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We present an evaluation of different AI search paradigms applied to a natural planning problem. The problem we
investigate is a particular card game for one player called Black Hole. For paradigms such as SAT and Constraint
Programming, the game has the particular advantage that all solutions are the same length. We show that a
general version of Black Hole is NP-complete. Then we report on the application of a number of AI paradigms
to the problem, namely Planning, Constraint Programming, SAT, Mixed-Integer Programming and a specialised
solver. An important feature of Black Hole is the presence of symmetries which arise during the search process.
We show that tackling these can improve search dramatically, as can caching states that occur during search. Our
implementations as SAT, Constraint Programming and Planning problems are efficient and competitive, allowing
detailed empirical evaluation of the strengths and weaknesses of each methodology. Our empirical evaluation shows
that Black Hole is winnable approximately 87% of the time, and that given instances can be trivially solved, easy
to solve, hard to solve and even intractable, depending on the AI methodology used to obtain solutions.
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1. Introduction

We propose patience games – card games for
one player also known as “solitaire” – as a fruit-
ful domain for studying search problems. These
games are a natural Artificial Intelligence prob-
lem, since they are a recreation enjoyed and un-
derstood by many people, but for which computer-
based solving techniques are generally not studied.
There are hundreds of different patiences,1 with
many more variants derived by changing the num-
ber of piles or other features. The varied nature
of these patiences will lead to different approaches
being needed, and this study is designed to explore
the range of validity of different AI techniques. In

1The individual game called “Solitaire” in WindowsTMis
most properly called Klondike. There is a historical ten-
dency for the name of the most popular patience (usually
Klondike or Canfield) to become synonymous with the gen-

eral pastime, and this can cause confusion.

particular, as we show here, we can study a va-
riety of mature AI paradigms applied to a single
problem. A particular benefit to empirical analy-
sis is that the problems of everyday concern are of
a shuffled deck and are therefore entirely random.
There is thus an effectively unlimited number of
benchmarks available.

There is very little research on patiences: how to
solve them, how to play them, and how winnable
they are. The only body of work we know of is on
the game Freecell. Exactly one of the 32,000 pos-
sible games in the original Windows program is
unwinnable. Extensive empirical work has shown
that the probability of the game being winnable
is roughly 99.999%, and solvers are available for
the game [4]. Freecell has also been used as a
benchmark for AI planning programs [10]. General
solvers could be very useful to players to detect
insolubility or give hints. AI research can also feed
back by helping the design of satisfying new pa-
tiences or variants of old ones, for example verify-
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ing that a proposed patience is solvable a reason-
able percentage of the time.

The variety of patiences is likely to lead to a
toolbox of techniques being required instead of a
single one. For example, some games reveal all
cards at the start and are open to analysis, while
others enforce moves to be made with many cards
remaining hidden. Other games are mixed, for ex-
ample in an initial phase cards are placed before
a final analytical stage where the cards placed in
the first phase are played to a win (or not). Such
different games are likely to be tackled in different
ways.

In this paper we show the value of patience as
a class of benchmark problems, using the game
Black Hole as a case-study. We solve it using a va-
riety of different AI paradigms, namely planning
– described in Section 4, constraint programming
(CP) – Section 5, propositional satisfiability (SAT)
– Section 6, mixed integer programming (MIP) –
Section 7, and a special-purpose solver – Section 8.
We thus compare the advantages and disadvan-
tages with respect to each other, while also being
able to see the important features in each method.
Black Hole is particularly appropriate for an ini-
tial study of AI techniques applied to patience: it
is fully open, i.e. gives perfect information to the
player at the start. Every successful game involves
exactly 52 moves, making it easy to apply tech-
niques such as constraint programming to it. As
we show here, a natural generalisation of it is NP-
complete and therefore we do not expect any short-
cuts to be discovered which allow trivial solving
in general. Finally, we report that on the problem
of human interest, i.e. with 52 cards, Black Hole
provides a challenge for all our methods.

We find some paradigms more effective than
others in this paper, and give a detailed analysis of
empirical results in Section 9. However, we abso-
lutely do not claim that this shows the more suc-
cessful techniques are better, even for Black Hole:
our (relative) failures may simply be due to a lack
of skill and ingenuity on our part. Instead, we in-
tend our analysis to be a useful longitudinal study
of a number of AI paradigms on a simple, but not
trivial, problem of real interest to people. We em-
phasise the design decisions in each case and how
they relate to the properties of the solvers used
and the patience itself, proposing reasons for the
techniques’ success or failure.

2. Black Hole

Black Hole was invented by David Parlett [16]
with these rules:

“Layout Put the Ace of spaces in the middle of
the board as the base or ‘black hole’. Deal all the
other cards face up in seventeen fans [i.e. piles] of
three, orbiting the black hole.

“Object To build the whole pack into a single
suite based on the black hole.

“Play The exposed card of each fan is available
for building. Build in ascending or descending se-
quence regardless of suit, going up or down ad
lib and changing direction as often as necessary.
Ranking is continuous between Ace and King.”

The table below shows an instance of the game:
the 18 columns represent the A♠ in the black hole
and the 17 piles of 3 cards each.

4♦ 7♥ 7♠ 3♦ 5♠ T♣ 6♠ J♣
9♠ 9♥ J♥ 4♠ K♦ Q♦ T♠ T♦

A♠ 8♠ 5♦ 2♥ 5♣ T♥ 3♣ 8♣ A♥

J♠ 9♦ 7♦ 2♣ 3♥ 7♣ 3♠ 6♦ 9♣
A♣ Q♠ K♠ Q♥ 5♥ K♣ 8♥ J♦ 2♦
2♠ K♥ Q♣ 4♥ 6♣ 6♥ A♦ 4♣ 8♦

A solution to this game is:

A♠2♣,3♠,4♦,5♠,6♠,7♠,8♥,9♠,8♠,9♣,T♠,J♠,
Q♥,J♥,T♣,J♣,Q♦,K♦,A♣,2♠,3♥,2♦,3♣,4♥,5♥,
6♣,7♥,8♣,7♣,6♦,7♦,8♦,9♥,T♥,9♦,T♦,J♦,Q♠,
K♠,A♥,K♥,Q♣,K♣,A♦,2♥,3♦,4♠,5♣,6♥,5♦,4♣.

We mention one general feature of search in
Black Hole. The first two piles in the example lay-
out both have 9s in the middle. If, at some point
in the game, both the 4♦ and the 7♥ have been
played, the two 9s are interchangeable provided
that we don’t need to play the 9♠ before the 9♥
to allow access to the 8♠, or the 9♥ before the 9♠
to access the 5♦. That is, the 9s are interchange-
able if they are both played after both of their pre-
decessors and before either of their successors. In
these circumstances, we can choose the order in
which the two 9s are played and not backtrack on
this choice. Such a symmetry, dependent on what
happens in search, is called an almost symmetry in
AI planning [6], or a conditional symmetry in con-
straint programming [8,7]. How to deal with this
plays an important role in a number of sections to
follow.

Our experimental evidence will show that Black
Hole has a 87.5% chance of being winnable with
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perfect play. About 2.9% of games are trivially un-
solvable, because no deuces or Kings are available
in the top layer2, but of course there are non-trivial
ways to be unsolvable.

3. NP-Completeness of Generalised Black Hole

To show that Black Hole is NP-complete, we
consider a generalised version where there are any
number of card values, fans can have arbitrary and
differing sizes, and each card value can have a dif-
ferent number of suits. We show instances of the
SAT problem can be encoded using this gener-
alised version of Black Hole.

Consider a SAT instance with list of variables V
and list of clauses C where |C| = n. Then the deck
to be used is constructed as follows. Note through-
out this section the particular suit of a card is only
given when relevant, and that subscript i indicates
the i-th clause.

1. For each v ∈ V , there are two cards of equal
value and different suit, denoted vT and vF ,
called literal cards.

2. For each clause there are (clause size + 1) dif-
ferent suits for the card values ci and gi. The
ci are called clause cards, the gi are called
gate cards. We need (clause size + 1) different
suits to construct gate fans for each clause,
as described later.

3. Cards with values o1, o2, o3 and sf where
o1, o2 and o3 have two suits, and sf has
three. o1, o2, o3 take values distinct from the
ci, and are used to construct a ‘one-way
trap’ through which a solution may pass in
one direction only. sf denotes a reserved
start/finish card value.

A card can only be played onto the black hole
if its value is adjacent to the card on top of the
black hole. Given an ordering V on the variables,
the ordering on the card values begins with the
start/finish card sf , followed by the cards repre-
senting literals honouring the order V, followed by
the ci and gi cards in order c1, g1, c2, g2, . . . , cn, gn,
followed by the cards o1, o2, o3 which are used to
construct the one-way trap. Hence, for example, if
there are three clauses and three variables (a, b &
c, say), and we choose sf to be an Ace, then

2For this to happen, the 17 top cards in each fan must be
chosen from 43, i.e. 51 without the 2’s or K’s.

`43
17

´
/

`51
17

´
=

0.0285 . . ..

– aT and aF are deuces;
– bT and bF are threes;
– cT and cF are fours;
– c1, g1, c2, g2, c3, g3 take values 5, 6, 7, 8, 9 and

10 respectively;
– o1, o2, o3 are a Jack, a Queen and a King re-

spectively.

Setting up the cards
The beginning position is constructed as follows:

– Literal fans: For each literal card L, a fan is
constructed with L on top, and a copy of ci

for each clause that contains L. The ci cards
are ordered with smallest i nearest the top of
the fan.

– Gate fans: For each clause card ci, there is a
fan which has a copy of gi at the bottom, then
a copy of ci, then a gi for each occurrence of
ci in the literal fans.

– One way trap fan: A fan consisting of

o1, o2, o3, sf, o1, o2, o3, sf.

The main idea behind the encoding is that ex-
actly one of vT or vF will be chosen for each SAT
variable v. This will reveal a number of clause
cards in the literal fans. If some clause is not repre-
sented in the uncovered literal fans, then no path
can exist to the o1 card. Otherwise, a path such as
c1, g1, c1, g1, c2, g2, . . . , cn, gn, o1 exists. Notice that
the gate cards allow more than one of each clause
card to be collected.

Following this, o1, o2, o3 are picked up for the
first time and form a one-way trap. If this point can
be reached, it is always possible to have reached
it in such a way that it will now be possible to
pick up all remaining cards and then go through
o1, o2, o3 once again and finish.

As an example of deck construction, consider the
formula (a∨ b∨¬c)∧ (¬a∨ b∨¬c)∧ (a∨¬b∨¬c),
whose mapping into Black Hole is given below.

aT aF bT bF cT cF
c1 c2 c1 c3 c1
c3 c2 c2

c3
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g1 g2 g3 o1

g1 g2 g3 o2

g1 g2 g3 o3

c1 c2 c3 sf

g1 g2 g3 o1

o2

o3

sf

The initial card in the black hole is sf . The first
part of a solution sequence for this instance (cor-
responding to a = True, b = True, c = True) is
sf, aT, bT, cT . At this point a number of clause
cards are now visible. The solution now picks up
as many clause cards as possible from the uncov-
ered literal fans. The fans of gate cards are used
to acquire as many occurrences of each clause card
as possible, but none of the clause cards from the
gate fans are taken. Finally o1, o2, o3, sf is picked
up for the first time:

c1, g1, c1, g1, c2, g2, c3, g3, c3, g3, o1, o2, o3, sf.

Since the sequence has passed sf , the sequence is
allowed to begin its second part, which clears up
all the remaining cards. At this point the clause
cards in the gate fans are collected:

sf, aF, bF, cF, c1, g1, c1, g1, c2, g2, c2,

g2, c2, g2, c3, g3, c3, g3.

Finally o1, o2, o3, sf are collected to complete the
sequence.

3.1. Proof of correctness

Definition 1 The language of instances of Black
Hole is defined as follows. In the following,
each card is specified as a rank and a suit.
A problem instance is a sequence, beginning
with the card initially in the black hole, fol-
lowed by a punctuation symbol, followed by
the fans in arbitrary order, separated by the
punctuation symbol. A witness is simply a sin-
gle sequence containing all cards once, start-
ing with the card initially in the black hole.

Definition 2 The initial part of a solution sequence
of a Black Hole encoding consists of any cards
which come before the first occurrence of the
sequence o1, o2, o3.

Lemma 1 The initial part of the solution sequence
of a Black Hole encoding must contain exactly
one of the cards vT and vF , for each variable
v.

The deck contains two cards for each SAT vari-
able v, vT and vF . The solution starts at the
card sf and must contain the sequence o1, o2, o3

twice. Therefore the complete sequence must look
like this: sf, X, o1, o2, o3, sf, Y, o1, o2, o3, sf where
X and Y are subsequences which contain at least
one copy of each of the literal cards. Since the
sequence must pass through all the literal cards
twice, there must be only one literal card of each
value in X.

Lemma 2 If the encoded SAT instance is satisfi-
able, there is a route from the initial card to
the first occurrence of o1.

By Lemma 1, such a sequence must contain exactly
one occurrence of each literal card value. If we take
the literal cards which represent a solution to the
encoded SAT instance, then the fans they were on
will contain at least one occurrence of each clause
card ci. There are sufficient available gi cards in
the gate fans to form pairs with all these ci cards,
and the ci cards are sorted in ascending order in
the fans. Hence there is a route where each ci, gi

pair occurs.

Lemma 3 If the encoded SAT instance is satisfi-
able, then there is a solution to the Black Hole
encoding

By Lemma 2, it is possible to get from the begin-
ning to the first occurrence of o1. Note also dur-
ing this sequence it was not necessary to take any
clause cards from the gate fans, and we can there-
fore assume that no such cards were taken. The
remainder of the solution begins o1, o2, o3, sf then
proceeds through all the remaining literal cards,
then all the remaining ci, gi pairs in ascending or-
der, where there is at least one of each left in the
gate fans.

Lemma 4 If there is a solution to Black Hole in-
stance generated from a SAT instance, the
SAT instance is satisfiable.

If there is a solution to the Black Hole instance
then by Lemma 1, the initial part of this solution
must contain exactly one of the cards vT or vF for



5

each variable v. These literals form a solution to
the encoded SAT instance as the fans with these
cards must between them contain at least one oc-
currence of ci for every clause i, and therefore each
clause in the SAT instance must be satisfied by
this assignment.

Lemma 5 Black Hole is NP-Easy.

For the Black Hole language described in Defini-
tion 1, it is clear that the solution size is linear in
the size of the problem instance, because they con-
tain the same number of cards. A solution can be
checked in polynomial time by playing the game:
play cards into the black hole in the order speci-
fied by the witness. If, at any stage, some card is
not available to be played, the witness is invalid,
otherwise it is valid.

Theorem 1 Black Hole is NP-complete.

The combination of Lemmas 3 and 4 show that a
SAT instance is satisfiable if and only if its Black
Hole encoding is satisfiable, hence the encoding
is correct. The encoding produces a Black Hole
instance of a size that is linear in the number of
literals in the SAT formula, therefore Black Hole is
NP-hard. Combined with Lemma 5, we prove that
Black Hole is NP-complete.

The language used to describe a Black Hole in-
stance may not be the most compact. If another
language which is logarithmically more compact
were found, the witness would be exponentially
larger than the instance, and Black Hole would
not be NP-easy. However, since we polynomially
reduce SAT into Black Hole, such a result would
also prove that SAT is not NP-easy.

While this proof has considered encoding a gen-
eral SAT instance, it could of course encode spe-
cialisations of SAT, in particular 3-SAT with a
maximum of 5 occurrences of each variable, which
is itself NP-complete. This is interesting because
encoding this problem would put a fixed limit on
the maximum size of the fans (to 8) and the num-
ber of suits (to 4). Ranks and number of fans re-
main unlimited.

4. An AI Planning Encoding

In AI planning, an initial state is gradually
transformed into a goal state through the applica-

tion of plan operators [1]. Black Hole can straight-
forwardly be characterised in this way: the stacks
and initial hole card comprise the initial state, the
goal state is that all cards are played, and a move
is to play a card. Hence, it is natural to test the
performance of AI planning systems on this do-
main.

The plan objects in our PDDL [5] encoding are
simply the ranks (ace–king) and the suits (spades,
clubs, diamonds, hearts). Each card is specified by
a combination of rank and suit objects. We take
this approach, as opposed to a single object per
card, to simplify the description of adjacency. The
initial, current and goal states are described using
a number of simple propositions. (hole rank) in-
dicates the rank of the card currently in the hole
— note that it is not necessary to know the suit of
the hole card. (unplayed rank suit) and (played
rank suit) are self-explanatory. We use both be-
cause some planners do not accept negated precon-
ditions and/or goals. (top rank suit) indicates that
a particular card is at the top of a stack in the ini-
tial state. Similarly, (under rank1 suit1 rank2 suit2)
indicates that, in the initial state, the card denoted
by rank1 suit1 is underneath that denoted by rank2

suit2. We make use of two further variations of
under, underSameSuit and underSameRank, since
most AI planners forbid more than one parame-
ter associated with an operator from being instan-
tiated to the same plan object. Finally, (plusone
rank1 rank2) indicates that rank1 is adjacent be-
low rank2. Thirteen such propositions describe the
adjacency of the set of ranks.

The decision to use plusone necessitates both
Play-Up and Play-down operators. The sim-
plest case is in playing a card that is on top of
a stack initially, since there is no need to check
that the card above has been played. For illus-
tration, Play-Up-Top is given below. Space pre-
cludes presenting the full set of operators,

(:action PLAY-UP-TOP

:parameters (?rank ?suit ?hole)

:precondition (and (top ?rank ?suit)

(hole ?hole)

(plusone ?hole ?rank)

(unplayed ?rank ?suit))

:effect (and (not(unplayed ?rank ?suit))

(played ?rank ?suit)

(not(hole ?hole))

(hole ?rank)))

The other operators follow the same basic pattern.
There are 12 operators in all (6 in either direction).
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Five of each six deal with playing a card that was
not on the top of a stack initially, with the need to
avoid instantiating different parameters with the
same plan object accounting for the variations.

Naively, the goal can be specified as all cards
having been played. This is needlessly complex. It
suffices to say that the bottom card of each stack
must be played, since this implies that all cards
above must also have been played. This reduces
the number of goal conditions from 51 to 17 in the
standard game.

We experimented with two state-of-the-art AI
planning systems, Blackbox 4.2 [14] and FF 2.3
[12]. Blackbox is a Graphplan-based [3] planner
that transforms the planning graph into a large
propositional satisfiability problem. The solution
to this problem, which is equivalent to a valid plan,
is obtained by using the CHAFF [15] dedicated
SAT solver. FF is a forward-chaining heuristic
state-space planner that generates heuristics by re-
laxing the problem and solves using a Graphplan-
style algorithm. Preliminary experimentation re-
vealed that, on this encoding, FF performed by far
the better. Hence, we focused on the use of FF.

4.1. Computational experience

We ran the FF planner on 2,500 randomly cho-
sen problems. Over 80% were solved in under one
second, although about 2% of the problems timed
out (no result after 2844CPU seconds). Interest-
ingly, the maximum non-timed out solution time
was 130 CPU seconds, so it appears that there is a
small percentage of problems for which our plan-
ning approach is not suited. This observation is
reinforced by the lack of correlation between the
problems that FF found hardest to solve and the
problems that our SAT and Constraint Program-
ming solvers found hardest. A more detailed com-
parison of results is given in Section 9.

5. A Constraint Programming Model

Constraint Programming (CP) is a powerful
method for solving difficult combinatorial prob-
lems. Problems are characterised by a set of deci-
sion variables and a set of constraints that a solu-
tion must satisfy, and are then solved by search.
We can represent a solution to the game as a se-
quence of the 52 cards in the pack, starting with

the ace of spades, the sequence representing the
order in which the cards will be played into the
Black Hole. This makes it easy to devise a basic CP
model. In fact, it is a permutation problem [11]:
if the cards are numbered 0 (the ace of spades) to
51, the sequence of cards can be represented as a
permutation of these numbers. So we can have two
sets of dual variables: xi represents the ith position
in the sequence, and its value represents a card;
yj represents a card and its value is the position
in the sequence where that card occurs. We have
the usual channelling constraints: xi = j iff yj = i,
0 ≤ i, j ≤ 51. We set x0 = 0.

The constraints that a card cannot be played
before the card above it, if there is one, has been
played are represented by < constraints on the cor-
responding yj variables. The constraints that each
card must be followed by a card whose value is one
higher or one lower are represented by constraints
between xi and xi+1 for 0 ≤ i < 51. We use a table
constraint for this, i.e. the constraint is specified
by a list of allowed pairs of values.

The variables x0, x1, ..., x51 are the search vari-
ables: the variables y0, y1, ..., y51 get assigned by
the channelling constraints. The xi variables are
assigned in lexicographic order, i.e. the sequence
of cards is built up consecutively from start to
finish. There is scope for value ordering, however
(see below). This simple model using only binary
constraints models the problem successfully, but
in practice search is prohibitive. We have there-
fore correctly investigated other techniques which
make search practical.

We first deal with the conditional symmetry [7]
described in Section 2. Recall that in the example
the 9♠ and the 9♥ are interchangeable if both have
been played after the cards above them, the 4♦
and 7♥, and before the cards immediately below
them, 8♠ and 5♦. To break this conditional sym-
metry, we can add the constraint: if 4♦ < 9♥ and
9♠ < 5♦ then 9♠ < 9♥. This constraint forces 9♠
to be played before 9♥ when they are interchange-
able. Given any ordering of the occurrences of each
value, all constraints of this form can be added,
pairwise, before search. This does not change the
solutions returned if (as we describe below) the
same order of occurrences is preferred by the value
ordering heuristic. The constraints are simplified
if the preferred card of the pair is at the top of its
pile or the other card is at the bottom of its pile,
or both. In particular, if the preferred card is at
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the top of its pile and the other card of the pair is
at the bottom of its pile, then we can add a simple
precedence constraint that the preferred card must
be placed before the other. Because the conditional
symmetry breaking constraints are designed to re-
spect the value ordering, the solution found is the
same as the solution that would be found with-
out the constraints. The constraints simply pre-
vent the search from exploring subtrees that con-
tain no solution. Hence, the number of backtracks
with the constraints is guaranteed to be no more
than without them. Furthermore, they appear to
add little overhead in terms of runtime; they can-
not become active until their condition becomes
false on backtracking, and they then become sim-
ple precedence constraints that are cheap to propa-
gate. It is difficult to give statistics to show the dif-
ference that conditional symmetry breaking con-
straints makes to the performance of the solver:
we have been able to solve few random instances
without them, given a run-time limit of 10 minutes
per instance. For those that can be solved within
10 min, adding condition symmetry breaking con-
straints can make orders of magnitude difference to
the search effort and runtime. For example, a par-
ticular instance took 336,321 backtracks and 326
sec. to solve without them; when they were added,
this was reduced to 252 backtracks and 0.66 sec.

Initially, when a variable xi is selected for as-
signment, we simply selected its values in an arbi-
trary order (spades first in rank order, then hearts
and so on.) We then changed the value ordering,
so that cards in the top or middle layers are cho-
sen before cards of the same value lower down in
the initial piles. This fits with the problem, in that
it makes sense to clear off the top layer of cards
as quickly as possible. This also is consistent with
the conditional symmetry breaking constraints: as
long as values in the same layer are considered
in the same order by the heuristic as in the con-
straints, the same solutions will be returned first
with or without the conditional symmetry break-
ing constraints. Since this is a heuristic, it is not
guaranteed to reduce search on each individual in-
stance, but overall, it does reduce search consider-
ably, by about an order of magnitude.

The above CP model has been implemented in
ILOG Solver 6.0 and applied to 2,500 randomly
generated instances. The performance of the CP
model is highly skewed: half of the instances take
fewer than 100 backtracks to solve, or to prove

unsatisfiable, whereas the most difficult instances
take millions of backtracks. This is shown in Figure
1, where the instances are sorted by search effort.
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Fig. 1. Number of backtracks to solve 2,500 random in-

stances of ‘Black Hole’.

5.1. Caching states in ‘Black Hole’

We now show that it can be worthwhile to cache
information about the assignments visited during
the search for solutions: this information can be
used to prune parts of the search visited later and
avoid wasted effort, as described in [18].

When a constraint satisfaction problem (CSP)
is solved by depth-first backtracking search, and
the search backtracks, the failure of the current
assignment is due to some inconsistency that is not
explicitly stated in the constraints. The search has
discovered that the assignment cannot be extended
to a solution; it is a nogood. There is no point in
recording the assignment itself, in order to avoid
it in future, because the search will never revisit it
anyway. However, in some problems, assignments
can occur later in the search that are equivalent to
the failed assignment, in the sense that they leave
the remaining search in the same state, and hence
whether or not the equivalent assignment will fail
can be determined from the failed assignment.

In such a case, if assignments are recorded and
an assignment occurs later in the search that
is equivalent to one that has already failed, the
search can immediately backtrack without redis-
covering the same failure. Such equivalent states
occur in our CP model for Black Hole. At any
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point during search where the current assignment
is about to be extended, a valid sequence of cards
has been built up, starting from the ace of spades.
Whether or not the sequence can be completed de-
pends only on the cards that have been played and
the last card; apart from the last card, the order
of the previously-played cards is immaterial.

For instance, suppose the following sequence of
cards occurs during search (assuming that in some
game the sequence is possible, given the initial lay-
out of the cards):
A♠-2♣-3♠-4♦-5♠-4♣-3♣-2♠-A♣-K♦-A♦-2♦-3♦
If at some later point in the search, the following
sequence occurs:
A♠-K♦-A♦-2♣-3♠-2♠-A♣-2♦-3♣-4♣-5♠-4♦-3♦
the second sequence will not lead to a solution.
The set of cards in both sequences is the same, and
they end with the same card. Hence, in both cases,
the remaining cards and their layout are the same.
Since the first sequence did not lead to a solution
(otherwise the search would have terminated), the
second will not either.

Based on this insight, the search algorithm in
Solver has been modified to record and use the
relevant information. The search seeks to extend
the current sequence of cards at choice points.
Suppose that the first unassigned variable is xk

and the values of the earlier variables are x0 =
0, x1 = v1, ..., xk−1 = vk−1. (Some of these values
may have been assigned by constraint propagation
rather than previous choices.) The search is about
to extend this assignment by assigning the value vk

to xk. A binary choice is created between xk = vk

and xk 6= vk, for some value vk in the domain of xk.
The set of cards played so far, {v1, v2, ..., vk−1} and
the card about to be played, vk, are then compared
against the states already cached. If the search has
previously assigned {v1, v2, ..., vk−1} to the vari-
ables x1, x2, ..., xk−1, in some order, and vk to xk,
then the branch xk = vk should fail. If no match is
found, a new state is added to the cache, consist-
ing of the set of cards already played and the card
about to be played, and the search continues. In
the example, when the 3♦is about to be added to
the sequence, the set {2♠, 3♠, 5♠, A♦, 2♦, 4♦,
K♦, A♣, 2♣, 3♣, 4♣}, and x12 = 3♦, would be
compared with the states already visited.

The implementation represents the set of cards
in the current sequence, excluding the A♠, as a 51-
bit integer, where bit i = 1 if card i is in the set, 1 ≤
i ≤ 51. The current state can only match a state

in the cache if both the number of cards played
(k − 1) and the current card (vk) match. Hence,
the cache is indexed by these items. It is stored as
an array of extensible arrays, one for each possible
combination of k − 1 and vk: this is a somewhat
crude storage system, but has proved adequate for
this problem. Within the relevant extensible array,
the integer representing {v1, v2, ..., vk−1} is com-
pared with the corresponding stored integers, until
either a match is found, or there is no match. In
the former case, the search backtracks: the current
state cannot lead to a solution. Otherwise, the in-
teger representing {v1, v2, ..., vk−1} is added to the
array, xk = vk is added to the sequence being built
and the search continues.
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Fig. 2. Solving 2,500 random instances of ‘Black Hole’: dif-

ference in number of backtracks between the original search
and the search with cached states, instances in the same

order as Figure 1.

Figure 2 shows the reduction in the number of
backtracks required to solve the 2,500 instances
resulting from caching states. Only the instances
which take fewer backtracks with caching than
without are shown, but the instances are given the
same numbering as in Figure 1 (so that the most
difficult instance from Figure 1 is still shown as in-
stance 2,500). It is clear that the saving in search
effort increases with the search effort originally ex-
pended.

For all but 15 of the 1,206 instances that take
50 or fewer backtracks to find a solution, caching
states visited makes no difference to the search ef-
fort. However, since few states are cached in these
cases, the run-time is hardly affected either. ILOG
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Solver occasionally reports a longer run-time with
caching than without, by up to 0.01 sec., but only
for instances that take little time to solve in either
case.

At the other end of the scale, the instances
that take more than 1 million backtracks with
the original search are shown in Table 4; these
instances have no solution. For these instances,

Table 1

Number of backtracks and run-time in seconds (on a

1.7GHz Pentium M PC, running Windows 2000) to solve

the most difficult of the 2,500 ‘Black Hole’ instances, with
and without caching states visited.

No caching Caching

Backtracks Time Backtracks Time

3,943,901 1,427.93 1,020,371 431.33

3,790,412 1,454.16 1,259,151 509.94

1,901,738 721.07 606,231 251.01

1,735,849 681.57 528,379 233.40

1,540,321 582.71 619,735 257.95

1,065,596 398.44 423,416 176.01

caching states visited reduces the search effort by
at least 60%; for the most difficult instance, the
reduction is nearly 75%. In spite of the unsophisti-
cated storage of the cache, the saving in run-time
is nearly as great; more than 55% for all six in-
stances, and 70% for the most difficult instance.

To show more clearly how caching affects the
search, Figure 3 shows the search profile for the
most difficult instance of the 2,500 for the origi-
nal search. The number of choice points is plotted
against the number of variables assigned when the
choice point is created, so showing the depth in the
search where the choice point occurs. The number
of cached states at each depth is also shown; this
is equal to the number of choice points where no
matching state is found in the cache and the search
is allowed to continue.

When the search backtracks because the current
state matches one already visited, a whole sub-
tree that would have otherwise been explored is
pruned. This is why the reduction in choice points
as a result of caching, shown in Figure 3 is much
greater than the number of choice points that
match cached states; it also explains why, without
caching, choice points tend to occur deeper in the
search.

The total number of cached states for the in-
stance shown in Figure 3 is about 1.25 million

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0  10  20  30  40  50  60

Number of cards assigned

Choice points without caching
Choice points with caching

Cached states

Fig. 3. Proving insolubility for the most difficult ‘Black
Hole’ instance in the sample, with and without caching.

(< 221). In a permutation problem, the number
of possible assignments is at most the number of
subsets of the values, i.e. 2n, where n is the length
of the sequence, in this case effectively 51; hence,
this is an upper bound on the number of states
that need to be cached during the course of search.
However, in this case, most of the subsets of the
cards are not feasible states, since a valid sequence
cannot be constructed in which the cards follow
each other correctly in ascending or descending
rank. Hence, the number of possible cached states
is much less than 251, even for the difficult unsat-
isfiable instances.

6. A SAT Model for Black Hole Patience

Propositional Satisfiability (SAT) is a technique
closely related to CP in which the domains of all
variables are Boolean and the constraints are ex-
pressed in conjunctive normal form. Specialised
solvers achieve large efficiency gains by exploiting
the simplicity of this specification language.

The SAT model is conceptually similar to
the CP model, although additional variables are
needed to achieve the same expressiveness.

First of all, we have a 52× 52 matrix M of vari-
ables, where Mij is true if card i is played into
the black hole in the jth position. We know in ad-
vance that the ace of spades is in the first position.
The constraint that each card is played exactly in
one position is represented by at-least-one and at-
most-one clauses. Also, clauses are placed on the
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variables in M to ensure that each card is followed
by a card whose rank is one value higher or lower.
When a solution is found, these variables are used
to obtain the solution.

In addition, a second matrix with the same size
establishes the order relations between cards. For
establishing the order relations, we use a ladder
matrix [9,2] i.e. a matrix in which for each row
we must have a sequence of zero or more true as-
signments, and all following variables are assigned
false. The first entry to have value false gives the
position where the respective card has been played.
Observe that the entries in this matrix are eas-
ily related with the entries in the first matrix. Be-
sides the clauses to guarantee that only valid as-
signments are allowed, on this matrix clauses are
added to guarantee that a card is played into the
black hole only after all the cards above it have
been played.

Finally, a third ladder matrix is required for ap-
plying symmetry breaking, where in this matrix
the columns contain a sequence of zero or more
true assignments, followed by all variables being
assigned false. Clauses are placed on this matrix to
eliminate conditional symmetries, i.e. search states
where cards of the same rank are interchangeable.
The conditions under which these symmetries arise
have already been described for the CP model.

Unlike CP solvers, most SAT solvers do not pro-
vide the option of specifying a variable or value or-
dering and therefore this part of the CP encoding
does not transfer to SAT.

Experimental results – described in Table 2 and
obtained using the siege SAT solver [17] – demon-
strate that SAT is indeed a competitive approach
for solving the black hole problem. Although the
CP solver is usually faster, the SAT solver is defi-
nitely more robust. We discuss the relative merits
of approaches more fully in Section 9.

7. Mixed Integer Programming Models

Integer programming (IP) is a powerful tool for
solving linear optimization problems with discrete
decision variables. It has been applied successfully
to a variety of fixed-length AI planning problems
(e.g. [13]). In this section, we present four differ-
ent mixed integer programming models (MIP1-4)
for Black Hole and investigate their computational
performances on a test suite.

Instance Mean SAT nodes Mean CPU time

01 33,429 11.859

09 2,876 0.156

19 1,902 0.071

238 5,080 0.526

337 44,431 22.670

635 59,744 33.075

642 11,293 1.701

1360 1,595 0.028

1698 3,465 0.240

2223 16,721 4.188
Table 2

Sample SAT solver performance – siege with 50 seeds

In representing an instance with 17 stacks of 3
cards each, the top cards are numbered 1 to 17,
the middle cards from 18 to 34, and the bottom
cards from 35 to 51. Notation is as follows: • a[i, j]
denotes a binary decision variable matrix of size
51 × 51, in which the cell (i, j) is 1 if the card in
the ith position is removed during the jth move,
otherwise 0. • b[i, j] is a binary decision variable
matrix of size 51 × 4, in which the cell (i, j) de-
notes the difference between the values of two con-
secutive cards played at moves i (i = 0, ..., 50) and
i+1. In this notation j denotes “the type of differ-
ence”, which could be only one of these values: 1
(j = 1), −1 (j = 2), 12 (j = 3), and −12 (j = 4). •
v[i], a parameter array whose ith element denotes
the value of the card in the ith position. • x[i] is
a continuous decision variable (but takes only in-
teger values) and denotes “the move number” for
the card at position i (i=1,...,51). • y[i] is a contin-
uous decision variable (takes only integer values)
denoting the value of the card (y[i] ∈ {1, ..., 13})
played at the ith move. y[0] is 1.

In what follows we present four different MIP
formulations of the “Black Hole” game and com-
pare the computational performance of these mod-
els.

7.1. MIP-1

The first MIP model (MIP-1) consists of two
sets of constraints: a card may only be played after
those on top of it have been played, and succes-
sively played cards must differ in value by either 1
or 12.
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x[i + 17(j − 1)] + 1 ≤ x[i + 17j], i = 1, ..., 17; j = 1, ..., 2 (1)

x[i] + 2 ≤ x[i + 34], i = 1, ..., 17 (2)

x[i] =
X

k=1,...,51

k.a[i, k], i = 1, ..., 51 (3)

X
k=1,...,51

a[i, k] = 1, i = 1, ..., 51 (4)

X
i=1,...,51

a[i, k] = 1, k = 1, ..., 51 (5)

y[i] =
X

j=1,...,51

v[j].a[j, i], i = 1, ..., 51; y[0] = 1 (6)

y[i]− y[i + 1] =

− b[i, 1] + b[i, 2]− 12b[i, 3] + 12b[i, 4], i = 0, ..., 50 (7)X
j=1,...,4

b[i, j] = 1, i = 0, ..., 50 (8)

1 ≤ y[i] ≤ 13, 1 ≤ x[i] ≤ 51, i = 1, ..., 51 (9)

In the above formulation, Eqs.(1) and (2) express
that, in any stack, the top card must have been
played before an underneath card can be played.
Eq.(3) sets the relation between x[i] and a[i, j].
Since a[i, j] = 1 denotes that the card i is played
at move j, then x[i], which is the ith card’s move
number, must be equal to j.a[i, j]. Clearly, each
card can be played only once (Eq.(4)) and there
should be one card assigned to each move (Eq.(5)).
Eq.(6) has a similar function to Eq.(3) and sets
the relation between y[i] and a[j, i]: for card j

which is played at move i we have a[j, i] = 1 and
must have y[i] = v[j]. Eq.(7) expresses the rule
that the difference between the values of consecu-
tively played cards must be an element of the set
{1,−1, 12,−12}. It is clear that only one of these
four values can be the difference (Eq.(8)). Eq.(9)
sets the lower and upper bounds for the continu-
ous decision variables. From Eq.(3) and Eq.(6) we
see that the right hand side of the equalities may
only assume integer values and therefore, although
x[i] and y[i] are declared as continuous decision
variables, they never take on non-integer values.

The above formulation can be improved by re-
placing Eq.(7) with a set of constraints providing
tighter relaxation. A set of such constraints are
given below:

y[i + 1]− y[i] ≤ −11b[i, 1] + 12 (10)

y[i + 1]− y[i] ≥ 13b[i, 1]− 12 (11)

y[i]− y[i + 1] ≤ −11b[i, 2] + 12 (12)

y[i]− y[i + 1] ≥ 13b[i, 2]− 12 (13)

12b[i, 3] + 1 ≤ y[i + 1] (14)

12(1− b[i, 3]) + 1 ≥ y[i] (15)

12b[i, 4] + 1 ≤ y[i] (16)

12(1− b[i, 4]) + 1 ≥ y[i + 1] (17)

Eqs.(14)–(17) give us a very strong formulation
compared to Eq.(7). Let us assume that b[i, 3] = 1
(the difference between the card values of move i
and i + 1 is -12), from Eqs.(14) and (15) one gets
13 ≤ y[i+1] and 1 ≥ y[i]; in other words, the deci-
sion variables are fixed to y[i+1] = 13 and y[i] = 1,
once b[i, 3] = 1. In a similar fashion, Eqs.(10)–(13)
are strong enough to fix the difference of card val-
ues to 1(−1) once b[i, 1(2)] is set to 1.

Black Hole has no objective function, so we
employ an artificial one, based upon a breadth-
first strategy. This is because breadth-first is ex-
pected to yield a feasible solution easily. One
such objective function is min

∑
i=1,...,17 A.i.x[i] +∑

i=18,...,34 i.x[i], where A is a large constant:
penalties for playing top row cards at a later stage
in the game are higher, whereas there is no such
penalty for bottom row cards. Preliminary exper-
imentation confirmed that this objective function
performed better than any other we considered.

7.2. MIP-2

The second model (MIP-2) proposed for the
“Black Hole” problem is similar to MIP-1 in many
ways. However, the most crucial difference is the
use of implied constraints in a way that reduces the
search space dramatically. Although the increase
in the number of constraints has adverse effect on
the speed of the solution algorithm, MIP-2 per-
forms still better compared to MIP-1.

The underlying observation in developing MIP-
2 is that at any stage of the game, one can in-
fer about the possible card values for the next 11
stages. Consider Fig.(4) in which gray cells point to
feasible card values for the beginning of the game.

Although Fig.(4) is useful on its own, it is possi-
ble to generalise it for any stage and for any card
value to have more inference on the game. Fig.(5)
is a result of such an effort and shows an instance
of having a value of “6” at stage 15. Again the gray
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Fig. 4. Feasible card values for the beginning of the game
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Fig. 5. Feasible card values for Value=6 at Move=15

cells represent all possible values if we have a “6”
at stage 15.

In MIP, one way of expressing the case given in
Fig.(5) is as follows:∑
k∈{1,...,51}

v[k]=i

a[k, j]+
∑

k∈{1,...,51}
|v[k]−i|6={h−1|h∈Sj}

a[k, j+m] ≤ 1

(18)
where, j = 1, ..., 51, i ∈ Sj , m = 1, ...,min{11, 51−
j} and S1 = {2, 13}, S2 = {1, 3, 12}, S3 = {2, 4, 11, 13},
S4 = {1, 3, 5, 10, 12}, S5 = {2, 4, 6, 9, 11, 13},
S6 = {1, 3, 5, 7, 8, 10, 12}, S7 = {2, 4, 6, 7, 8, 9, 11, 13},
S8 = {1, 3, 5, 6, 7, 8, 9, 10, 12}, S9 = {2, 4, 5, 6, 7, 8, 9, 10, 11, 13},
S10 = {1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},
S11 = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}, S12≤ = {1, ..., 13}

Eq. (18) exploits that, at any move, one can infer
infeasible card values for the next 11 moves. Con-
sider Fig. 4, in which gray cells are feasible card
values for the beginning of the game. Fig. 4 can be
generalised to any move and for any played card
value. Sj denotes the set of feasible card values in
move j. In Eq.(18), the first summation term gives
all binary decision variables referring to playing
card valued i in move j. The second includes all
ak,j+m that don’t comply with having a card val-
ued i in move j. If any of the variables specified in
the first summation takes on the value of 1, then
all ak,j+m in the second must be 0.

MIP-2 consists of Eq.(18) as well as Eqs. (1) and
(2) implying that card i can be played in move j
only if the cards on top of it have been played,
Eqs. (4) and (5) guaranteeing that only one card is
played in each move, and each card is played only
once.

7.3. MIP-3 and MIP-4

One weakness inherent in MIP is the relatively
complex expressions needed for expressing lexi-
cographical ordering. This has been observed in
MIP-1 and MIP-2 models. In this section an alter-
native formulation is given for Eqs.(1) and (2).

The basic idea behind this formulation is the ob-
servation that if card i (assume that it is a middle
row card) needs to be played at move j, then the
top row card must have been played until stage j.
This formulation provides us more inference com-
pared to Eqs.(1) and (2). The downside of this al-
ternative formulation is the large number of con-
straints it requires.

This alternative formulation, MIP-3, consists of
(i = 1, ..., 17)

jX
k=1

a[i, k] ≥ a[i + 17, j + 1], j = 1, ..., 50 (19)

jX
k=1

a[i, k] ≥ a[i + 34, j + 2], j = 1, ..., 49 (20)

jX
k=1

a[i + 17, k] ≥ a[i + 34, j + 1], j = 2, ..., 50 (21)

as well as Eqs. (4), (5), and (18).
In MIP-4, lexicographical ordering constraints

are expressed twice; first by means of Eqs.(1) and
(2), and then Eqs.(19)–(21).

7.4. Computational Experience

To gauge the computational performance of
these four MIP formulations we conducted nu-
merical experiments. Experiments are performed
on a 2GHz PC using the well-known MIP solver
ILOG CPLEX 9.0. CPLEX’s emphasis indicator is
set to “emphasize feasibility over optimality”. The
test suite used in the experiments consists of 30
randomly-generated instances. The allowed maxi-
mum solution time is set to 5 hours. In three in-
stances (19, 20, 29) there are no feasible solutions.

MIP-1 model contains 1071 constraints and 2908
variables (2805 binary variables). MIP-2 contains
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MIP-1 MIP-2 MIP-3 MIP-4

1 – – 11000(1444) 8800(975)

2 – – 7600(966) 800(29)

3 – – 1800(52) 2300(85)

4 – – – –

5 – 5600(1691) 850(71) –

6 – – 140(0) 2200(174)

7 – – 300(7) 700(19)

8 – – – –

9 – – 1400(81) –

10 – – 2100(199) –

11 – – 970(21) 620(18)

12 – 1500(474) 330(15) 1400(100)

13 – – 4700(415) 2600(148)

14 – – 4400(414) 670(35)

15 – – – –

16 – 710(168) 1300(82) –

17 – – 12000(1201) –

18 – 2300(472) 670(22) 5100(235)

19∗ – – 38(0) 32(0)

20∗ 0.45(0) 0.42(0) 0.52(0) 0.54(0)

21 – – 8500(933) 380(5)

22 – – – –

23 – – – 17000(1396)

24 – – 1300(143) –

25 – – – –

26 – – – 18000(1606)

27 – – 1400(70) 1700(68)

28 – – 470(5) 920(23)

29∗ 0.08(0) 0.42(0) 0.52(0) 0.55(0)

30 – – 17000(2203) –

Table 3

Solution time in secs (Number of nodes visited)

(* denotes “no solution” exists; A dash indicates no feasible

solution in 5 hours)

6269 constraints and 2652 variables (2601 binary
variables). MIP-3 and MIP-4 use 8683 and 8734
constraints, respectively, and 2601 variables.

It has been observed that MIP-3 is the compu-
tationally most efficient formulation. Using MIP-
3, we were able to solve 23 instances out of 30. It is
interesting to observe that in the solved cases the
number of nodes visited are actually very small,
pointing out that the MIP formulation is effective.
The maximum number of nodes visited was 2203.
However, the downside of the MIP approach is the
excessive amount of processing time required at
each node visited. The infeasible cases were easy
to spot using MIP-3 or MIP-4. The infeasibilities
were proven at the root nodes in less than a sec-
ond.

These results suggest that IP is not an effective
approach to address “Black Hole”. This is interest-
ing, since, as noted, IP has been successfully ap-
plied to many other fixed-length AI planning prob-
lems. The lack of a real objective function to pro-

vide a tight bound is certainly a factor, as well as
the fact that the linear encoding of Black Hole re-
quires a very large number of binary variables and
constraints.

8. A Special Purpose Solver for Black Hole

Writing a special-purpose solver and encoding
into another domain are both viable options for
many classes of AI problems. The advantage of a
special-purpose solver is that, knowing the prop-
erties of the problem, code can be optimised to
search exceptionally fast. The disadvantage is the
lack of mature and deep techniques for search, or
the difficulty of adapting and implementing these
techniques for the domain. In the case of Black
Hole, we were able to write a special-purpose solver
which could search very fast, but its lack of reason-
ing abilities means that the cost in larger search
spaces is not repaid by the added speed per node
compared to other methods.

The solver is written in Common Lisp. To avoid
garbage collection, no lists were constructed or dis-
carded after initialisation at the root of the search
tree. The other key design principle was to min-
imise the amount of work on making moves and
undoing them for backtracking. Indeed, there is
only very moderate work done on choosing a move,
and even less on backtracking.

Essentially we treat cards as pointers into the
data structures. Each card is represented as an
array index, so cards are numbered from 0 to
suits ∗ ranks − 1. For each card, we construct at
the root a static pointer to the card immediately
above it in its pile, or a null pointer if it is on top.
A simple dynamic bitarray indicates whether each
card has been played or not at this point in search,
leading to one bit change on moving forward and
backtracking. A card is available if it has not been
played, but the card above it (if any) has been. Our
data structures make this a very cheap test. With
only four suits in the standard game, we simply
test all possible cards of the right ranks to see if
they are available. The test is performed for each
card of rank one above and one below the current
card in the hole: the list of cards for each rank is
computed statically at the root. The alternative is
to maintain lists of available cards of each rank,
which in general will be much shorter than 4, the
number of suits. However, in its simplest form this
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leads to creating and reducings lists, and however
it is done involves some work at each node and
undoing it on backtracking. To avoid garbage col-
lection we set up a 2-D array to store available
moves at each depth, the dimensions being depth
in search and twice the number of suits. At a new
depth we insert the possible moves into this array.
No work in this array needs to be done on back-
tracking, except decrementing the pointer to the
current depth. Enumeration of the set of moves is
implemented iteratively, but search itself is recur-
sive, so the search function is called when we move
to the next depth. So various bits and pieces go
onto the function stack when this happens. How-
ever, the depth is only the number of cards.

We deal with conditional symmetries as fol-
lows. First, we distinguish between ‘unit’ cards,
i.e. cards at the bottom of a pile or above only
cards of the same rank, and other cards that we
call ‘general’. A card’s unity or generality is de-
termined statically at the root, so lists of general
and unit cards are stored at the root. When find-
ing playable cards, we consider at most one unit
card of each rank, and none at all if there are any
general cards of that rank. This deals with this
kind of conditional symmetry almost without over-
head. Our solver is able to search at almost 100,000
backtracks per second on a 2GHz PC. However,
we are prone to exceptionally hard problems: one
winnable instance took 1,055,774,437 backtracks
and 11,701.38 secs. 3

We adapted the solver to deal with general con-
ditional symmetry, i.e. when two general cards of
the same rank are simultaneously available. After
backtracking from the choice of the first such card,
it will be locked as unavailable until the card un-
derneath the second card has been played and frees
the first. In implementation, this freeing card is
pointed to from the first, and the first card is not
available until the freeing card has been played.
When there are more than two cards available, the
card underneath the third card will free the sec-
ond, and so on. This array of freeing pointers does
have to be maintained dynamically, but it is easy
to calculate freeing cards from the list of available
moves at each depth in search. The overheads are
now more substantial, and we did not find great
reductions in search from dealing with conditional

3By mistake this random instance only involved 48 cards

in 16 piles: but as claimed it worked correctly.

symmetry, so overall performance was not dramat-
ically improved.

To conclude, we did succeed in writing a solver
to search very fast. Although our design decisions
may not be optimal, we would be surprised if it
could be speeded up to search 1,000 more nodes
per second, as would be necessary to reduce the
hardest problems to a few seconds each. Compared
with the more intelligent and successful solvers re-
ported earlier, we expect that some form of rea-
soning happening in those solvers is reducing the
amount of search: duplicating this in a special-
purpose solver would likely lead to the fastest pos-
sible search, but of course at a substantial over-
head in programmer time.

9. Experimental Evaluation

We have reported five solvers in this paper. We
found that two, the MIP approach and the spe-
cial purpose solver, were not competitive with the
others, with many instances taking hours to solve.
This in no sense implies a final conclusion that
these approaches are impractical for Black Hole
solving. However, the particular implementations
we report here have not been the most success-
ful, and we restrict their empirical evaluation to
the brief details reported above. In particular, 30
instances using the MIP approach was enough to
show that the cost per node was uncompetitive.
Moreover, the special purpose solver may have be-
come competitive if implemented in C/C++, with
state-caching incorporated as for our CP solver.
We have performed a much more extensive empir-
ical comparison of our AI Planning, CP, and SAT
based solvers. The CP solver results in this discus-
sion are those for the version which incorporates
state-caching, as described in Section 5.1.

We constructed a single benchmark set of 2,500
instances to test the solvers on. All three solvers
were tested on the same instances, and they gave
the same results on each instance – excepting a
few timeouts described below. Since the instances
were independently randomly generated instances
of the standard game with a 52 card game, we can
report on the expected winnability of Black Hole.
A total of 2,189 instances were winnable and 311
were not, giving an 87.56% probability of winnabil-
ity. The 95% confidence interval for the true prob-
ability is [86.2%, 88.8%].
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FF SAT CP

> 2800s 43 0 0

100 – 999.9s 4 4 8

10 – 99.9s 359 160 61

1 – 9.9s 1,100 1,341 276

0.1 – 0.9s 643 770 648

< 0.1s 351 285 1,577

Max. sol. 130s 180s 510s

Median sol. 0.88s 1.75s 0.03s

Mean sol. 6.83s 3.47s 1.97s

Std. dev. 15.3s 7.6s 17.4s

win % 29.4% 7.7% 67.8%

Table 4

Solving 2,500 random instances of ‘Black Hole’: CPU time

comparison.

We were not able to run the three remaining
solvers on the same machines. Instead, we have
normalised runtime results as if they were all run
in the same machine, taking the CP solver to have
a factor of 1. To derive the runtime multipliers we
ran a single SAT solver on the same set of bench-
marks on the three different machines. Our results
are summarised in Table 4.

All three solvers were highly effective at solving
these instances. Only the FF planner failed to solve
all instances in less than 2,800s CPU time, and it
solved all but 46, i.e. more than 98% of instances.
Of those it did solve, the longest took only 130s to
solve. For CP, the longest time was 510s, and for
SAT the longest mean time was 180.5s (remem-
bering that SAT times are means over a sample of
runs).

This suggests a rank order of SAT, CP, FF.
However, investigating percentiles of behaviour is
more interesting. The best median is CP at only
0.03s, then FF at 0.88s and SAT at 1.75s. We
see CP starting to outperform both FF and SAT
at the higher percentiles. SAT solves 97.5% of in-
stances in 17s, compared to 12s for CP and 65s
for FF. Even this hides considerable complexity, as
the three solvers find different particular instances
difficult. There is only a weak correlation between
the difficulty experienced by SAT and CP solvers,
r = 0.28. The correlations between SAT and FF
and between CP and FF are r = 0.11 and r = 0.39
respectively.

It seems clear that FF differs markedly from the
other solvers, in that roughly 2% of our problems
were found to be hard enough to time-out the FF
computation, whereas all problems were solved (or

proved unsoluble) in reasonable time by both SAT
and CP. Moreover, mean performance of the SAT
and CP solvers differs widely, at 3.47s and 1.97s
respectively. This is distinct enough that a paired
t-test on the two data sets rejects the null hypoth-
esis that performance is the same (p < 0.001). We
can therefore report that there is a statistically
significant difference between the performances of
the three approaches.

In practical terms, given our study of the pro-
files, it is reasonable to say that our CP solver is
usually quicker, while the SAT solver is more ro-
bust at solving all instances in reasonable time.
This is illustrated by the fact that the CP solver
solves 88% of instances in less than 1s, while the
SAT solver solves all instances in less than 3 min-
utes.

To conclude, we found that while all solvers
could solve Black Hole instances, the SAT and CP
solvers were the most effective. FF was just be-
hind those two, with our other two approaches not
nearly as successful.

10. Conclusions

We consider patiences in general, and Black Hole
in particular, to be interesting domains for study-
ing modelling and encoding, and analysis of em-
pirical data. There are hundreds of patience games
in existence, many of which will raise interesting
questions which are dependent on the rules of the
game in question. Moreover, people care about –
and can easily understand differences between –
random instances of the problems.

In this paper we have demonstrated that MIP,
SAT encoding, AI planning, specialist solution and
constraints are appropriate ways to study these
games. Each of these AI methodologies uses mod-
elling, encoding and solution techniques that dif-
fer from the others. By applying the methodolo-
gies to a problem that is both easy to understand
and hard to solve (in general) we have been able to
compare and contrast the relative efficacy of the
methods. All the solution techniques examined in
this paper are complete, since problem instances
have a high probability of being both solvable and
solvable in under one second. For other problem
domains the use of local search search techniques
should also be empirically evaluated.

The advantages of using games such as Black
Hole are:
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– any reasonably proficient AI practitioner can
encode the game as an instance of their pre-
ferred methodology;

– the number of test cases is essentially unlim-
ited (each being a shuffle of a deck of cards),
so that the design and statistical analysis of
experiments is straightforward;

– we can gain insights into the similarities and
differences of competing AI methodologies;

– the well-understood framework makes it easy
to disseminate results to the wider commu-
nity;

– results can be applied to any fixed-length
planning problem with perfect information
that arises in the real world.

The scope for further work in this area is limit-
less: of the hundreds of patience games available,
there are examples which incorporate perfect and
imperfect information; allowed, limited and forbid-
den backtracking; multi-deck variations; and solu-
tion metrics such as shortest length. Each of these
aspects is worthy of exploration in AI research.
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