
Learning When to Use Lazy Learning in Constraint
Solving

Ian P. Gent1 and Chris Jefferson1 and Lars Kotthoff1 and Ian Miguel1 and Neil C.A. Moore1

and Peter Nightingale1 and Karen Petrie2

Abstract. Learning in the context of constraint solving is a tech-
nique by which previously unknown constraints are uncovered dur-
ing search and used to speed up subsequent search. Recently, lazy
learning, similar to a successful idea from satisfiability modulo the-
ories solvers, has been shown to be an effective means of incorporat-
ing constraint learning into a solver. Although a powerful technique
to reduce search in some circumstances, lazy learning introduces a
substantial overhead, which can outweigh its benefits. Hence, it is de-
sirable to know beforehand whether or not it is expected to be useful.
We approach this problem using machine learning (ML). We show
that, in the context of a large benchmark set, standard ML approaches
can be used to learn a simple, cheap classifier which performs well
in identifying instances on which lazy learning should or should not
be used. Furthermore, we demonstrate significant performance im-
provements of a system using our classifier and the lazy learning and
standard constraint solvers over a standard solver. Through rigorous
cross-validation across the different problem classes in our bench-
mark set, we show the general applicability of our learned classifier.

1 Introduction

Constraints are a natural, powerful means of representing and reason-
ing about combinatorial problems that impact all of our lives. Con-
straint solving is applied successfully in a wide variety of disciplines
such as aviation, industrial design, banking, combinatorics and the
chemical and steel industries, to name but a few examples.

A constraint satisfaction problem (CSP [4]) is a set of decision
variables, each with an associated domain of potential values, and a
set of constraints. An assignment maps a variable to a value from its
domain. Each constraint specifies allowed combinations of assign-
ments of values to a subset of the variables. A solution to a CSP is
an assignment to all the variables that satisfies all the constraints.
Solutions are typically found for CSPs through systematic search of
possible assignments to variables. During search, constraint propa-
gation algorithms are used. These propagators make inferences, usu-
ally recorded as domain reductions, based on the domains of the vari-
ables constrained and the assignments that satisfy the constraints. If
at any point these inferences result in any variable having an empty
domain then search backtracks and a new branch is considered.

Propagation can dramatically reduce the space of assignments
searched. Search can be further improved by the use of a lazy learn-
ing algorithm [11, 12, 13, 7], where previously unknown constraints
are uncovered during search and used to speed up search subse-
quently. It is extremely efficient on some types of benchmark, but

1 University of St Andrews, Scotland, UK
2 University of Dundee, Scotland, UK

has a negative effect on others. Therefore, it is desirable to know be-
forehand whether or not lazy learning is expected to be useful.

We approach this problem using machine learning3 to generate
decision trees, which are a means of approximating discrete-valued
target functions. These machine learning methods have been success-
fully applied to a broad range of tasks from learning to diagnose med-
ical cases to learning to assess credit risk of loan applications [19].
In this paper, we show that decision trees can be built that success-
fully classify whether lazy learning should or should not be used on
specific CP instances.

2 Background

We are addressing an instance of the Algorithm Selection Prob-
lem [22], which, given variable performance among a set of algo-
rithms, is to choose the best candidate for a particular problem in-
stance. Machine learning is an established method of addressing
this problem [15, 16]. Particularly relevant to our work are the ma-
chine learning approaches that have been taken to configure, to select
among, and to tune the parameters of solvers in the related fields of
mathematical programming, propositional satisfiability (SAT), and
constraints.

MULTI-TAC [18] configures a constraint solver for a particular in-
stance distribution. It makes informed choices about aspects of the
solver such as the search heuristic and the level of constraint propa-
gation. The Adaptive Constraint Engine [5] learns (potentially novel)
search heuristics from training instances. SATenstein [14] configures
stochastic local search solvers for solving SAT problems.

An algorithm portfolio consists of a collection of algorithms,
which can be selected and applied in parallel to an instance, or in
some (possibly truncated) sequence. This approach has recently been
used with great success in SATzilla [25] and CP Hydra [20]. In earlier
work Borrett et al [3] employed a sequential portfolio of constraint
solvers. Guerri and Milano [8] use a decision-tree based technique
to select among a portfolio of constraint- and integer-programming
based solution methods for the bid evaluation problem.

Rather than select among a number of algorithms, it is also pos-
sible to learn parameter settings for a particular algorithm. Hutter et
al [10] apply this method to local search. Ansotegui et al [1] employ
a genetic algorithm to tune the parameters of both local and system-
atic SAT solvers.

3 In this paper we inevitably use the word “learning” in two very different
contexts with two very different meanings. These are machine learning and
the lazy learning technique in constraint programming. We hope to min-
imise the possible confusion by using the phrases “machine learning” and
“lazy learning” rather than abbreviating either to just “learning”.

2.1 Lazy Learning in Constraints

Katsirelos et al’s [11, 12, 13] g-nogood learning (g-learning) is a
notable CSP search algorithm. In short, whenever the solver reaches
a dead-end state, a new constraint is added ruling out other branches
that fail for a similar reason.

In order to achieve this, the first step is to analyse the earlier deci-
sions and propagation that contributed to the current failure. We aim
to find a set of assignments and disassignments that, if repeated, lead
directly to a failure.

To analyse propagation, explanations are used:

Definition 1. An explanation for disassignment x 8 a is a set of
assignments and disassignments that are sufficient for a propagator
to infer x 8 a. Similarly an explanation for assignment y ← b is a
set of (dis-)assignments that are sufficient for a propagator to infer
that y ← b.

Example 1. Let a, b and c be three distinct values.
Suppose decision assignments w ← a and x ← a have been

made. These assignments clearly also cause the remaining values of
w and x to be ruled out; we can think of this disassignment being
carried out by a built-in “at most one value” constraint. For example
now x 8 b and the explanation for this disassignment is {x← a}.

Now suppose the set of constraints includes both
occurrence([w, x, y, z], b) = 2 and occurrence([w, x, y, z], c) = 1,
meaning that variables w, x, y and z must have, respectively, exactly
2 occurrences of b and exactly 1 occurrence of c.

Since w ← a and x ← a, the former constraint is forced to infer
that y ← b and z ← b. The explanation for both y ← b and z ← b,
for example, is {w 8 b, x 8 b} because when w and x are both not
assigned to b, we are forced to set the remainder of the variables to b.

Similarly, since w ← a, x ← a and y ← b, the latter constraint
is forced to infer that z ← c in order to satisfy the constraint. The
explanation for z ← c is {w 8 c, x 8 c, y 8 c}.

These explanations along with the decision assignments can be
built into a implication graph:

Definition 2. An implication graph for the current state of the vari-
ables is a directed acyclic graph where each node is a current
(dis-)assignment and there is an edge from u to v iff u appears in
the explanation for v.

w← a w 8 c z ← b

w 8 b z ← c

x 8 c y 8 c

x← a x 8 b y ← b

Figure 1. Implication graph for Example 1. Mutually inconsistent nodes
shown with darkened nodes; cut from Example 2 with dashed line.

The explanations of Example 1 are displayed as an implication
graph in Figure 1.

Since repeating the (dis-)assignments in an explanation will in-
evitably lead to the same propagation being repeated, repeating any
cut of an implication graph for a failure will inevitably lead to the
derivation of the failure again. Hence we build a constraint to avoid
that failure by finding a cut {c1, . . . , ck} of the implication graph and
then adding the constraint to avoid the failure c = ¬(c1 ∧ . . . ∧ ck).
Now the solver backtracks and continues. For correctness and effi-
ciency reasons we prefer certain cuts, but discussion of this issue is
outwith the scope of this paper.
Example 2. The cut displayed as a dashed line in Figure 1 leads to
the constraint ¬(x← a ∧ w 8 c ∧ w 8 b).

The power of g-learning comes from learned constraints proceed-
ing to propagate and being combined by iterative application of the
above process into more powerful constraints that can remove sub-
trees of the search tree, as opposed to just providing a shortcut to
propagation, as in the above examples.

g-nogood learning is extremely effective on some types of bench-
mark, but has a negative effect on others. Firstly, there is an over-
head associated with instrumenting constraint propagators to store
explanations, which are needed to produce the new constraints. This
problem is mitigated by lazy learning [7] which dramatically reduces
the overhead of g-learning; however the new constraints must still be
propagated and this slows the solver down, too.

Learning remains a high risk/high reward strategy – for many CSP
instances, the overhead of learning is not justified by a decrease in
nodes.

3 The Benchmark Instances
We evaluated the performance of the standard and the lazy learn-
ing solver on a set of 2028 benchmark instances from 46 different
problem classes. The benchmark set has been chosen to include as
many instances as possible whatever our expectation of which solver
will work best. We were able to use only instances containing a sub-
set of the following constraints: alldifferent, table, negative table,
watched OR, lexicographic ordering, sum≤, sum<, weightedsum≤,
weightedsum<, x ≤ y + c, 6=, x ← c, x 8 c, bx/yc = z, x
mod y = z and x×y = z. See [2] for definitions of those for which
we do not provide a citation. Our sources are Lecoutre’s XCSP repos-
itory4 and our own stock of CSP instances. For example, we include
every extensional instance of the 2006 CSP solver competition and
representatives from the random, industrial and academic spheres.
Our set of instances is large, varied and inclusive.

In our experiments, we used the lazy learning variant of Minion,
which we call Minion-lazy. The reference constraint solver used is
Minion [6] version 0.9. A comparison of performance between Min-
ion and Minion-lazy is given in Figure 25.

We imposed a time limit of 5000 seconds for each instance. For
11 instances, Minion-lazy ran out of memory (4GB) before it was
able to solve the problem or reach the time limit. The total number
of instances that neither solver could solve because of a time out
or memory issues was 255. Both solvers took the same time on 4
instances that they could both solve.

The instances, the binaries to run them, and everything else re-
quired to reproduce our results is available at http://www.cs.st-
andrews.ac.uk/∼larsko/ecai2010/learning.tar.bz2.

4 http://tinyurl.com/y6hpphs
5 For this experiment we used binaries compiled with g++ version 4.4.1

and Boost version 1.38.0. The experiments were run on machines with 8
core Intel E5430 2.66GHz, 8GB RAM running CentOS with Linux kernel
2.6.18-164.6.1.el5 64Bit.

● ●
●

●●

●

●
●

●●●● ●●●●
●

●●

●

●●
●

●

●

●

●

●

●●
●

●●●
●

●●

●

●
●

●

●●

●

●

●

●●

●

●●●

●

●

●

●

● ●

●

●

●

●

● ●●●

●

●

●●

●
●

●

●

●

●

●

●

●●●●●
●

●

●
●●●●●●●● ●●●●●●●●●●●

●●

●
●

●
●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●● ●● ●● ●● ●●● ●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●
●

●● ●

●

●●●●●●●●●●
●●●●●●●●

●
●●●●●●●●

●●●●●●●●●●●● ●●●
●

●●●●● ●●●●●
●

●●●●●●● ●●● ●●●●●●●●●●

●

●●●●●●● ●●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●
●●●● ●●

●

●
●●

●
●

●

●

●●
●

●●●

●

●

●

●
●● ●●

●
●

●

●

●
●●

●

●●

●
● ●

●●

●

●

●
●●

●●
●

●
●

●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●● ●

●
●●

●
●

●

●

●

●●●● ●●●

●

●●
●●

●

●

●

●●

●

●

●

●

●

●●●
●

●● ●●

●

● ●

●

●

●
●

●
●

●
●

●
●

●●

●

●
●●●●

●

●●
●●

●
●

●●

●●

●●
● ●
●

●

●
●

●
●

●

●
●

●
●

●
●●●

●
●

●

●●●
●

●

● ●
●

●

●

●

●●●
●

●●

●
●●

●●●●
●

●
●

●
●

●
●●

●
●

●
●●

●●●●
●

● ●

●

●
●●

●

●
●●

●
●

●●

●

● ●

● ●

●
●●●

●
●

●
● ●

●
●
● ●

●

●
●●

●

●
●

●●
●

●●

●
●●

●

●● ●
●●●●● ●

●
●

●●●●
●

●
●●

●
●

●
●● ●

●
● ●

●
●

●●●

●

●

●

●
●

●

● ●
●●

●●
●

●

●

●
●

●
● ● ●
●● ●●

●
●

●
● ●●

●●

●
●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●●

●

●●●

●

●●●●●●●●●●●●●●●●●

●
●

●

●

●

●●●●

●

●
●

● ●●●●●●

●

●

●

●●●●●

●

●●●●●●

●

●
●

●
●●

●●●●●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●●●

●

●●

●

●
●●●●●

●

●●●●●

●
●

●
●

●
●

●

●●●

●

●

●

●●●

●

●●●
●●●●● ●●●● ● ●

●

●

●

●
●

●● ●
●● ● ●●

●
●

●
●●

●●
●

●
●●

●● ● ●●
●

●● ●● ●● ●●● ●● ●●● ●●●
●

●●
●

●
●●●

●

●●

●

●

●
●

●●
●
●

●●● ●●●●● ●
●●

●●

●

●

● ●●●● ●●●●● ●● ●

●

●●● ●
●

●

●
●

●
●

●

●

●●●
●
●●●●●● ●●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●● ●●● ●

●

●●●●●●●●●● ●●●

●

●● ●●● ●●● ●●●●●●●●● ●●●

●

●●

●

●● ●

●

● ●●● ●
●
●●●●

●
●●

●

●●

●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●

●

●●

●

●●

●

●●●●●●●●●●●●●● ●●●

●

●●

●

●●

●

●●●●●●●●●●● ●●● ●●●

●

●

●

●
●

●●●●

●

●

●●●●●●●●●●●●●

●

●●●●●●

●

●
●

●●●

●●
●

●●

●

●

●

●

●

●

●

● ●
●

●●
●

●● ●● ●
●

●
●

●● ●
●

●
●

●
●●
●
●●

●

●

●

●

●

●●●●

●
●●●

●●●●●●●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●●●●●●●●●●●

●

●

●

●

●●● ●

●

● ●●●●●●●●●● ●

●
●

●

● ●

●
●●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●●

●●

●

●

●

●●

●

●

●●

●

●

●●
●

●

●

●●●
●●●●
●

●

● ●●

●

●

●

●
●

●
●●

●

●

●●●

●

●
●

●

●

● ●

●
●

●

●●

●

●
●

●

●

●●

●●

●
●●

●

●● ●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●●

● ●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●● ●●
●

●
●

●

●

●●●

●

●

●

●
●

●

●

●●

●

●●

●

●
●●●

●

●
●

●

●
●

●

●
●

●●
●●

●●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
● ●

●●

●
●●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●●

●

●●
●● ●

●

●

●

● ●

●

●

●

●

● ●

● ●
●

●

●

●
●

●●●●
●

●
●

●

●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●
●

●●●●●

●

●

●

●

●

●●●●●
●

●
●

●

●

●
● ●

●

●

●

●

●●
●

●

●

●

●●●●

●

●●

●●●●

●

●

●

●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●

●
●

●
●

●●
●

●

●
●

●

●

●

●●●
●●

●

●

●●●●●

●●

●●●●●●●●
●●●●●

●
●

●
●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●●●●●●●●● ●● ●● ●● ●
●

●

●

●

●●●●●●●●●●

●

●

●

●

●●●●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

0.1 1.0 10.0 100.0 1000.0

0.0001

0.0100

1.0000

100.0000

10000.0000

Minion solve time [s]

Minion solve time over Minion−lazy solve time

Figure 2. Scatterplot showing run time comparison for Minion-lazy vs
Minion. Each point is a result for a single CSP. The x-axis is the solve time
for Minion. The y-axis gives the speedup from using Minion-lazy instead of
Minion. A ratio of 1 means they were the same, above 1 means Minion-lazy

was faster and below 1 that Minion was faster.

4 Instance Attributes and their Measurement

We measured 85 attributes of the problem instances. They describe a
wide range of features such as the number of constraints and vari-
ables used, a breakdown of the individual constraint and variable
types and a number of attributes based on the primal graph. The
primal graph g = 〈V, E〉 has a vertex for every CSP variable, and
two vertices are connected by an edge iff the two variables are in the
scope of a constraint together.

For space reasons, we cannot provide a description of all the at-
tributes we measured. We focus instead on the attributes that we have
identified as reflecting the structure of a constraint problem; in par-
ticular they do not depend on particular solver features or are specific
to particular problem classes.

Edge density The number of edges in g divided by the number of
pairs of distinct vertices.

Clustering coefficient For a vertex v, the set of neighbours of v is
n(v). The edge density among the vertices n(v) is calculated. The
clustering coefficient is the mean average of this local edge density
for all v [23]. It is intended to be a measure of the local cliqueness
of the graph. This attribute has been used with machine learning
for a model selection problem in constraint programming [8].

Normalised degree The normalised degree of a vertex is its degree
divided by |V |. The mean and median normalised degree are used.

Normalised standard deviation of degree The standard deviation
of vertex degree is normalised by dividing by |V |.

Width of ordering Each of our benchmark instances has an associ-
ated variable ordering. The width of a vertex v in an ordered graph
is its number of parents (i.e. neighbours that precede v in the or-
dering). The width of the ordering is the maximum width over all
vertices [4] (ch. 4). The width of the ordering and the width nor-
malised by the number of vertices were used.

Width of graph The width of a graph is the minimum width over all

possible orderings. This can be calculated in polynomial time [4],
and is related to some tractability results. The width of the graph
and the width normalised by the number of vertices were used.

Multiple shared variables The proportion of pairs of constraints
that share more than one variable.

Normalised mean constraints per variable For each variable, we
count the number of constraints on the variable. The mean aver-
age is taken, and this is normalised by dividing by the number of
constraints.

Normalised SAC literals The number of literals pruned by single-
ton consistency preprocessing, as a proportion of all literals.

Ratio of auxiliary variables to other variables Auxiliary vari-
ables are introduced by decomposition of expressions in order to
be able to express them in the language of the solver. We use the
ratio of auxiliary variables to other variables.

Mean tightness The tightness of a constraint is the proportion of
disallowed tuples. The tightness is estimated by sampling 1000
random tuples (that are valid w.r.t. variable domains) and testing
if the tuple satisfies the constraint. The mean tightness over all
constraints is used.

Literal tightness To measure the tightness of a literal (a variable-
value pair) w.r.t. a particular constraint, we sample 100 random
tuples containing the literal and test if the tuples satisfy the con-
straint. The tightness of a literal is the mean of its tightness in all
constraints on that literal. The mean literal tightness – the mean
average of the tightness for each literal – and the standard devi-
ation of the literal tightness divided by the mean literal tightness
are used (a.k.a. the coefficient of deviation).

Proportion of symmetric variables In many CSPs, the variables
form equivalence classes where the number and type of con-
straints a variable is in are the same. For example in the CSP
x1×x2 = x3, x4×x5 = x6, x1, x2, x4, x5 are all indistinguish-
able, as are x3 and x6. The first stage of the algorithm used by
Nauty [17] detects this property. Given a partition of n variables
generated by this algorithm, we transform this into a number be-
tween 0 and 1 by taking the proportion of all pairs of variables
which are in the same part of the partition.

In creating this set of attributes, we intended to cover a wide range
of possible factors in the success of lazy learning. Wherever possible,
we normalised attributes that would be specific to problem instances
of a particular size, such as the number of variables. This is based
on the intuition that similar instances of different sizes are likely to
behave similarly with lazy learning.

Of the 2028 instances from the benchmark set, 93 instances could
not be analysed because of insufficient memory or unsupported con-
structs in the input.

5 Constructing an Instance Classifier using
Machine Learning

In this section, we construct a number of classifiers using standard
machine learning techniques. First we describe the ML methodology
we used.

5.1 Methodology
The experimental results were preprocessed to perform two kinds
of filtering. We do not want instances where the relative difference
between the two solvers is very small to affect the classifier. Also we
want instances where the penalty for making the wrong decision is
high to be more important than ones where the penalty is low.

First, we calculated the misclassification penalty as the absolute
difference in solve time between the two solvers for each instance.
Instances where both solvers timed out were not considered. For
instances where one of the solvers timed out, we used the timeout
(5000s) as the time for that solver, and calculated the misclassifica-
tion penalty as before. The resulting value is an underestimate of the
true misclassification penalty.

Second, we determined which solver to use for each instance. If
the difference between both solvers was less than 20% of the time
that Minion took, we set the value to “don’t know”. This was simply
to account for differences in run time that are caused by external
effects. For the instances where Minion-lazy ran out of memory, we
set the value to “use Minion”. Based on this, we were able to make a
decision for 1012 instances.

Each instance was then weighted by the misclassification penalty.
We did this to bias the machine learning algorithms towards the in-
stances where we can gain or lose a lot – if the penalty for choosing
the wrong solver is low, we do not care as much if we make the wrong
decision. To achieve this cost-sensitive classification, it is standard
practice in machine learning to duplicate instances [24]. We dupli-
cated each instance dlog2(misclassification penalty)e times.
This means that instances with a misclassification penalty of less than
2 seconds appear once and ones with a penalty of 5000 seconds (the
maximum) appear 13 times. We chose this particular function be-
cause we did not want instances with a very high penalty to have too
much effect and we did want each instance to appear at least once
in the data set. The instances where Minion-lazy ran out of memory
were not duplicated.

We used this data as input for the WEKA [9] machine learning
suite to learn a classifier that, given an instance, tells us which solver
to use. For instances where we did not have values for all attributes
or some of them were unclear, for example when we were not able
to make a decision between choosing Minion and Minion-lazy, we
used a question mark.

The WEKA ML algorithm we used was J48, which creates de-
cision tree classifiers. J48 implements the well-established C4.5 al-
gorithm [21]. The default values for the parameters gave good per-
formance already and were therefore not tweaked. In all cases we
trained the classifiers to predict the binary decision of whether to use
Minion or Minion-lazy.

We evaluated the learned classifiers on the whole set of instances,
making the decision which solver to use for each one. If we were un-
able to make a decision because of missing attributes, we defaulted to
Minion. The results of this evaluation are different from the ones we
get in WEKA because we use the data set that contains each instance
only once – we train and test on the data set that we have biased to-
wards instances where we gain or lose a lot by duplicating them, and
we evaluate on the unbiased original set. The results are summarised
in Table 1.

5.2 Selecting an Appropriate Attribute Set

Finding a small and appropriate set of attributes is crucial to the ef-
ficiency of classifying an instance, since all attributes must be com-
puted. In this section, we describe four classifiers built with progres-
sively smaller sets of attributes. We demonstrate that the final clas-
sifier, which selected from 3 attributes, is almost as accurate as the
first, which selected from 85 attributes.

Classifier 1 — Initial Classifier. We built a decision tree using
the whole data set with 85 attributes as described above. The tree had
61 nodes and we achieved 99.7% correctly classified instances with

a precision of 99.7% and a recall of 99.7%. For comparison, always
using standard Minion gives 86.3% correctly classified instances, a
precision of 74.4% and a recall of 86.3%.

The performance of the learned classifier on the set of all bench-
mark instances is summarised in Table 1, labelled as classifier 1. This
demonstrates the feasibility of our approach of using machine learn-
ing to make this decision.

Classifier 2 — Reduced Number of Attributes. Based on the
encouraging results we achieved with classifier 1, we removed all
but the 17 attributes described in Section 4 and reran the decision
tree building algorithm.

Computing a large number of attributes for each instance is expen-
sive and might outweigh the benefit of having a classifier and being
able to select the faster solver. We also want to eliminate the influ-
ence of attributes which are specific to Minion, a problem class, or a
particular problem size.

The classifier learned from this data set showed a similar perfor-
mance to the previous one. The decision tree had 57 nodes and 99.6%
of the instances were classified correctly. Precision and recall were
99.6% again as well. Table 1 however shows that the overall perfor-
mance is lower than the one of the previous classifier, although the
difference is small (classifier 2). We concluded that we could reduce
the number of attributes used in making the decision without a sig-
nificant decrease in quality.

Classifier 3 — Cheaply Computable Attributes. We are not only
interested in decision trees which use a small number of attributes,
the attributes must be computable in a short time as well. For classi-
fier 3, we eliminated the two attributes multiple shared variables and
proportion of symmetric variables, which are particularly expensive
to compute, from our data set. The learned decision tree consisted
of 65 nodes and again gave 99.6% correctly classified instances and
99.6% precision and recall. Table 1 shows that the overall perfor-
mance decreases very slightly compared to classifier 2.

Classifier 4 — Most Influential Attributes. None of the previous
classifiers used all the attributes in the data set. We decided to further
reduce the number of attributes used in the decision tree by using the
WEKA AttributeSelectedClassifier metalearning algo-
rithm.

Before letting the J48 algorithm build a decision tree, we ran the
CfsSubsetEval attribute selector with exhaustive search. Each
attribute was assessed with respect to its predictive ability and the
degree of redundancy within the subset of attributes for all subsets of
the previous set of 15 attributes [24]. Only three attributes where se-
lected; normalised width of ordering (NWO), normalised mean con-
straints per variable (NMCV) and mean tightness (MT). Based on
the application of this attribute selection algorithm, we are confident
that the final set of attributes does not contain irrelevant or redundant
ones.

The decision tree built with these three attributes had 79 nodes,
99.6% correctly classified instances and precision and recall of
99.6%. As Table 1 shows, the performance is similar to classifier 3.

5.3 Eliminating Overfitting

The decision tree of classifier 4 appears to be overfitted. Specif-
ically, for most paths from the root to a leaf node, it switches
several times on a single parameter. For example, when
0.101 < NWO ≤ 0.124 and NMCV > 0.003, the decision
tree then branches on mean tightness (MT). It matches the inter-
vals [0, 6.79%](6.79%, 6.81%](6.81%, 23.59%](23.59%, 100%)
of MT to decisions yes, no, yes, no respectively. The interval

instances total WEKA misclassified misclassified misclassified compute
solved time [s] accuracy [%] > 20% difference penalty [s] features [s]

oracle 1,773 194,372 - 0 0 0 -
anti-oracle 1,485 1,805,732 - 1,769 1,046 1,611,360 -
Minion 1,736 360,949 86.3 391 292 166,577 0
Minion-lazy 1,522 1,639,155 13.7 1,378 754 1,444,783 0
Classifier 1 1,769 201,726 99.7 267 30 7,354 126,917
Classifier 2 1,767 207,327 99.6 316 50 12,955 124,918
Classifier 3 1,766 211,844 99.6 314 48 17,472 122,957
Classifier 4 1,767 214,176 99.6 360 75 19,804 11,285
Classifier 5 1,765 231,531 96.8 399 97 37,159 11,285

Table 1. Summary of classifier performance. WEKA accuracy denotes the average percentage of correctly classified instances during cross-validation. The
oracle classifier always makes the right decision, the anti-oracle the wrong decision, Minion always picks the standard solver and Minion-lazy always the

constraint learning solver. The time to compute the features is the total time for all the 1,935 instances that could be analysed. The total time is the time taken to
process all 1,773 instances which either solver can solve, including 5,000s for each instance which a given classifier fails to solve. We exclude the 255 instances
where both solvers time out, which would add 1,275,000s to each classifier. An instance is misclassified if at least one solver solves it within the time limit and
there is a solver other than the chosen one which took less time. The misclassification penalty is the number of seconds the specific classifier took longer than

the oracle would have taken. All times rounded to the nearest second.

(6.79%, 6.81%] is a clear case of overfitting – it is very narrow and
contains only one instance from the original data set. The instance
occurs 4 times in the training set because of its misclassification
penalty.

Classifier 5. To eliminate overfitting, we tune the parameters of
the ML algorithm to prune the tree more aggressively. The result is a
much smaller decision tree without the apparent overfitting.

We adjust the parameters of the J48 algorithm to perform more
pruning of the learned tree. Specifically, we reduced the confidence
threshold for pruning from 25% to 1% and increased the minimum
number of instances permissible at a leaf from 2 to 50. The deci-
sion tree generated with these parameters has only 13 nodes and is
depicted in Figure 3. The classifier evaluated 96.8% of instances cor-
rectly and had a precision of 96.8% and a recall of 96.8%. As Ta-
ble 1 shows, the performance clearly suffers. However, as we discuss
in detail in Section 6, the losses in practical performance are small
compared to the win over using standard Minion, and with a classifier
that is much less likely to be overfitted.

5.4 Testing the Generality of Classifier 5

We provide evidence for the general applicability of classifier 5. For
unknown problem instances, we have to consider two cases. The new
instance could belong to a problem class that is contained in our
data set. In this case, we are confident that our classifier will give a
good result based on its high accuracy on the existing benchmark set,
which would contain similar instances. In the more interesting case,
a new instance belongs to a problem class of which no instances are
contained in our set of benchmarks.

To evaluate the performance of our classifier on unknown problem
classes, we take the well-established principle of leave-one-out cross-
validation and apply it to the set of problem classes. For n-fold cross-
validation, the original data set is split into n parts of roughly equal
size. Each of the n partitions is in turn used for testing. The remaining
n− 1 partitions are used for training. In the end, every instance will
have been used for both training and testing in different runs [24].
Leave-one-out cross-validation is n-fold cross-validation where n is
the size of the data set.

We create new data sets, each with a particular problem class re-
moved. The idea behind it is that if the J48 algorithm, using the same
methodology as described above, produces the decision tree shown
in Figure 3 for subsets of the problem classes, then it is likely to
be problem class-independent. Unfortunately, not all of the problem

classes have both instances where lazy learning is faster and slower
in our benchmark set. Leaving one of these problem classes out may
not have any effect on the learned decision tree. On the other hand,
instances from an unknown problem class may have the same char-
acteristic. For 24 of 46 problem classes, the instances can be split
into ones where lazy learning is faster and ones where it is slower.

Out of the 46 generated sets, we got exactly the same tree as shown
in Figure 3 for 24. 18 of those sets were created by removing a prob-
lem class that has no instances where Minion-lazy is faster. For all
of the decision trees, the attribute to switch on at the root node was
the same and for all but one of them the value to switch on was the
same as well. For 15 out of the 22 classifiers that were different, the
only modification was the addition or deletion of a single subtree.
Typical trees which were generated several times are shown in Fig-
ures 4 and 5. They are still very similar to the classifier in Figure 3;
the differences are highlighted with dashed lined. For all but two of
the generated trees, the proportion of correctly classified instances
was higher than 95% and higher than 90% for all of them.

NWO

NMCV

≤ 0.124444

NMCV

≤ 0.002899

faster

≤ 0.001843

slower

> 0.001843

faster

> 0.002899

NWO

> 0.124444

MT

≤ 0.975

slower

≤ 96.4021739%

faster

> 96.4021739%

NMCV

> 0.975

slower

≤ 0.046612

faster

> 0.046612

Figure 3. Final decision tree (classifier 5) to predict if, for a given
instance, the solver with lazy learning will be faster or slower. NWO stands
for normalised width of ordering, NMCV for normalised mean constraints

per variable and MT for mean tightness.

6 Performance of the General Decision Tree

The performance of the final decision tree in Figure 3 improves
significantly over simply running standard Minion on all of the in-
stances, as shown in Table 1. In particular, it achieves 29 more in-
stances solved in 129,418 seconds less, compared to a maximum
possible gain of 37 more instances in 166,577 seconds less for the
perfect oracle classifier.

Calculating the attributes the classifier requires takes approxi-
mately 6 seconds per instance and we gain more than 70 seconds
on average by using the classifier. We are therefore left with a net

NWO

NMCV

≤ 0.1244444

NMCV

≤ 0.002899

faster

≤ 0.001843

slower

> 0.001843

faster

> 0.002899

NWO

> 0.1244444

MT

≤ 0.975

NWO

≤ 96.4021739%

NMCV

≤ 0.315789

slower

≤ 0.052632

faster

> 0.052632

slower

> 0.315789

faster

> 96.4021739%

NMCV

> 0.975

slower

≤ 0.046612

faster

> 0.046612

Figure 4. Typical decision tree with an additional subtree that was
generated during cross-validation with data sets with one problem class left

out. The added subtree is highlighted with dashed lines.

NWO

NWO

≤ 0.124444

slower

≤ 0.00276

faster

> 0.00276

NWO

> 0.124444

MT

≤ 0.975

slower

≤ 96.4021739%

faster

> 96.4021739%

NMCV

> 0.975

slower

≤ 0.046612

faster

> 0.046612

Figure 5. Typical decision tree with a subtree pruned that was generated
during cross-validation with data sets with one problem class left out. The

missing subtree is highlighted with dashed lines. Note that also the attribute
that is switched on above the pruned subtree is different.

win over the whole benchmark set of approximately 39 hours for a
total run time of approximately 422 hours. This is almost 85% of
the best possible improvement; the oracle classifier gives a win of
about 46 hours, even assuming that it required no attributes to make
its decision and ran in zero time.

This shows that through careful tuning of the parameters used in
the decision tree, using our classifier provides a significant win even
when taking the overhead of calculating the attributes into account.
The decision algorithm itself is very simple and the effective cost of
making the decision once the attribute values are known is tiny.

7 Conclusions

In this paper, we have applied machine learning techniques to con-
straint solving to decide whether or not to use lazy learning, a power-
ful but costly technique. To facilitate this, we have used a large set of
benchmarks from many different problem classes. We have demon-
strated the success of our approach by learning classifiers with an ex-
tremely high accuracy that, when applied to our set of benchmarks,
are able to solve many more instances in significantly less time than
the standard solver alone. In particular, they are very close to the
perfect oracle classifier.

We identified two problems with our initial approach: that at-
tributes needed by classifiers would be expensive to compute, and
the resulting classifier was overfitted to our benchmark set. We ad-
dressed these problems by reducing the number of attributes used and
the size of the decision tree to provide decision algorithms that can be
computed cheaply. The result is a tree with only six internal nodes,
and thus unlikely to be overfitted, which still gets about two-thirds
of the improvement that would be obtained with a zero-cost oracle.
We have furthermore evaluated and provided substantial evidence for
the general applicability of our learned classifier by cross-validating

it over different problem classes. We suggest therefore that the deci-
sion tree shown in Figure 3 is very likely to make good decisions for
problem instances that are not included in our set of benchmarks.

ACKNOWLEDGEMENTS
The authors thank Alan Frisch and James Cussens for helpful com-
ments on an earlier version of this paper and general discussions
about machine learning. We also thank the anonymous reviewers for
their feedback. Chris Jefferson and Peter Nightingale are supported
by EPSRC grant EP/H004092/1. Neil Moore is supported by EPSRC
grant EP/E030394/1. Karen Petrie is supported by a Royal Society
Dorothy Hodgkin Research Fellowship. Lars Kotthoff is supported
by a SICSA studentship.

REFERENCES
[1] C. Ansótegui, M. Sellmann, and K. Tierney, ‘A gender-based genetic

algorithm for the automatic configuration of algorithms’, in CP, pp.
142–157, (2009).

[2] N. Beldiceanu, M. Carlsson, and J.-X. Rampon, ‘Global constraint cat-
alog’, Technical Report 08, Swedish Inst. of Comp. Sci., (2005).

[3] J.E. Borrett, E.P.K. Tsang, and N.R. Walsh, ‘Adaptive constraint satis-
faction: The quickest first principle’, in ECAI, pp. 160–164, (1996).

[4] R. Dechter, Constraint Processing, Elsevier Science, 2003.
[5] S.L. Epstein, E.C. Freuder, R.J. Wallace, A. Morozov, and B. Samuels,

‘The adaptive constraint engine’, in CP, pp. 525–542, (2002).
[6] I.P. Gent, C. Jefferson, and I. Miguel, ‘Minion: A fast scalable con-

straint solver.’, in ECAI, pp. 98–102, (2006).
[7] I.P. Gent, I. Miguel, and N.C.A. Moore, ‘Lazy explanations for con-

straint propagator’, in PADL 2010, pp. 217–233, (2010).
[8] A. Guerri and M. Milano, ‘Learning techniques for automatic algorithm

portfolio selection’, in Proc. ECAI 2004, pp. 475–479, (2004).
[9] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H.

Witten, ‘The WEKA data mining software: An update’, SIGKDD Ex-
plorations, 11(1), (2009).

[10] F. Hutter, Y. Hamadi, H.H. Hoos, and K. Leyton-Brown, ‘Performance
prediction and automated tuning of randomized and parametric algo-
rithms’, in CP, pp. 213–228, (2006).

[11] G. Katsirelos, Nogood Processing in CSPs, Ph.D. dissertation, Univer-
sity of Toronto, Jan 2009.

[12] G. Katsirelos and F. Bacchus, ‘Unrestricted nogood recording in CSP
search’, in CP, pp. 873–877, (2003).

[13] G. Katsirelos and F. Bacchus, ‘Generalized nogoods in CSPs’, in AAAI,
pp. 390–396, (2005).

[14] A.R. KhudaBukhsh, L. Xu, H.H. Hoos, and K. Leyton-Brown, ‘SATen-
stein: Automatically building local search SAT solvers from compo-
nents’, in IJCAI, pp. 517–524, (2009).

[15] M.G. Lagoudakis and M.L. Littman, ‘Reinforcement learning for algo-
rithm selection’, in AAAI/IAAI, p. 1081, (2000).

[16] K. Leyton-Brown, E. Nudelman, G. Andrew, J. McFadden, and
Y. Shoham, ‘A portfolio approach to algorithm selection’, in IJCAI, pp.
1542–1542. Morgan Kaufmann, (2003).

[17] B. McKay, ‘Practical graph isomorphism’, in Num. math. and comp.,
10th Manitoba Conf., Congr. Numerantium 30, pp. 45–87, (1981).

[18] S. Minton, ‘Automatically configuring constraint satisfaction programs:
A case study’, Constraints, 1(1/2), 7–43, (1996).

[19] T.M. Mitchell, Machine Learning, McGraw-Hill, 1997.
[20] E. O’Mahony, E. Hebrard, A. Holland, C. Nugent, and B. O’Sullivan,

‘Using case-based reasoning in an algorithm portfolio for constraint
solving’, in 19th Irish Conference on AI, (2008).

[21] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kauf-
mann, 1993.

[22] J.R. Rice, ‘The algorithm selection problem’, Advances in Computers,
15, 65–118, (1976).

[23] D.J. Watts and S.H. Strogatz, ‘Collective dynamics of ‘small-world’
networks’, Nature, 393, 440–442, (1998).

[24] I.H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementations, Morgan Kaufmann,
2nd edn., 2005.

[25] L. Xu, F. Hutter, H.H. Hoos, and K. Leyton-Brown, ‘SATzilla:
Portfolio-based algorithm selection for SAT’, J. Artif. Intell. Res.
(JAIR), 32, 565–606, (2008).

