flow
graph, and reversing all edges in the cycle [3] (ch. 7, pages 124-125). In the language
of Berge, the cycles which include t correspond to alternating elementary even chains
starting at an unsaturated vertex. Cycles which do not include t correspond to alternating
elementary cycles.

In figure 2.3(a), the two sets s1 = {x1,x2,1,2} and s2 = {x3,x4,3,4,5,6, t} are distinct
because there is no cycle containing vertices from both sets. In other words, the variables
in s1 cannot be made to take values in s2 and vice versa. In fact s1 and s2 are SCCs (as
defined in Section 2.1). Two edges (x3→ 2, x4→ 2) cross from one SCC to the other.

The final flow graph is partitioned into SCCs. For figure 2.3, the SCCs are s1 =
{x1,x2,1,2}, s2 = {x3,x4,3,4,5,6, t}, and s3 = {s}. For any edge which crosses from
one SCC to another, and is not contained in the matching, its corresponding domain value
is removed. This is sufficient to enforce GAC [21]. In this example, 2 is removed from the
domain of x3 and x4 because of the edges x3→ 2 and x4→ 2.

2.2.2. The AllDifferent algorithm in detail. To construct a sound and complete GAC algo-
rithm [21], Régin exploited a result by Berge, applied to B: an edge is free (belonging to
some, but not all, of the maximum matchings) iff the edge belongs to a path which is even
(containing an even number of edges) and alternating (the path alternates between edges
in the matching and not) beginning at an unmatched vertex, or an alternating cycle [3] (ch.
7, page 125). Edges which are neither free nor in the matching are in no maximum match-
ing, and correspond to a variable-value pair that can therefore be pruned. We now describe
Régin’s algorithm in detail.

In the informal description above, we used the Ford-Fulkerson algorithm to compute the
matching, and its final residual graph is used in the second stage of the algorithm. Ford-
Fulkerson may not be the most efficient matching algorithm, so in this section we separate
the matching from the SCC computation.

The size of the union of all domains is |D1 ∪ . . .∪Dr| = d. For simplicity, domain
elements are assumed to be 1 . . .d.

Definition 2.1. The bipartite variable-value graph is defined as B = 〈V,E〉 where V =
{x1, . . . ,xr,1, . . . ,d} and E = {xi↔ j | j ∈ Di}

A bipartite matching algorithm is applied to B, returning a maximum-cardinality match-
ing M : {x1, . . . ,xr} → {1, . . . ,d}. If |M|< r then the AllDifferent constraint is not satisfi-
able, and the algorithm returns false.

Next we construct the residual digraph as a function of M and D1 . . .Dr. This is similar
to the final flow graph, except that we omit the source vertex s since it is always a singleton
SCC, and the direction of each edge is opposite (for efficiency reasons; this does not affect
the SCCs).

Definition 2.2. The residual digraph is defined as R = 〈V ′,E ′〉where V ′= {x1, . . . ,xr,1, . . . ,d, t}
and there are four types of edges: E ′ = M∪E2∪E3∪E4. The matching edges M connect



The AllDifferent Constraint: An Empirical Survey 8

variables to values. Residual edges connect values to variables, where the value is not used
in the matching: E2 = { j 7→ xi | j ∈ Di ∧ (xi 7→ j) /∈ M}. A third set of edges connect to
t: E3 = { j 7→ t |∃i : (xi 7→ j) ∈ M} and a fourth set connect from t to unmatched values:
E4 = {t 7→ j |(@i : (xi 7→ j) ∈M) ∧ (∃i : j ∈ Di)}.

An SCC algorithm is applied to R, returning a partition S = {s1, . . . ,sk} of V ′. If k = 1
then the algorithm is finished. Otherwise, for each edge in B which is not contained in M,
and which connects vertices in two SCCs in S, the edge corresponds to a variable-value
pair which is pruned.

2.3. Optimizations to the basic algorithm. A number of optimizations to the basic algo-
rithm have been proposed by various authors. We survey them here.

2.3.1. Incremental matching. The matching M may be maintained incrementally during
search [21]. Régin suggested that a representation of the variable-value graph and the set
of edges involved in the matching would be stored between calls. Deleted edges would
be restored upon backtracking beyond the decision that caused their removal. Edges cor-
responding to pruned values would be removed incrementally. In order to remove the
appropriate edges, Régin’s algorithm requires that a set of removed values is passed into
the propagator.

If Hopcroft-Karp is used to repair the matching, Régin reports that the time complexity
of Hopcroft-Karp, and of the AllDifferent algorithm as a whole, is improved from O(r1.5d)
to O(

√
krd), where k is the number of matching edges which have been lost [21].3

2.3.2. Domain counting. Quimper and Walsh [20] proposed variants of the AllDifferent
and Global Cardinality constraints for set, multiset and tuple variables. These variable
types can have extremely large domains. They observe that if the domain of a variable
xi is larger than some threshold, then the constraint need not be triggered by any pruning
from xi. The threshold value is always less than or equal to r. Quimper and Walsh give
an algorithm that calculates the size of all domains before constructing a set of variables
whose domains are smaller than their threshold value. While this idea was conceived in the
context of set, multiset and tuple variables, it may apply to small finite domains as well.

We suspect that counting all domains would be expensive. In our experiments, we
follow the simpler approach of Lagerkvist and Schulte [19], which uses r as the threshold
value. When a variable event triggers the constraint, the domain Di of the variable is
counted. If |Di| ≤ r, then the propagator is called (or queued to be called).

We observe that the threshold can be reduced to r−1. The original lemma [20] is based
on Hall sets, where a Hall set is a set H of variables such that each variable domain is a
subset of a set of values DH , and |DH |= |H|. If a Hall set exists, then all values in DH are
pruned from all variables not in H. If all Hall sets are found and corresponding pruning
is performed, then GAC is established. A Hall set of size r is of no use, because there are
no variables outside the Hall set to be pruned. The largest Hall set which is useful is of
size r− 1, where all domains are of size r− 1 or less. Therefore in our experiments with
domain counting, the propagator is called (or queued to be called) only if Di is changed
and |Di|< r.

As an example of a Hall set, consider the following AllDifferent constraint: x1 . . .x3 ∈
{1 . . .3},x4 . . .x6 ∈ {3 . . .6} : AllDifferent(x1 . . .x6). The variables x1 . . .x3 form a Hall set,

3In a more recent presentation (see http://www-sop.inria.fr/coprin/cpaior04/files/graphandcp.ppt slide 70),
Régin revises this bound to O(krd).
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with values 1 . . .3. Therefore, value 3 is removed from the domains of variables x4 . . .x6.
This type of reasoning is used informally to solve Sudoku puzzles.

2.3.3. Priority queue. Many constraint solvers have a priority queue for constraints [1,
15, 23], such that the priorities determine the order in which constraint propagators are
executed. It is standard practice for the AllDifferent constraint to have a low priority.
Schulte and Stuckey demonstrate the importance of priority queueing [22], and we evaluate
it in our experiments.

2.3.4. Staged propagation. Schulte and Stuckey also propose multiple or staged propaga-
tion [22], where a cheap propagator with a high priority is combined with a more expensive,
low priority propagator. For instances containing AllDifferent this approach shows some
promise, so we evaluate a staged propagator in our experiments.

2.3.5. Decomposition of AllDifferent. Suppose for example we have AllDifferent(x1 . . .x6)
and have x1 . . .x3 ∈ {1 . . .3}, x4 . . .x6 ∈ {4 . . .6}. This can decompose into independent
constraints AllDifferent(x1 . . .x3) and AllDifferent(x4 . . .x6). This decomposition saves
time if we can efficiently find and manage the decompositions. Unfortunately, this opti-
mization is in the folklore of the community rather than the literature.4 One cheap method
of decomposing the constraint is to use the strongly connected components found by the
GAC AllDifferent algorithm. As we report in Section 4, this method is not complete (it
does not find all possible decompositions), but it works well in practice. How to manage
the decompositions efficiently is less obvious. One of the contributions of this paper is to
describe, in Section 4, how to implement this optimization efficiently, including algorithms
and data structures.

2.3.6. Important Edges. Katriel observed that many value removals affecting an AllDif-
ferent result in no other value removals, and so work processing them is wasted [16]. In
the more general context of constraints based on network flows, she introduces the concept
of an “important edge”. An important edge is one whose removal causes the removal of
some variable-value pair. She gives an upper bound for the number of important edge for
AllDifferent and generalised cardinality constraints. If the graph is dense enough (i.e. if
there are many allowed values per variable), she shows that expected cost of propagation
can be reduced by only propagating intermittently. She suggests firing propagation when a
simple count of value removals affecting constraints hits a number indicating that, proba-
bilistically, a value is likely to be deleted. Note that this algorithm does not actually enforce
GAC, because it may miss propagations when the count is low, catching them at a deeper
node in the search tree. Katriel does not report an implementation, and observes that the
risks of failing to propagate may outweigh the reduced cost of propagation.

While an implementation of Katriel’s algorithm would be interesting, the fact that it
does not maintain GAC puts it outside the scope of this paper. In this paper we adapt
the notion of important edges to reduce the number of times the AllDifferent propagator
is called while still guaranteeing that GAC is enforced correctly. We do this by using
“dynamic triggers” [10], and report on this in detail in Section 5. We describe a cheap
technique for finding at most 2r + d edges such that any edge not in the set is guaranteed
not to be an important edge.

4To see that the idea is known, see slide 61 of [4], from which our example is taken.
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Algorithm 1 AllDifferent most basic variant
propagate(): returns Boolean

(1) for i in {1 . . .r}: matching[i]← i // initialize the matching
(2) hasMatching←FindMaximumMatching(matching, {x1 . . .xr}) // repair the match-

ing
(3) if not hasMatching:
(4) return False
(5) FindSCCsRemoveValues(matching, {x1 . . .xr})
(6) return True

2.3.7. Other proposals in the literature. Lagerqvist and Schulte develop advisors in the
context of the Gecode solver [19]. An advisor is a procedure which is executed imme-
diately when a variable event occurs. They use advisors with AllDifferent to implement
domain counting, and to eagerly maintain the matching whenever it is violated. Unfortu-
nately, for all the AllDifferent variants and problem instances they experimented with, the
cost of advisors outweighed their benefits [19]. We did not experiment with advisors.

Schulte and Stuckey propose fixpoint reasoning [22] and observe a very slight (0.1%)
improvement in runtime for their instance golomb-10-d which has a GAC AllDifferent con-
straint. Fixpoint reasoning can reduce the number of calls to the propagator, by eliminating
useless calls. However, they observe that useless execution of the AllDifferent algorithm
is cheap due to its incrementality. We did not experiment with fixpoint reasoning.

3. IMPLEMENTATION OF THE ALLDIFFERENT ALGORITHM

In this section we report on a number of implementation details of the GAC AllDiffer-
ent propagator, which we then use for empirical evaluation of optimizations. This gives a
survey of the major and some minor issues facing any implementer. With the exception
of two matching algorithms, we make design decisions either based on the literature or
based on what seems reasonable for the purpose, rather than subjecting our choices to rig-
orous empirical evaluation. In this section we do select two bipartite maximum matching
algorithms for later empirical comparison, selecting one which has a good time bound and
another which is known to work well in practice.

Algorithm 1 shows the most basic variant of the AllDifferent propagator. This variant
is not incremental in any way. It simply calls FindMaximumMatching and FindSCCsRe-
moveValues.

To support incremental matching, line 1 would be removed. The two matching algo-
rithms we consider both perform iterative repair, so no changes need to be made there to
support incremental matching. This variant of AllDifferent has one item of state which
is stored from one call to the next (the matching function). This is not backtracked, be-
cause a valid matching is backtrack stable. As values are restored on backtracking, a valid
matching remains valid since none of the values in it are removed.

Both variants of AllDifferent call FindMaximumMatching and FindSCCsRemoveVal-
ues. These two functions are described in sections 3.1 and 3.2 below.

Régin claims that the space complexity of AllDifferent is O(rd) because the variable-
value graph is stored explicitly [21]. In Régin’s approach, the variable-value graph is
maintained as values are removed from domains, and it must be backtracked as search
backtracks. This could be justified in a context where querying domains is expensive.
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However, in our experimental context, querying domains is cheap. Therefore, in our imple-
mentation, we do not store either the variable-value graph or the residual graph explicitly,
reducing the space complexity to O(d). The graphs are discovered as they are traversed.
Since most edges correspond to a variable-value pair, checking if an edge is present is im-
plemented as testing if a domain contains a particular value. When discovering all edges
from a variable vertex, it is necessary to iterate over a domain. Ideally the solver would
provide a domain iterator, which would find the first and next domain elements in constant
time. In our experiments, the solver provides the minimum and maximum values of the
domain, which we use to bound the iteration. To find all edges from a value vertex to a
variable, it is necessary either to iterate through all variables (as we do herein), or to store
and backtrack the graph explicitly.

3.1. Maximum Bipartite Matching. The first algorithm we considered was the Hopcroft-
Karp algorithm [14]. The Hopcroft-Karp algorithm runs in time O(

√
rm) where m is the

number of edges in the variable-value graph (m ≤ rd). However (when using incremen-
tal matching) the algorithm only computes a matching from scratch at the root node of
search; subsequently it repairs a matching where k edges have been lost. With Hopcroft-
Karp the cost is reported to be O(

√
km) [21]. Our implementation in C++ follows that of

Eppstein [8].
The second algorithm we implemented was Ford-Fulkerson [6] with a simple breadth-

first search (FF-BFS) for augmenting paths. It begins with an unmatched variable vertex,
and searches for an augmenting path. The augmenting path is then applied to increase the
cardinality of the matching by one. This is iterated until there are no more unmatched
variable vertices, or the BFS does not find an augmenting path.

FF-BFS has the advantage of good average behaviour on a wide range of bipartite graphs
[25], although the algorithm runs in time O(rm). To repair a matching where k edges have
been lost, the cost is O(km).

Régin [21] used the Alt, Blum, Mehlhorn and Paul [2] (ABMP) algorithm, which is
a variant of Hopcroft-Karp with a time bound of O(r1.5

√
m/ logr). In terms of the up-

per bound, Hopcroft-Karp is better for sparse graphs, whereas ABMP is better for dense
graphs. We do not know the density of the variable-value graph in advance.

Compared to other applications of matching algorithms, our graphs are relatively small.
In our experiments, the problem class with the largest AllDifferent constraint is the con-
trived problem (r = 500). The second largest is for social golfers (r = 480), and the third
is sports scheduling (r = 120). This is not because our instances are easy; many take over
two hours to solve.

Setubal empirically compared ABMP, FF-BFS, FF-DFS (Ford-Fulkerson with depth-
first search) and Goldberg’s algorithm [25]. He generated bipartite graphs with 2p vertices
in each partition, where p ∈ {8 . . .17}. If we estimate that our graphs have 29 vertices
in each partition, an examination of Setubal’s results (taking the size closest to 29 for
each class of graphs, and only considering sequential computers) shows that FF-BFS is
competitive for all classes and is most efficient (or equal) in 8/11 classes.

Taking these results together with earlier work by Setubal [24], we expect FF-BFS to
perform better than Hopcroft-Karp in our experiments. This is the case, as shown in section
6.3.

3.2. Finding SCCs and removing domain values. To compute the SCCs, we use Tar-
jan’s algorithm [27], since it is simple and efficient (with a time bound of O(|V |+ |E|)
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Algorithm 2 FindSCCsRemoveValues
FindSCCsRemoveValues(matching, varSet): returns nothing

(1) visited← /0; TStack← []; maxDFS← 1; hasSCCSplit←False
(2) for xi ∈varSet:
(3) if xi /∈visited:
(4) TarjanRemoveValues(xi) // start search at xi

TarjanRemoveValues(curnode): returns nothing
(1) TStack.push(curnode)
(2) DFSNum[curnode]←maxDFS
(3) lowLink[curnode]←maxDFS
(4) maxDFS←maxDFS+1
(5) visited.insert(curnode)
(6) for newnode∈neighbourhood(curnode):
(7) if newnode∈visited:
(8) if newnode∈TStack:
(9) lowLink[curnode]←min(lowLink[curnode], DFSNum[newnode])

(10) else:
(11) TarjanRemoveValues(newnode)
(12) lowLink[curnode]←min(lowLink[newnode], lowLink[curnode])
(13) if lowLink[curnode]=DFSNum[curnode]: // if curnode is the root of an SCC
(14) if lowLink[curnode]>1 or DFS did not traverse all variables:
(15) hasSCCSplit←True
(16) if hasSCCSplit:
(17) SCC← /0; stacknode←null
(18) while stacknode6=curnode:
(19) stacknode←TStack.pop()
(20) SCC.insert(stacknode)
(21) for e ∈SCC where e ∈ {1 . . .d}: // e is a domain value
(22) for xi ∈varSet where xi /∈SCC:
(23) removeFromDomain(xi,e)

or O(rd)). It is also suitable for the optimization we describe in Section 5, where some
information is collected from the algorithm as it runs.

Algorithm 1 calls FindSCCsRemoveValues (algorithm 2), which finds SCCs and re-
moves the appropriate values to achieve GAC. To avoid storing all the SCCs explicitly,
these two tasks are implemented together. FindSCCsRemoveValues is a simple wrapper
which initializes data structures and calls TarjanRemoveValues, possibly more than once
as needed. All variables are shared between FindSCCsRemoveValues and TarjanRemove-
Values.

TarjanRemoveValues performs Tarjan’s algorithm [27] recursively (lines 1-12), and re-
moves values from domains using the SCCs (lines 13-23). Tarjan’s algorithm performs a
depth-first search (DFS). If it is implemented recursively (as it is here), the SCCs can be
constructed as the recursion unwinds. The crux of Tarjan’s algorithm is the root property,
by which a vertex is identified as the root of an SCC. The root property is tested on line 13.
When a root is identified, the SCC is constructed from the TStack data structure.
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The residual graph (definition 2.2) is given by the neighbourhood function (line 6),
where neighbourhood(v) returns the set of vertices {v1,v2, . . .} that are connected to v by
a directed edge v 7→ v j.

The data structures of Tarjan’s algorithm are described below.

• maxDFS is a simple counter, starting at 1, which is incremented each time a new
vertex is discovered (on line 4).

• DFSNum is used to record the order in which vertices are discovered, by number-
ing the vertices from 1. DFSNum is set from maxDFS on line 2.

• visited is the set of vertices that have been visited. It is updated on line 5.
• TStack is a stack of vertices, which starts empty. Whenever a new vertex is dis-

covered, it is pushed onto TStack (line 1). When the algorithm detects that curn-
ode (the current node in the DFS) is the root of an SCC, it constructs the SCC by
popping all values from TStack, up to and including curnode (lines 17-20).

• lowLink is the key data structure, with the property that lowLink[c] is the min-
imum of the DFSNum of all vertices reachable by following edges used by the
DFS, followed by at most one other edge in R. For each vertex c, lowLink[c]
equals DFSNum[c] iff c is the root of a strongly connected component. lowLink[c]
is initialized to DFSNum[c]. The value of lowLink[c] is updated from neighbour-
ing vertices on lines 9 and 12. When lowLink[c] is used on line 13, it has reached
its final value.

The neighbourhood function does not appear in the program code, to avoid the overhead
of a function call. Instead, lines 6-12 are repeated three times for the following three
cases: where curnode=t, curnode∈ {x1 . . .xr}, or curnode∈ {1 . . .d}. For the case where
curnode= t, the neighbour set is computed ahead of time. If this set is empty, t is omitted
from the residual graph, since it will be a singleton SCC. When curnode∈ {x1 . . .xr,1 . . .d},
the neighbour set is iterated without being explicitly constructed beforehand.

When the algorithm finds the root of an SCC (line 13), it does a simple test to determine
if the residual graph is partitioned (lines 14-15). If the DFS has not traversed all variable
vertices (because some are unreachable), or the recursion did not unwind fully, then the
residual graph must partition into more than one SCC.

If the residual graph does partition, the algorithm computes the current SCC (lines 17-
20). This SCC contains both variables and values, such that in all maximum matchings, the
values are assigned to variables within the SCC. Therefore these values cannot be assigned
to any variable from varSet which is not in the SCC. Accordingly, these values are removed
from all such variables using removeFromDomain.

3.3. Minor implementation details. The graph algorithms manipulate small sets of in-
tegers, performing operations such as inserting and removing integers, clearing the set,
testing the presence of a particular integer, and iterating through the set. One example
is the set of visited vertices in Tarjan’s algorithm. (In the implementation, each vertex is
mapped to a distinct integer.) In all cases we know the range of the integers (it is never
more than 0 . . .r +d).

We designed the following data structure to represent a subset of 0 . . .n. We have an
integer array v[0 . . .n], indexed by set element, and an integer c (called the certificate). v is
initialized to 0, and the certificate to 1. An element e is present in the set iff v[e] = c. To
insert an element e, v[e]← c, and to delete e, v[e]← 0. To clear the set, c← c+1. In this
way, we can clear the set in small constant time.
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FIGURE 4.1. Residual graph example

When we require a set to be iterable, we also maintain an array of the values, stored con-
tiguously, with an integer representing the size of the set. The clear operation can still be
implemented in constant time by setting the size to 0 and incrementing the certificate. For
this type of set the remove operation is linear time, but it is very rarely used, being called
in only one place. It is called once for each application of the assignment optimization
(described in Section 4.2).

The matching M is primarily represented as an array of domain values, indexed by
variable number. When using Hopcroft-Karp, it is also represented as an array of variable
numbers, indexed by value. Both Hopcroft-Karp and FF-BFS maintain the set of values in
the matching. Hopcroft-Karp also maintains the set of variables.

4. EXPLOITING STRONGLY CONNECTED COMPONENTS

In this section we focus on optimizations that exploit strongly connected components
(SCCs) during the search process. The main focus is the first detailed description in the
literature of how to exploit the independence of strongly connected components, which we
described briefly in Section 2.3.5. Here, we describe data structures and algorithms for
the independent processing of SCCs. We also introduce what we believe to be a new, but
minor, optimization to process SCCs faster when a variable has been assigned.

(4.1) x1 . . .x3 ∈ {1 . . .3},x4 . . .x6 ∈ {3 . . .6} : AllDifferent(x1 . . .x6)

To see how we can identify disjoint SCCs, consider (4.1). Assume that the matching
found is xi 7→ i for all i. The residual graph is shown in figure 4.1. Running Tarjan’s al-
gorithm on this graph computes two SCCs containing variables {x1 . . .x3} and {x4 . . .x6}
respectively. After partitioning the graph, the GAC algorithm would prune value 3 from
variables x4 . . .x6. At this point, the two SCCs are completely disconnected in the resid-
ual graph and in the variable-value graph, and will remain so until values are restored by
backtracking. In future calls to the propagator, the two SCCs can be considered indepen-
dently. This allows us to speed up both the maximum matching algorithm and Tarjan’s
algorithm. The two algorithms are run on a subgraph of the variable-value graph (the max-
imum matching algorithm), or on a subgraph of the residual graph (Tarjan’s). Furthermore,
when a variable xi is changed and the changes trigger the AllDifferent constraint, only the



The AllDifferent Constraint: An Empirical Survey 15

SCC containing xi needs to be considered. These changes result in considerable efficiency
gains, as shown in Section 6.5 below.

This method does not perform all possible decompositions of the AllDifferent con-
straint. Suppose for example we have AllDifferent(x1 . . .x6) and have x1 . . .x3 ∈ {1 . . .4},
x4 . . .x6 ∈{5 . . .8}. This can decompose into independent constraints AllDifferent(x1 . . .x3)
and AllDifferent(x4 . . .x6). Our method would not perform this decomposition. Both parts
of the constraint have three variables and four values, and the spare values cause x1 . . .x3
and x4 . . .x6 to be connected through the sink t, hence all six variables are contained within
one SCC. Despite its incompleteness, decomposing according to SCCs works well in prac-
tice, as we will show below.

4.1. Representing set partition. In order to store the SCCs between calls to the AllDif-
ferent algorithm, a backtrackable representation of set partition is needed. It is sufficient
to store the partition of the set of variables (represented as integers 1 . . .r), since the values
can be quickly discovered from the variables. It is important that each set in the partition
is efficiently iterable, since both the matching algorithm and Tarjan’s algorithm need to
iterate over the set of variables. The order of iteration is not important. It is not necessary
to have an O(1) set membership test.

When the AllDifferent algorithm executes, it may subdivide the SCCs further but it
never merges SCCs together or changes them in any other way. Therefore only subdivision
is required, with the sets being restored on backtracking.

For a set of integers S = {1 . . .r}, the partition representation we used consists of two
arrays of integers, and an array of backtracking Booleans.

setElements[1 . . .r]: Contains a permutation of the elements in S.
setElementIndex[1 . . .r]: For each element a ∈ S, setElements[setElementIndex[a]

]= a.
splitPoint[1 . . .r−1]: If splitPoint[b]=False, elements setElements[b] and setElements[b+

1] are in the same subset. Otherwise, elements setElements[b] and setElements[b+
1] belong to different subsets in the partition.

The operation of subdividing the partition involves permuting the elements in setElements
(and updating setElementIndex accordingly), and changing Booleans in splitPoint from
false to true. When this change is backtracked, it is only necessary to restore the splitPoint
array. This is illustrated in figure 4.2 for a simple example.

To subdivide a subset of size n takes O(n) time, since n elements may need to be written
in the setElements array, and n indices updated in the setElementIndex array. Up to n−
1 elements of splitPoint may be changed in this operation. To undo this operation on
backtracking, up to n−1 values of splitPoint are restored.

The setElements and setElementIndex arrays are simple arrays of integers. The split-
Point array is maintained by trailing. Changing a value in the splitPoint array has O(1)
cost overall. It involves three operations which each take O(1) time: changing the value
in memory, adding a record to the trail stack, and also reading the record and restoring
the value on backtracking. Therefore the cost of maintaining splitPoint does not affect the
overall O(n) time to subdivide the partition.

4.2. Assignment optimization. Assignment of a variable, whether by the search proce-
dure or by propagation, is likely to be a common enough case that optimizing it will pay
off. When a variable xi is assigned, the computation of SCCs can be simplified somewhat.
In the residual graph, xi has one outward edge and no inward edges, therefore xi must be
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1 23 45 6setElements:
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Representation of {1,2,3,4,5,6}
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setElementIndex:

1 4 2 5 3 6

1 4 2 5 3 6

splitPoint[3]=true indicates that 
adjacent elements 5 and 2 are in 
different subsets in the partition.

FIGURE 4.2. Illustration of set partition data structure

in a singleton SCC. Where xi 7→ a, value a must be removed from the domain of all other
variables.

To optimize this case, the SCC s containing xi is partitioned. First xi is swapped with
the first element of the SCC in setElements. Then splitPoint[setElementIndex[i]] is set to
True to subdivide s into s1 = {xi} and s2 = s \ {xi}. This process is illustrated in figure
4.3. The value a is removed from the domain of all variables in s2, and s2 is queued to
be processed by Tarjan’s algorithm (since it may subdivide further). This takes O(r) time,
and does not decrease the number of calls to Tarjan’s algorithm. However it does reduce
the size of the graph which Tarjan’s operates on. The effectiveness of this optimization is
tested in Section 6.5.

4.3. Implementing independent SCCs. To implement both the above proposals, we re-
place the simple propagate function (algorithm 1) with propagate-SCC (algorithm 3). This
function requires a set of variables named triggeringVars as a parameter. These are the vari-
ables which have triggered the constraint: in the simplest case this would be all variables
whose domain has changed since the last call to propagate-SCC. When dynamic triggers
(described in Section 5) are used, triggeringVars is the set of all variables which have lost
one or more of their trigger values.

When domain counting is used, triggeringVars is the set of all changed variables whose
domain size is less than r. For a variable xi with a large domain, it is possible for its
matching value (M[i]) to be removed from Di while xi /∈triggeringVars, thus invalidating



The AllDifferent Constraint: An Empirical Survey 17

1 2 3 4 5 6setElements:

0 0 0 00splitPoint:

Partition out {4], leaving {1,2,3,5,6}

4 31 52 6setElements:

0 0 0 01splitPoint:

Backtrack

setElements:

0 0 0 00splitPoint:

Representation of {1,2,3,4,5,6}

1 2 3 4 5 6

setElementIndex:

2 3 4 1 5 6
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FIGURE 4.3. Illustration of partitioning element 4 from the set {1,2,3,4,5,6}

the matching without triggering the constraint. To cover this case, lines 15-17 check the
matching for an SCC s. If some value in the matching has been removed, FindMaximum-
Matching is called. This is only required when domain counting is used, so we introduce
the flag DomainCounting, which is True iff domain counting is being used.

Propagate-SCC iterates through the set of triggering variables, finding which SCC each
variable belongs to (named s, line 3) and checking if the matching has been invalidated
(line 4). If it has, FindMaximumMatching is called to repair the matching (lines 5-6).

Lines 7-11 of algorithm 3 implement the assignment optimization. If xi has been as-
signed, lines 8-11 are executed. It is possible that s has already been added to changed-
SCCs, and since it is about to be partitioned it must be removed from changedSCCs. This
is done on line 8. s is partitioned into the singleton SCC {xi}, and the remainder of s:
s \ {xi} (line 9). Line 10 performs the removal of the assigned value from all variables in
s2, and s2 is queued on changedSCCs if necessary (line 11). If xi is not assigned, and it is
possible for s to subdivide (|s|> 1) then s is added to changedSCCs (line 13).

If the assignment optimization is not required, lines 7-13 are replaced with a single line
which inserts s into changedSCCs.

5. DYNAMIC TRIGGERS FOR THE ALLDIFFERENT CONSTRAINT

By default the AllDifferent constraint would be triggered by any change to any variable
domain. However it is possible to identify cases where the SCCs will remain strongly con-
nected, and therefore no pruning can be done. For example, domain counting, as described
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Algorithm 3 AllDifferent with SCCs processed independently
propagate-SCC(triggeringVars): returns Boolean

(1) changedSCCs← /0
(2) for xi ∈triggeringVars:
(3) s←findSCC(xi,SCCs) {find SCC including xi}
(4) if not inDomain(xi, matching[i]):
(5) hasMatching←FindMaximumMatching(matching, s) {repair the match-

ing}
(6) if not hasMatching: return False
(7) if isAssigned(xi):
(8) changedSCCs←changedSCCs\{s}
(9) Partition s into s1 = {xi} and s2 = s\{xi} in SCCs

(10) for x j ∈ s2: removeFromDomain(x j,getMin(xi))
(11) if |s2|> 1: changedSCCs←changedSCCs∪{s2}
(12) else:
(13) if |s|> 1: changedSCCs←changedSCCs∪{s}
(14) for s ∈changedSCCs:
(15) if DomainCounting and (∃xi ∈ s :not inDomain(xi, matching[i])):
(16) hasMatching←FindMaximumMatching(matching, s)
(17) if not hasMatching: return False
(18) FindSCCsRemoveValues(matching, s)
(19) return True

in Section 2.3.2, yields one such approach. As described in Section 2.3.6, Katriel took
a different approach, defining important edges in the flow graph as those whose deletion
causes further deletions, and showing that the number of important edges is small [16].
Katriel did not, however, extend this observation to a method which can enforce GAC
correctly while (possibly) reducing work. We describe in this section a cheap method for
finding a set of edges which includes all important edges, and how this can be implemented
in a constraint solver using dynamic (movable) triggers.

5.1. Background. Gent et al. proposed watched literals [10], inspired by SAT. Used as
triggers to fire constraint propagations, watched literals have three features different from
triggers as normally used. Watched literals only cause propagation when a given variable-
value pair is deleted; their triggering conditions can be changed dynamically during search;
and they remain stable on backtracking so do not use memory for restoration. Watched
literals have been shown to be effective for the element, table and Boolean sum constraints
by Gent et al. [10, 11].

Watched literal propagation algorithms typically revolve around the concept of support.
A support for a literal is an object which is evidence that the literal is consistent, and
therefore cannot be removed by the propagation algorithm. An example of support would
be a valid, acceptable tuple of a table constraint.5 In this case, the tuple can act as support
for all the literals it contains. While this support is intact, no work needs to be done, but the
constraint must be triggered when any part of the support is invalidated. A second example
of support is a pair of unassigned variables for a CNF clause in SAT: this shows that no
unit propagation can be done. Therefore it is a support for all literals in the clause.

5Each element of a valid tuple is in the relevant domain, and an acceptable tuple is one which satisfies the
constraint, as defined in Section 2.1.
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The variables have certain events which occur when their domain is changed. These
could include lowering the upper bound, raising the lower bound, assigning the variable
to a single value, or removing a specific value from the domain. We refer to placing a
watched literal, meaning to attach it to a variable event, and clearing it, which removes
it from its event. When a variable event occurs, the solver iterates through the watched
literals attached to the event, calling the relevant constraint propagator for each. A fixed
number of watched literals is allocated by the constraint before search begins.

The concept of watched literals is not completely suitable to the AllDifferent constraint,
because watched literals must be correct even though they are not moved on backtracking, a
property called “backtrack-stability”. The object we use as support is not always backtrack-
stable (as we will demonstrate in the next section), therefore the triggers must be restored
on backtracking. Gent et al. refer to backtracked watched literals as dynamic triggers [10].

5.2. Adapting AllDifferent for dynamic triggers. When adapting the AllDifferent al-
gorithm to use dynamic triggers, the important structure is the set of SCCs: if each SCC
remains strongly connected, then no propagation can be done, and it is not necessary to
trigger the constraint. Therefore we focus on Tarjan’s algorithm, and identify edges in the
residual graph which must be present for Tarjan’s algorithm to follow the same trajectory,
and therefore return the same result, if it were to be executed again. All important edges, in
Katriel’s sense [16], must be in this set. Katriel does not give an explicit algorithm for find-
ing a set containing all important edges, although one could be extracted from her proof.
The construction of her proof is based on depth first search in each SCC. We follow a very
similar approach but present it in the context of Tarjan’s algorithm. This method is simple
and efficient, only requiring that some information is gathered as Tarjan’s algorithm runs.

We collect a set T of edges as follows. As described in Section 3.2, Tarjan’s algorithm
performs a depth-first search (DFS) in the residual graph R = 〈V ′,E ′〉. The edges in E ′

which are traversed by the DFS are included in T . The lowlink value of each vertex is also
updated using edges in the graph, and the criterion for identifying an SCC is based on the
lowlink value. For each vertex, the lowlink value may be changed several times, but only
its final value is used in identifying SCCs, therefore the edge used to obtain its final value
is included in T . All other edges in E ′ are not included in T .

We claim that the removal of any edge in E ′ and not in T does not affect the set of SCCs.
We consider all such edges together, since the effect of removing edges on the set of SCCs
is monotonic. (Removing an edge may cause no change, or cause an SCC to subdivide
into two SCCs. Therefore the number of SCCs monotonically increases.) To demonstrate
the claim, we prove that digraph R̂ = 〈V ′,T 〉 has the same SCCs as R. The execution of
Tarjan’s algorithm on digraph D is denoted T (D).

Theorem 5.1. The digraphs R = 〈V ′,E ′〉 and R̂ = 〈V ′,T 〉 have the same SCCs

Proof. The proof is by showing that Tarjan’s algorithm returns the same SCCs for both R
and R̂. Tarjan’s algorithm is correct [27] (Thm. 14).

The order of vertex exploration in the DFS of Tarjan’s algorithm is irrelevant to the
result. It is possible for T (R̂) to perform the exact same DFS as T (R), because the set
of vertices is the same and all edges required by the DFS are in T by definition. Hence,
without loss of generality, we assume that T (R̂) does perform the same DFS as T (R).
Therefore DFSNum for each vertex is identical.

At each vertex v in the DFS tree, lowLink[v] is computed by taking the minimum of a
set Sv of values. Sv corresponds to the lowLink or DFSNum of neighbours of v. For each
neighbour, the inclusion of its corresponding value in Sv depends only on DFS order, which
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FIGURE 5.1. Example of identifying triggers with two different DFS orderings

is invariant. Therefore, all that is required is that an edge corresponding to a smallest value
in Sv is present in T . This is the case by definition.

The final part of T (R) constructs the SCCs as recursion unwinds. The computed SCCs
depend on final values of lowLink and the order of DFS. Therefore T (R̂) constructs the
same set of SCCs. �

Some edges in T directly represent a literal: the edge is of the form xi 7→ j or j 7→ xi.
We place dynamic triggers on all corresponding literals. It is safe to ignore all other edges
in T since they do not correspond to a domain value.

Figure 5.1(a) illustrates the process on a residual graph representing three variables,
x1,x2,x3 and five values 1,2,3,4,5. The DFS is performed in the following order: x1,1,x2,2,x3,3, t,4,5.
The eight edges traversed by the DFS are represented in wide dotted lines in the figure.
Three edges are used to finally change a lowlink value: 2 7→ x1, 4 7→ x2, and 5 7→ x3, which
are represented in solid black in the figure.

Edges to and from t are ignored for the purpose of placing triggers. For figure 5.1(a),
the set of triggers would be x1 7→ 1, x1 7→ 2, x2 7→ 1, x2 7→ 2, x2 7→ 4, x3 7→ 2, x3 7→ 3 and
x3 7→ 5.

Figure 5.1(b) shows a different execution of the algorithm over the same graph. In
this case, DFS is performed in the order x1,1, t,4,x2,2,x3,3,5. This gives a smaller set of
triggers, since x2 7→ 1 is not included in this case. All other triggers are the same as for
figure 5.1(a).

This method yields at most 3 triggers per variable, plus one trigger per spare value (at
most 3r + (d− r) = 2r + d triggers), but not all triggers we find may be necessary. For
example, in figure 5.1(a), where the triggers on 4 7→ x2 and 5 7→ x3 are not necessary. The
other triggers are sufficient to prove that the three vertices x1,x2,x3 are indeed in the same
SCC.

The triggers are not always backtrack-stable. Consider the case where an SCC s1 divides
into s2,s3 when some edges are lost: the triggers computed for both s2 and s3 clearly do
not cover all the edges necessary to prove the connectedness of s1, since there are no edges
connecting the two components. Therefore, when s1 is restored upon backtracking, the
triggers must be backtracked as well.

We conjecture that this approach will work well when domains are large, or when few
values are removed from the domains at each search node.
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5.3. Implementing the collection of dynamic triggers. This approach is very cheap to
implement since it only requires some information to be collected from the execution of
Tarjan’s algorithm. No additional computation is required.

Two sets of changes are needed to algorithm 2. Firstly, at the top of algorithm Find-
SCCsRemoveValues, all dynamic triggers for variables in s are cleared. Then a dynamic
trigger is placed on each value used in the matching for the current SCC s. This is be-
cause these values will be used during the DFS. In addition, a watched literal is placed on
each value of the matching. This is required because the matching is not backtracked, and
the dynamic triggers are, therefore they can diverge when search backtracks. Placing the
watched literals as well guarantees that AllDifferent will be triggered when the matching is
violated. In some cases this would cause the constraint to be triggered twice for the same
variable-value pair. However, when combining dynamic triggers with a priority queue
(Section 2.3.3), when the constraint is triggered it merely adds the triggering variable to a
set to be processed later, and returns. Therefore the cost of the additional watched literals
is minimal.

The second set of changes are in algorithm TarjanRemoveValues. When curnode∈
{1 . . .d}, dynamic triggers are added corresponding to edges used for the DFS (line 11)
and for the final change of lowLink[curnode] (lines 9 and 12). If the final change of
lowLink[curnode] occurred on line 12, one edge was used for both the DFS and updat-
ing lowLink. It is not necessary to place two dynamic triggers corresponding to one edge.
Only one dynamic trigger is placed in this case.

5.4. Internal dynamic triggers. It is possible to simulate dynamic triggers entirely within
the AllDifferent constraint. To do this, the propagator stores the dynamic trigger values in
a backtracking array. The constraint sets static triggers to trigger on any domain change.
When it is triggered by a variable xi, the propagator checks the domain of the triggering
variable to see if any important values have been lost. If not, it immediately returns. For
each variable, the values are stored contiguously in an array with a length counter. In our
experiments, the arrays are backtracked by block copying. We refer to this method as
internal dynamic triggers.

There are two reasons it might be useful to simulate dynamic triggers in this way. Firstly,
it may be more efficient. The cost of writing the trigger value into an array is very low,
and clearing an array (by setting the size to 0) is very cheap. By contrast, placing a “real”
dynamic trigger (implemented with doubly-linked lists, as described by Gent et al. [10])
requires four assignments to pointers. Clearing a set of dynamic triggers requires two
assignments for each literal. In addition to this, any changes must be recorded on the trail
stack, and reversed on backtracking. Secondly, a solver may not provide dynamic triggers.
Indeed, most solvers do not provide this facility. Therefore internal dynamic triggers are
important for the general applicability of dynamic triggers for AllDifferent.

6. EXPERIMENTAL EVALUATION

In this section we describe the context of our experimental evaluation. Then we present
four groups of experiments. First we evaluate the standard approaches of incremental
matching and priority queueing in Section 6.3. Secondly, in Section 6.4 we evaluate the
dynamic triggers and domain counting approaches, which are both intended to reduce the
number of calls to the propagator. Thirdly, in Section 6.5 we evaluate processing SCCs
independently. Finally we compare our best GAC AllDifferent constraint against a propa-
gator that establishes a weaker consistency.
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6.1. Experimental context. For all experiments we use the solver Minion [9, 10]. We
adapted Minion 0.4.1 in the following ways:

Monotonic set: We made a monotonic set available to constraints through a new in-
terface. By monotonic we mean that once an element of a set is removed at a given
node, the element remains out of the set at all descendant nodes. Monotonicity al-
lows an efficient implementation through trailing. We represent each element by
the value true or false: since all values move only from true to false, we only need
to store the element being changed and not a value to restore it to. This is used to
implement the set partition data structure described in Section 4.1. In particular
it is used for the splitPoint array. The cost of removing an element from the set
combined with its subsequent restoration on backtracking is O(1).

Dynamic triggers: We took watched literals [10] and added a trailing mechanism to
restore them as search backtracks. This facility co-exists with standard watched
literals. In Minion, a watched literal may be placed on a variable-value pair, an up-
per or lower bound, or a variable (triggering on any domain change, or triggering
only on assignment). A watched literal can also be unused. AllDifferent makes
use of watched literals and dynamic triggers on variable-value pairs.

Minion already provides the other facilities that we need. When a constraint is triggered,
it is easy to identify the triggering variable. The inDomain, getMin and getMax methods
allow us to query the variable domains. The method removeFromDomain is used to remove
values from variable domains.

Domain lookups are designed to be fast in Minion, since it is a very common operation.
This is important when running the graph algorithms, since they query domains in order
to discover the graph as they traverse it. Domain iteration is also important for the AllD-
ifferent algorithm. Unfortunately Minion does not support domain iteration, but it does
maintain upper and lower bounds that are used to bound the iteration.

All experiments were run on Apple iMac computers with 2GHz Core Duo processors
and 2GB RAM, under OS X Tiger (10.4.11). The branch of Minion which we used is
available at http://minion.sourceforge.net/files/, including build instructions.

We have conducted extensive testing, which our code has passed. As well as continual
and detailed testing during development, we checked that the number of search nodes
explored is the same for each variant of the algorithm for each instance, excepting only
instances exceeding time or node limits.

In all experiments comparing variants of GAC AllDifferent, we limited search nodes
to 500,000, and time to 1,200s. Because of the possibility of timeout, our main metric of
speed is nodes searched per second, instead of raw runtime. For some Social Golfers and
Golomb instances Minion did not stop until well after the time limit, because of a minor
flaw in the time limit implementation.

Finally, all runtimes we report are total time and nodes used to solve or timeout on
each given instance, including all initialisation and search time including time outside the
AllDifferent propagator. This automatically means that all incidental features of each op-
timization are accounted for, such as for example additional or reduced memory usage and
its effect on practical runtime. It does however mean that results we report are typically less
dramatic than would be obtained if we had only measured runtime inside the AllDifferent
propagator. Despite this we will often see orders of magnitude improvement in runtime.
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6.1.1. Minion queue mechanisms and triggers. Minion is a variable-centric solver with
an additional constraint-centric queue. Conceptually there are two queues, which are de-
scribed below. The solver has two queues for efficiency reasons: the variable queue is
very fast, because adding a variable event to the queue is an O(1) operation. However, the
variable queue does not allow constraints to be given a low priority. Having the additional
constraint queue overcomes this limitation.

The variable queue. The variable queue contains variable events, which are of three dif-
ferent types:

• Value a removed from Di
• Upper/lower bound of xi changed
• xi set to a

The variable queue can contain duplicates of the bound events. The other events cannot
be duplicated in the queue simply because they cannot happen twice at a single search
node. Each variable event has two lists associated with it: a list of static triggers that is
fixed before search begins, and a doubly-linked list of dynamic triggers. To propagate
a variable event, the solver iterates through both lists, calling the propagators associated
with the triggers. Each trigger contains an integer which is passed to the propagator. In
this way, the propagator can identify which trigger (and therefore which variable event)
has triggered it.

The constraint queue. The constraint queue contains pointers to constraints. Constraints
are responsible for setting triggers, and for adding themselves to the constraint queue as
necessary. In this way, when a constraint is triggered by the variable queue, it may perform
a test to determine whether a record should be added to the constraint queue. This allows us
to implement domain counting, described in Section 2.3.2, and internal dynamic triggers
as described in Section 5.4.

Indeed the constraint can fail, update internal data structures and perform propagation
when triggered from the variable queue, so this mechanism is more general than Lagerkvist
and Schulte’s advisors (Section 2.3.7) which are not permitted to perform propagation.

The constraint queue allows duplication, however the AllDifferent constraint keeps a
record of whether it is present on the constraint queue, and thus avoids duplication.

The constraint queue is not a priority queue. However, the constraint queue has a
lower priority than the variable queue: the variable queue is emptied before each item
is processed from the constraint queue. In all the experiments presented below, the only
constraint to use the constraint queue is the AllDifferent constraint, hence it has a lower
priority than any other constraint.

The overall algorithm to process the queues is shown below.
while any queue not empty:

if variable queue not empty:
process entire variable queue

if constraint queue not empty:
process one item from constraint queue

6.1.2. Pairwise AllDifferent. Minion provides a simple AllDifferent propagator which is
triggered whenever a variable becomes assigned, and removes the assigned value from the
domains of all other variables. This is clearly a very simple and fast algorithm. It performs
the same propagation as AC on a clique of binary not-equal constraints and so does not
achieve GAC. We call this the Pairwise propagator.
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6.1.3. Staged AllDifferent. As described in Section 2.3.4, Schulte and Stuckey propose to
combine a cheap propagator (which is similar to the pairwise propagator described above)
with GAC AllDifferent [22]. They suggest two ways to do this: simply posting both con-
straints, or building a staged propagator from the two propagators. They showed staged
propagation to be more efficient in Gecode on their instances [22].

The proposed staged propagator makes use of the multiple constraint queues of Gecode,
and is impossible to implement exactly in Minion. We implement a close analogue. When-
ever the staged propagator is called from the variable queue, it checks if the triggering
variable is assigned. If so, the assigned value is removed from the domain of all other
variables. Apart from this additional check, the staged propagator is identical to the con-
ventional one. This very simple change yields very good experimental results, shown in
Section 6.3.

6.2. Benchmark set. We generated a large number of benchmark instances, which are
available at http://minion.sourceforge.net/. They are described briefly here.

Langford’s number problem (prob024 in CSPLib [13]) with k = 2 (i.e. two occur-
rences of each number) and n ∈ {10,11,12, . . . ,25}. This is modelled with a vector v of
length 2n which is all different, where elements v[i] and v[i+n] represent the two positions
of colour i in the problem. The model is by Gent, Miguel and Rendl [12]. The variable
order follows the indices of vector v, and the value order is ascending.

The Golomb ruler problem (prob006 in CSPLib) is to construct a set of n integers
which are all different, and the intervals between pairs are all different. The lowest integer
is assumed to be 0, and the highest integer is minimized using branch and bound. This
is modelled as a vector of n(n− 1)/2 differences between pairs of integers, with a single
AllDifferent constraint on the vector. The variable order follows the indices of the vector,
and the value order is ascending.

Balanced quasigroup with holes (QWH) [17] is the problem of completing a partial
latin square with a particular structure. The instances were generated from random, com-
plete latin squares of order n ∈ {20,25,30,35}. Ten latin squares were generated at each
size, and d1.7× n1.55e holes were punched to create balanced partial latin squares. The
number of holes yields instances at or near the difficulty peak. The problem is modelled as
an n×n matrix of variables with domain {1 . . .n}, with an AllDifferent constraint on each
row and column. The variable order is left to right along the rows. The rows are searched
in sequence down the matrix. The value order is ascending.

Quasigroup existence (prob003 in CSPLib) is the problem of determining whether
a quasigroup exists with certain properties, for example idempotence (a× a = a for all
elements a). We used types QG3 and QG4, both idempotent and non-idempotent, with
orders n ∈ {7,8,9,10} making 16 instances in total. The problem is modelled with an
n× n matrix of variables with domain {1 . . .n}, with an AllDifferent constraint on each
row and column, an AllDifferent on the primary diagonal, and various other constraints
representing the properties of the quasigroup type. Various implied constraints are also
included. The model is by Colton and Miguel [5]. The variable and value ordering is the
same as for QWH.

Social golfers (prob010 in CSPLib) is the problem of assigning gs golfers to s sets of
size g, for each of w weeks, such that two golfers never play together more than once. It
is modelled as w vectors of variables with domain 1 . . .g× s, representing the weeks. For
each week, the vector is partitioned into s sets. To break some symmetries, the sets are lex-
ordered within the week, golfers are ordered within the sets and the weeks are lex-ordered.
Each week vector has an AllDifferent constraint. A second vector of variables with domain
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{1 . . .gs(gs− 1)/2} represents the pairs that play together. For each week, for each pair
of variables in the same set, the two variables are mapped to a single variable in the pairs
vector using a table constraint. The pairs vector has an AllDifferent constraint on it. We
generated social golfers instances with g = 4 and the following other parameters 〈w,s〉:
〈5,4 . . .8〉〈6,4 . . .8〉, 〈7,5 . . .8〉, 〈8,6 . . .8〉, 〈9,7 . . .8〉, 〈10,8〉, making 20 instances in all.
The variable order is to search each week in turn, and for each week we follow the indices
of the w vector. The value order is ascending.

Sports scheduling is similar to social golfers where g = 2 (i.e. fixtures involve two
teams). n teams play on n/2 pitches over n− 1 weeks. Each team plays on each pitch at
most twice. It is modelled as n− 1 vectors of variables with domain 1 . . .n representing
the weeks. The vector is partitioned into pairs. To break some symmetries, each pair is
ordered and the weeks are lex-ordered. Also, the pitches are interchangeable so the vectors
of games on each pitch are lex-ordered. Sports scheduling also has the pairs vector with
AllDifferent, and the table constraints between the two representations. In this way it is
guaranteed that every team plays every other team exactly once. The variable and value
order is the same as for social golfers.

The contrived problem has been contrived to show the benefit of dynamic triggers and
domain counting. It is pathological because the GAC AllDifferent constraint performs no
pruning, despite doing a significant amount of computation. It consists of two vectors v
and w. v is of length 5 and the variables have domain {1 . . .50}. An AllDifferent constraint
(using the pairwise propagator) is placed on v, and also v[4] = v[5]. Therefore there are
no solutions. The pairwise AllDifferent is only present to make the problem unsatisfiable,
while causing Minion to search extensively: the binary search tree has 50×49×48×47 =
5527200 left branches. w is a vector of length l ≥ 4, containing variables with domain
{1 . . .d}. A GAC AllDifferent constraint is placed on w, and the two vectors v,w are linked
by v[1] 6= w[1], v[2] 6= w[2], v[3] 6= w[3], and v[4] 6= w[4]. Hence, whenever a variable in v
is assigned, one value is removed from a variable in w by propagation. The variable order
follows the indices of v, and the value order is ascending.

We generated instances with l = {100,200,300,400,500}, of two types where d = l or
d = l + 1. Both types should work well with dynamic triggers, because only one value is
removed for each left branch, and this is unlikely to trigger the GAC AllDifferent. When
using domain counting, when d = l the constraint is always triggered by the removal of a
single value. However when d = l + 1 then the constraint is never triggered, so the prop-
agator is only executed at the root node. In this case, domain counting should outperform
dynamic triggers.

6.3. Experiment one: variants proposed in the literature. Prioritized queueing and
incremental matching are standard techniques. In this experiment we test their merit. We
also consider an alternative matching algorithm, and staged propagation.

Simple: The simplest variant of AllDifferent is shown in algorithm 1. It does not
use the constraint queue, therefore it is called once for each variable event. Simple
does not process SCCs independently or use dynamic triggers or domain counting.
The Hopcroft-Karp algorithm is used to compute the matching.

PriorityQ: The Simple algorithm, but called from the constraint queue. It is added to
the constraint queue on any variable event, unless it is already present. Therefore
duplicates are removed and the constraint is propagated after all others.

PriorityQ-IncMatch: PriorityQ with incremental matching. (Algorithm 1 with line
1 removed, so that the matching is retained from one call to the next.)
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FIGURE 6.1. Speedup of PriorityQ over Simple. The graph is a scatter-
plot, with each point comparing results on a single instance. The x-axis
represents the run time of Simple to solve the instance. The y-axis gives
the speedup obtained by using PriorityQ instead of Simple. A ratio of 1
indicates that the two methods run at the same speed, with ratios higher
than 1 indicating that PriorityQ is faster, and ratios less than 1 indicating
that Simple is faster. The ratio is calculated by dividing the number of
search nodes explored per second by PriorityQ by that for Simple. In
this graph we can see that performance ranges from a slight slowdown
from using PriorityQ, on some QWH instances, to speedups of hundreds
of times on some social golfers instances.
All subsequent graphs labelled ‘Speedup of X over Y’ follow the same
conventions, where in this case X=PriorityQ and Y=Simple.

PriorityQ-IncMatch-BFS: This is PriorityQ-IncMatch using the FF-BFS matching
algorithm rather than Hopcroft-Karp.

PriorityQ-IncMatch-BFS-Staged: This is PriorityQ-IncMatch-BFS with staged prop-
agation as described in Section 6.1.3.

Firstly, Simple and PriorityQ were compared on our benchmark set. We expected PriorityQ
to perform better for all instances. Figure 6.1 shows that this is not the case, although
most instances benefit from the constraint queue, with some performing over 100 times
better. This mainly agrees with the results of Schulte and Stuckey [22] regarding priority
queueing, although their results are less dramatic.

The instances that Simple solves faster than PriorityQ are all QWH instances. These
contain only AllDifferent constraints, so reducing the priority of the constraint would have
no effect.

Given the theoretical advantage of incremental matching, we expect PriorityQ-IncMatch
to perform better than PriorityQ. This is the case for all instances, as shown in figure 6.2,
although the gain is less than 40%.
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FIGURE 6.2. Speedup of PriorityQ-IncMatch over PriorityQ
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FIGURE 6.3. Speedup of PriorityQ-IncMatch-BFS over PriorityQ-IncMatch

We compared PriorityQ-IncMatch-BFS with PriorityQ-IncMatch to compare the two
matching algorithms. As shown in figure 6.3, the AllDifferent with FF-BFS can be 30%
faster, and is never slower than with Hopcroft-Karp.

Finally, we compare the staged propagator PriorityQ-IncMatch-BFS-Staged to PriorityQ-
IncMatch-BFS. As shown in figure 6.4, staged propagation is very useful for our set of
benchmarks, with up to three times improvement.
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FIGURE 6.4. Speedup of PriorityQ-IncMatch-BFS-Staged over
PriorityQ-IncMatch-BFS

For all further experiments, we use both the constraint queue and incremental matching,
since they are standard techniques, and verified to be useful in this context. We use the FF-
BFS algorithm in all further experiments, since it is often faster and never slower than
Hopcroft-Karp. We also use staged propagation since it is considerably faster on average.
Comparing PriorityQ-IncMatch-BFS-Staged to Simple, we observe a speedup between
2.14 and 863 times, with a mean average speedup of 80.8, excluding the contrived instance
family.

6.4. Experiment two: Dynamic triggers and domain counting. For the purpose of this
experiment, all variants will use the constraint queue and incremental matching. The aim
is to compare waking up on all domain events against using dynamic triggers and domain
counting.

Baseline: The same as PriorityQ-IncMatch-BFS-Staged in the previous section.
DynamicTrigger: Baseline with the addition of dynamic triggers as described in

Section 5.
DynamicTriggerInternal: Baseline with the addition of internal dynamic triggers

(Section 5.4).
DomainCount: When the constraint is triggered from the variable queue, and it is

not present on the constraint queue, the domain Di of the triggering variable is
counted. (The number of values is not maintained by default in Minion.) If |Di|< r
then the constraint is added to the constraint queue.

Figure 6.5 shows the ratio of search nodes per second between DynamicTrigger and Base-
line. Instances are scattered above and below 1, suggesting that the advantage of Dy-
namicTrigger is negated by its overheads in many cases. All the contrived instances are
considerably faster with DynamicTrigger, as expected. Figure 6.6 shows the same plot
between DynamicTriggerInternal and Baseline. DynamicTriggerInternal performs slightly
better than Baseline on most instances, exploring up to 1.3 times as many nodes per sec-
ond, with an average 6% improvement (excluding contrived). Surprisingly, the contrived
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FIGURE 6.5. Speedup of DynamicTrigger over Baseline

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0.01  0.1  1  10  100  1000  10000

Instance Families
contrived

golomb

langford

quasigroup

n queens

QWH

social golfers

sports scheduling

FIGURE 6.6. Speedup of DynamicTriggerInternal over Baseline

instances are an exception, since they are slower with DynamicTriggerInternal than Base-
line. In DynamicTriggerInternal, the cost of placing dynamic triggers is much lower (since
they are just written into an array). However, the arrays are backtracked by block copying,
and for the contrived instances the arrays are large.

Finally we compare DomainCount with Baseline. The ratio of search nodes per second
is shown in figure 6.7. Domain counting is cheap, so no instances are substantially slower,
but it never substantially wins either. This is perhaps not surprising, since domain count-
ing was originally intended for set or tuple variables with very large domains [20]. The
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FIGURE 6.7. Speedup of DomainCount over Baseline

contrived instances behave as expected, with instances where d = r + 1 showing a huge
advantage for domain counting, and instances where d = r showing no advantage.

Our conclusions for this experiment are that internal dynamic triggers are worthwhile
on average, whereas dynamic triggers had too great an overhead and domain counting does
not work well on this benchmark set.

6.5. Experiment three: Processing SCCs independently. The SCC optimization de-
scribed in Section 4 aims to decrease the time spent running the graph algorithms. It is
independent of domain counting. However, there is a dependence between dynamic trig-
gers and the SCC optimization, because running Tarjan’s algorithm on a smaller graph will
potentially cause fewer triggers to be moved, therefore potentially reducing the overhead of
using dynamic triggers. For these experiments we ignore domain counting but do consider
dynamic triggers.

Baseline: The same as PriorityQ-IncMatch-BFS-Staged in experiment one.
SCC: In addition to Baseline, SCCs are processed independently as described in

Section 4.
SCC-AssignOpt: In addition to SCC, the assignment optimization described in Sec-

tion 4.2 is used.
SCC-AssignOpt-DynamicTrigger: In addition to SCC-AssignOpt, dynamic trig-

gers are used.
SCC-AssignOpt-DynamicTriggerInternal: In addition to SCC-AssignOpt, inter-

nal dynamic triggers are used.

Figure 6.8 shows results comparing SCC to Baseline. The SCC variant is able to explore
up to ten times more search nodes per second on the benchmarks, and SCC is never slower
than Baseline. This is as expected, since there is not much additional cost with SCC, and
the potential savings of running the graph algorithms on smaller graphs are large.
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FIGURE 6.8. Speedup of SCC over Baseline

Comparing SCC-AssignOpt to SCC (figure 6.9) shows that AssignOpt is worthwhile
more often than not, although the mean improvement in nodes/second is only 3%, exclud-
ing contrived instances.

Social golfers and sports scheduling problems solve slower with AssignOpt. These two
problems have a similar structure, with a very large AllDifferent constraint on the pairs
vector. This may indicate that AssignOpt does not scale well to large constraints.

In a staged constraint, part of the work done in the assignment optimization (removing
the assigned value from other variables in the SCC) is redundant and could be removed.
This could improve AssignOpt a little.

Figure 6.10 shows results comparing SCC-AssignOpt-DynamicTrigger against SCC-
AssignOpt. Apart from a few Social Golfers instances, these results are not promising
for dynamic triggers. Many instances solve considerably slower with dynamic triggers.
Internal dynamic triggers (figure 6.11) fare better, perhaps because the cost of moving trig-
gers is lower. The sports scheduling instances solve faster with internal dynamic triggers.
However on average (excluding the contrived problem) internal dynamic triggers lose by
5%. This is in contrast to the experiment without SCC and AssignOpt, where internal dy-
namic triggers gained 6%. Exploiting SCCs and the assignment optimization have reduced
the cost of applying the graph algorithms, so now it is not worthwhile to apply internal
dynamic triggers.

Since dynamic triggers do not do well in this context, we regard SCC-AssignOpt as our
strongest variant overall.

6.6. Experiment four: Comparing with the pairwise propagator. We compare the
pairwise propagator (described in Section 6.1.2) with the most efficient variant of GAC
AllDifferent. Since the two propagators do not provide the same level of consistency, com-
paring node rates would be of limited use: it would only show the overhead of maintaining
GAC, without showing the benefit. Therefore we compare solution times, using a much
longer 7200 second time limit, and no node limit. The variant of GAC AllDifferent we
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FIGURE 6.9. Speedup of SCC-AssignOpt over SCC
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FIGURE 6.10. Speedup of SCC-AssignOpt-DynamicTrigger over SCC-AssignOpt

use is SCC-AssignOpt from experiment three. We refer to this as Best, and to the pairwise
propagator as Pairwise.

Figure 6.12 shows a plot of solution times, with Pairwise on the x-axis, and the ratio
Pairwise over Best on the y-axis. Points on the line x = 7200 represent instances which
timed out for Pairwise. Two instances timed out for GAC and not for Pairwise, this is in
the area where x > 1000 and y < 1.

Clearly the GAC reasoning on the AllDifferent constraint is very important for some
instances. In particular, QWH and some difficult Social Golfers instances solve much
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FIGURE 6.11. Speedup of SCC-AssignOpt-DynamicTriggerInternal
over SCC-AssignOpt
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FIGURE 6.12. Comparing Best to Pairwise runtime. In this plot the
x-axis represents the runtime of Pairwise, and the y-axis is the ratio Pair-
wise over Best runtime. The time limit was set to 7200s, and there was
no node limit.

faster with GAC. In some cases, they solve more than 1000 times faster than with Pairwise.
Many authors (for example Stergiou and Walsh [26]) have found that GAC AllDifferent is
important.

There are a large number of instances which caused both GAC and Pairwise to time
out. There are two instances where GAC timed out and Pairwise completed (Golomb ruler
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FIGURE 6.13. Speedup of Best over Simple

n = 13, Langford’s n = 14), but there are 22 instances where Pairwise timed out and GAC
completed, although many of these are in the QWH class. For many other instances, GAC
does not perform as well as Pairwise. However, ignoring the contrived instances, Pair-
wise is never more than 2.34 times faster than GAC. Interestingly, this holds for easy and
difficult instances, without increasing divergence as the instances become more difficult.

Overall this experiment shows that adding the GAC AllDifferent propagator substan-
tially extends the reach of Minion to solve challenging problem instances.

6.7. Experimental conclusions. We have individually evaluated many different efficiency
measures for the GAC AllDifferent algorithm. In this section, we consider the effect of
them all together. Figure 6.13 compares Best with Simple. Including the contrived in-
stances, we get a speedup from 2.69 times to 1813 times, with an average of 168 times.
Clearly Best is a huge improvement over Simple, and this shows the importance of taking
care to implement AllDifferent well.

Simple does not include standard optimizations (prioritized queueing, incremental match-
ing or staging), and it uses Hopcroft-Karp rather than the more efficient FF-BFS to perform
the matching. Therefore in figure 6.14 we compare Best with Baseline. The only differ-
ences between these two algorithms are optimizations we have described in Section 4 on
exploiting SCCs. All except the pathological contrived instances lie between 0.96 and 7.06
times faster, and the mean improvement is 2.98 times.6 Since these figures are for solving
the instance, the improvement in the AllDifferent constraint is greater than that.

Finally, figure 6.15 is a plot of the nodes explored per second by Best. This is to give
an idea of the speed of the algorithm on different classes of instances. The Langford’s
instances are very fast, exceeding 20,000 nodes per second in some cases, which is perhaps
remarkable when maintaining GAC. Social Golfers and QWH are the slowest classes, since

6Note that the mean ratios are not multiplicative, since we have Best:Simple = 168, Best:Baseline = 2.98 and
Baseline:Simple = 81. Geometric means retain multiplicative properties of the mean. The geometric means are:
Best:Simple = 31.98, Best:Baseline = 2.44, Baseline:Simple = 13.11.
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FIGURE 6.14. Speedup of Best over Baseline
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FIGURE 6.15. Plot of Best nodes per second. The x-axis represents Best
runtime, and the y-axis the number of nodes searched per second.

Social Golfers has large AllDifferent constraints (r = 480, d = 496 for the largest instance)
and QWH has a large number of them per instance (70 constraints where r = d = 35 for
the largest instances).
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7. IMPLEMENTATION ADVICE

In this section we abstract from the details of our experimental results to give brief
advice to those following us in implementing GAC for AllDifferent, or researching further
optimizations for it.

Our results show that there is huge benefit from using the following optimizations, in
order of importance: propagating AllDifferent in a separate queue from other constraints;
the incremental exploitation of strongly connected components; and combining GAC and
pairwise propagators using staging. There is a lesser but still important improvement of 20-
30% from incremental matching. Our results on these optimizations are significant enough
that they are unlikely to be reversed by different implementation choices or the study of
different instances, and these optimizations remain effective when combined. We find that
our assignment optimization is worthwhile, although the effect is small enough at 3% it
could be omitted to save programmer time without undue penalty for the end-user.

Some of our results depend on the context in which GAC AllDifferent will be used.
We did not find dynamic triggers of either type to be worthwhile. In our experiments
dynamic triggers were slightly better when implemented internally within the AllDiffer-
ent constraint, an approach which is also more portable. We did not find Lagerkvist and
Schulte’s variant of Quimper and Walsh’s domain counting to be beneficial, even with our
slight improvement on it. All these conclusions apply only if we ignore our family of
contrived instances, on which maintaining GAC adds costs without any benefit. On these
instances, both dynamic triggers and domain counting come into their own and internal
dynamic triggers were less effective than those built into Minion. Therefore, dynamic trig-
gers and domain counting could be considered if a GAC AllDifferent propagator will be
used when it is often ineffective, to ameliorate the overheads in this case.

One question we have not been able to come to a definite conclusion on is the best
matching algorithm within the GAC AllDifferent propagator. We experimented with the
simpler BFS algorithm and the more complex Hopcroft-Karp algorithm. We found BFS to
be significantly better and can recommend it over Hopcroft-Karp. However, there are many
other matching algorithms and it is quite possible that another choice might outperform
both of the algorithms we tested.

As noted in the introduction, we have not tested against propagators that maintain
bounds and range consistency for AllDifferent. Therefore, we cannot advise on the rel-
ative merits of those techniques compared to maintaining GAC. We would be delighted to
see a study evaluating optimizations of those algorithms along similar lines to this paper,
to enable the fairest comparison with our optimized GAC implementation.

8. CONCLUSIONS

We have presented an extensive survey of propagation methods to establish generalised
arc consistency (GAC) for the AllDifferent constraint using Régin’s algorithm. We have
surveyed many optimizations proposed in the literature and some methods that have not
been previously reported. For most of these methods, we have reported on their implemen-
tation and given an empirical analysis of their behaviour. We have paid particular attention
to evaluating optimizations in combination with each other, which is (very naturally) not
usually a feature of papers which propose optimizations. Our experiments are very easily
the deepest experimental analysis of GAC algorithms for AllDifferent. Based on them we
have provided advice on which optimizations are key and which are less generally useful.

We would draw particular attention to our results on processing strongly connected
components during the search process. We showed significant improvements from the
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observation that individual strongly connected components can be treated independently.
This paper gives the first detailed report and empirical evaluation of this technique. We also
showed a lesser improvement to maintaining strongly connected components by treating
the assignment of a variable as a special case, which we believe to be a new optimization.
These two techniques speed up search on instances containing AllDifferent by an average
of 3 times.

For the best combination of optimizations, we found a mean improvement of more than
160 times in runtime over a careful but unoptimized implementation of Régin’s algorithm.
Our results confirm that optimizations are not optional extras, but a vital part of a serious
implementation of GAC AllDifferent. Our results also show that GAC propagation can
be used very widely. Apart from some pathological examples, GAC propagation of AllD-
ifferent never slows down search by more than a factor of 2.34, compared with a highly
optimized implementation of the pairwise AllDifferent propagator. The combination of
optimizations we have studied and their careful implementation brings GAC propagation
of AllDifferent to the point where it is practical for almost all instances, and beneficial for
a very large number.
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