
A new enoding of AllDi�erent into SATIan P. Gent and Peter NightingaleUniversity of St Andrews, Fife, Sotland{ipg, pn}�ds.st-and.a.ukAbstrat. For propositional satis�ability (SAT) solvers to be used forsolving the onstraint satisfation problem (CSP), e�ient enodings arerequired. The AllDi�erent onstraint is well used in onstraint program-ming. This paper presents a new enoding for the AllDi�erent onstraint.This is ompared, theoretially and empirially, to a simple and ommonenoding. The new enoding presented sales better than the ommon(or any other known) enoding, however in the empirial evaluation wefound it does not perform as well as the ommon enoding on feasiblysized instanes.1 IntrodutionSolvers for propositional satis�ability (SAT) are highly developed and e�ient,inorporating advaned tehniques suh as on�it learning, bakjumping andtuned heuristis, implemented using tehniques suh as wathed literals. Con-straint solvers are not typially optimized to the same level, but they o�er manyuseful types of onstraints. Some of these onstraints enode neatly into SAT,suh as arbitrary binary onstraints. However, others do not, suh as the globalardinality onstraint desribed below.Our motivation for developing an enoding of the AllDi�erent onstraint isto make use of the e�ieny of SAT solvers on problems with AllDi�erent on-straints. The usual approah to enoding the AllDi�erent is to deompose it intopairwise binary onstraints X 6= Y , then enode these using the diret enoding[2℄. This is referred to below as the pairwise enoding. The new enoding pre-sented here maintains the propagation properties of the pairwise enoding whilesaling better in formula size.In the following disussion, n is the number of variables ontained in a on-straint, d is the largest domain size of the variables in the onstraint, and e isthe total number of onstraints.Bailleux and Boufkhad [1℄ onsidered the ardinality onstraint on a set ofBoolean variables (i.e. onstraining the number of variables that an be assignedthe value 1), and produed an enoding with O(n2) lauses (of length at most3) and O(n logn) variables. Unit propagation over this enoding restores globalar-onsisteny (GAC) in O(n2) time although only setting O(n logn) variables.There is a GAC algorithm whih runs in O(n) time, so this enoding is subop-timal in that sense. However, it may be the optimal SAT enoding.



For arbitrary binary onstraints, Gent [2℄ desribed the support enodingand showed that unit propagation on the enoding establishes ar-onsisteny.Unit propagation takes O(ed2) time, whih is the same as the optimal algo-rithm running on an extensional representation of the onstraints. We all thisa propagation optimal enoding.There are several onsisteny notions for the AllDi�erent onstraint [3℄. Thethree most ommon are global ar-onsisteny (GAC), range onsisteny (RC)and ar-onsisteny over the pairwise binary deomposition (AC). GAC is thestrongest, followed by RC, followed by AC. With the example A;B 2 f1; 3g; C 2f1; 2g;AllDi�erent(A;B;C), GAC would remove 1 from C, sine 1 must be usedby either A or B. However RC would not. With the slightly di�erent exam-ple A;B 2 f1; 2g; C 2 f1; 3g;AllDi�erent(A;B;C), RC an identify the range1 : : : 2 and thus prune 1 from C. AC an only prune when variables beome fullyinstantiated.We onsider the simplest onsisteny notion, AC. When the domain of avariable ontains only one value, that value is removed from the domain of allthe other variables in the onstraint. This is repeated as long as possible. If twovariables are set to the same value, the onstraint fails. This algorithm performsO(n2) value removals before reahing the �xed point. Storing the onstraint asa list of variables requires O(n) spae.In this paper we present an enoding of the AllDi�erent onstraint with O(nd)lauses (of length no more than 3). When unit propagation is performed on theenoding, it does the same work as the simple propagation algorithm outlinedabove, setting O(n2) Boolean variables. We assume that setting a variable in SATand removing a value from a domain in CSP have the same time omplexity. Ifn � d the enoding is propagation optimal. This arises �rstly with permutations(n = d, 8x; y � Dx = Dy) and seondly when the domains are not equal. Inthis seond situation, if all domains were equal and n > d, then the onstraintwould be false by the pigeonhole priniple. However, the pigeonhole prinipledoes not apply when the domains are not equal. For example, A;B 2 f1; 3g; C 2f1; 2g;AllDi�erent(A;B;C) has maximum domain size d = 2, but there is asatisfying assignment.However, sine the size is O(nd), when d > n (or, more aurately, when dis not O(n), so limd!1 n=d = 0) the enoding should not be onsidered propa-gation optimal.2 EnodingsThe main onept in these enodings is onstraining the number of Booleanvariables set to true. For some set S of Boolean variables, we need to onstrainthem to have at least one, exatly one, or at most one set to true, so orre-spondingly we desribe at-least-one (ALO), exatly-one (EO) and at-most-one(AMO) enodings. For this setion, members of S are referred to as xi, wherei 2 1 : : : jSj.



An ALO enoding for the set S is simply the following.0�i=1_jSj xi1A (1)To reate an EO lause set for a set of size n, we ould ombine ALO andAMO. Another possibility is to use a struture used by Gent, Prosser and Smith[4,5℄ and independently by Ansótegui and Manyà [6℄ in their regular and halfregular mappings. The struture (whih is referred to as ladder from here on)onsists of a sequene of p = n�1 additional Boolean variables, y1:::yp (referredto as the ladder variables) and a set of lauses (de�ned below).A omplete valid assignment of the ladder variables has no adjaent pair ofvariables yr; yr+1 where yr = False ^ yr+1 = True. It onsists of a sequeneof zero or more true assignments, and all following variables are assigned false.Hene if 9r � yr = False ^ yr+1 = True, the sequene must be invalid.An assignment to a ladder variable an be unit-propagated appropriately withp � 1 binary lauses, shown below. Setting a variable to false propagates to allvariables following it in the sequene, and setting a variable to true propagates toall variables preeding it, by unit propagation. Hene the following set of lausesforbids all invalid states. These are referred to as the ladder validity lauses.i=1̂p�1(:yi+1 _ yi) (2)The set of y variables has jSj valid states. Eah valid state an be mapped toa single variable in S, suh that the variable is assigned true i� y1 : : : yp takes themathing state. In onstraint programming terms, this is hannelling betweentwo representations. This hannelling must be propagated in both diretions byunit propagation on the lause set. The hannelling onstraints are as follows.i=1̂jSj [(yi�1 ^ :yi) () xi℄These onstraints enode to the following set of lauses (referred to as thehannelling lauses).i=1̂jSj [(:yi�1 _ yi _ xi) ^ (:xi _ yi�1) ^ (:xi _ :yi)℄ (3)Clauses ontaining y0 or yjSj are simpli�ed by unit propagation as if y0 =True and yjSj = False.The number of hannelling lauses plus ladder validity lauses is O(n) (wheren = jSj), and they are all size 3 or smaller. The number of ladder variables isalso O(n). Therefore the time taken to ahieve onsisteny between the two setsby unit propagation must also be O(n). However, while performing searh on the



variables in S, the total ost of unit-propagation down one branh of the searhtree is also O(n). Sine desending the branh involves setting all n variables inS, the mean ost of unit-propagation during searh is O(1).To form an enoding for AMO, we ould take the EO enoding desribedabove and add a variable to the set S. The additional variable would indiatethat no variables are set true. This is referred to as the ladder AMO enoding.1Another way is to disallow pairs of variables, with the following set of lauses.x2Ŝ y2Ŝy 6=x(:x _ :y) (4)We will refer to this as the pairwise AMO enoding. The number of lauses isO(n2) and the ost of ahieving onsisteny is O(n). This enoding is learlysimpler than the ladder enoding, and muh more widely used, but it has worsespae omplexity. Unit propagation on this enoding ahieves the same level ofonsisteny as unit propagation on the ladder AMO enoding.The ombination of the pairwise AMO enoding and the ALO enoding givesa seond EO enoding, whih is referred to as the pairwise EO enoding.2.1 AllDi�erent from AMO and EOThroughout we use the same way of enoding of the �nite-domain CSP variablesinto Boolean variables: for a variable v with domain size d and domain Dv,the unary enoding [17℄ is a set of Boolean variables xv1 : : : xvd where 8i � v 7!i () xvi . For a variable v ontained in the AllDi�erent onstraint, and a valuei 2 Dv, the Boolean variable xvi is assigned true i� v = i. Hene we have atwo-dimensional table of Boolean variables, shown below for the ase where alldomains are equal, d = 4, and there are 3 variables in the AllDi�erent.v1 2 3i 1 x11 x21 x312 x12 x22 x323 x13 x23 x334 x14 x24 x34Intuitively, an AllDi�erent onstraint an be formed as follows: eah valuean be used at most one times, and eah variable takes exatly one value. Thisorresponds to an EO enoding for eah olumn in the table, and an AMOenoding for eah row. Using the ladder, this gives us an enoding with O(nd)lauses and O(nd) extra variables. Alternatively, using the pairwise enoding forAMO, and ALO lauses, we have an EO enoding with O(n2d + d2n) lausesand no extra variables.1 In pratie the additional variable xjSj is given the last index jSj, and by reasoning onthe lause set it an be seen that xjSj = yjSj�1, so xjSj is redundant and is omitted,along with the relevant hannelling lauses (all those that ontain xjSj).



More formally, the ladder enoding for the AllDi�erent onstraint an bede�ned as follows. For eah CSP variable v within the AllDi�erent onstraint,there is one ladder EO struture on the set of Boolean variables representing v:8i � xvi . For eah value i where i is in the domain of more than one variable, i.e.9v; w � v 6= w ^ i 2 Dv ^ i 2 Dw, there is a ladder AMO struture ontainingthe set of Boolean variables 8v � xvi . That is, all CSP variables whose domainontains i are represented in the AMO struture.The pairwise enoding an be de�ned similarly. In the plae of ladder EOstrutures we have ALO and pairwise AMO ombined. In plae of the ladderAMO struture we have a pairwise AMO struture.This sheme also works when the variables do not have equal initial domains.Eah value i that is shared between more than one domain must have an AMOstruture, and this inludes all Boolean variables xi. Similarly, eah CSP variablev has an EO struture overing all Boolean variables xv .As a side issue, it is not neessary for the CSP variable to take exatly onevalue. It is su�ient to use ALO rather than EO. If a solution to the SAT prob-lem enodes a CSP variable with more than one value, this indiates multiplesolutions to the underlying CSP. However, with omplete SAT solvers, propa-gation tends to work better if eah variable is onstrained to take exatly onevalue (as shown by Kautz et. al. in their omparison between their 2D and 3Denodings [8℄).If all variables share the same domain, and n = d, then eah value mustbe used exatly one. Therefore we an use EO enodings for both rows andolumns. This gives slightly stronger propagation. We use this optimization inour experimental evaluation, for both ladder and pairwise enodings.2.2 Propagation in the ladder enodingIt is important that propagation works orretly in the ladder enoding. A hangeto the unary variables propagates to the ladder variables, then some propagationan our with the ladder validity lauses. This then propagates bak to theunary variables. The following example demonstrates this.v1 2 3i 1 x11 x21 = False x312 x12 x22 = False x323 x13 x23 x334 x14 x24 x34Let us say that x12 and x22 are already set False. For olumn 2, there arethree ladder variables y1, y2 and y3 and two ladder validity lauses, (y1_:y2)^(y2 _ :y3). The following propagation ours.� By unit propagation on the hannelling lause (x21 _ y1), y1 is set to True.(The lause (x21_y1) is derived from (:y0_y1_x21) sine y0 is always True.)� By the hannelling lause (:y1 _ y2 _ x22), y2 is set True.



None of the unary variables are set. Next, x23 is set False by the searh proedure.This shows what happens when all but one of the x2 variables are set False.� By the hannelling lause (:y2 _ y3 _ x23), y3 is set True.� By the hannelling lause (:y3 _ x24), x24 is set True. (This lause is derivedfrom (:y3 _ y4 _ x24), beause y4 is onsidered to be False.)We now have this situation. v1 2 3i 1 x11 x21 = False x312 x12 x22 = False x323 x13 x23 = False x334 x14 x24 = True x34Propagation an now happen along row 4. This shows what happens whenan x variable is set True. There are three ladder variables z1, z2 and z3 and twoladder validity lauses, (z1 _ :z2) ^ (z2 _ :z3).� By unit propagation on the hannelling lauses (:x24 _ z1)^ (:x24 _:z2), z1is set to True and z2 is set to False.� By the ladder validity lause (z2 _ :z3), z3 is set False.� By unit propagation on the hannelling lauses (:x14 _:z1)^ (:x34 _ z2), x14and x34 are set to False: v1 2 3i 1 x11 x21 = False x312 x12 x22 = False x323 x13 x23 = False x334 x14 = False x24 = True x34 = False2.3 Corretness of the ladder enodingWe prove that unit propagation is strong enough to maintain ar-onsisteny onthe pairwise deomposition of the AllDi�erent onstraint (i.e. its deompositioninto n(n � 1)=2 not-equal onstraints). Firstly there are three lemmas aboutthe ladder and hannelling, whih together show that it funtions as a GACexatly-one onstraint. Following that are two theorems whih use the lemmasto show the orretness and propagation properties of the ladder enoding. Thesame two theorems are inluded for the pairwise enoding, proving that the twoenodings are equivalent in propagation. The following proofs refer to variablesxvi , and to row and olumn ladders as used in setion 2.1.Lemma 1. If a set of variables S is hannelled to a ladder with the hannellinglauses in formula 3, and the ladder validity lauses in formula 2, and more thanone of S are set True, unit propagation generates the empty lause.



Proof. Suppose that pi; pj 2 S, pi = pj = True, n = jSj, and the ladder onsistsof z1:::zn�1. There are many possibilities for generating an empty lause, ofwhih it su�es to give one:By the lauses (:pi _ zi�1)^ (:pi _:zi), zi�1 = True and zi = False. (Theend ases i = 1 and i = n eah lak one of these lauses, and in these ases theladder beomes entirely True or entirely False.) These assignments are thenpropagated up and down the ladder by the ladder validity lauses, (zv _:zv+1).So zv = True for v � i�1 and zv = False for v � i. If j < i in the sequene, thelause (:pj_:zj) beomes empty. If j > i in the sequene, the lause (:pj_zj�1)beomes empty.Lemma 2. If a set of variables S is hannelled to a ladder with the hannellinglauses in formula 3, and the ladder validity lauses in formula 2, and jSj � 1variables pi 2 S are set False with the remaining variable pj unassigned, thenpj beomes True by unit propagation.Proof. Suppose that n = jSj and the ladder onsists of z1:::zn�1. The �rst vari-able p1 is ontained in the hannelling lause (z1 _ p1) and the last variable in(:zn�1 _ pn). The lause (:zi�1 _ zi _ pi) (for every other False variable pi)simpli�es to (:zi�1_zi). At least one of p1 and pn must be false, so unit propaga-tion begins at the top, bottom or both ends of the ladder and proeeds throughthe (:zi�1 _ zi) lauses until all the ladder variables are set. So zv = True forv � j � 1 and zv = False for v � j. pj is ontained in the hannelling lause(:zj�1 _ zj _ pj) and is thus set True. All the hannelling and validity lausesare now satis�ed.Lemma 3. If a set of variables S is hannelled to a ladder with the hannellinglauses in formula 3, and the ladder validity lauses in formula 2, and a variablepi 2 S is set True with the rest unassigned or False, an unassigned variablepj 2 S will be set False by unit propagation.Proof. Suppose that n = jSj and the ladder onsists of z1:::zn�1. By the lauses(:pi _ zi�1) ^ (:pi _ :zi), zi�1 = True and zi = False. (The end ases i = 1and i = n eah lak one of these lauses, and in these ases the ladder beomesentirely True or entirely False.) These assignments are then propagated up anddown the ladder by the ladder validity lauses, (zv _ :zv+1). So zv = Truefor v � i � 1 and zv = False for v � i. If j < i in the sequene, the lause(:pj _ :zj) auses pj = False. If j > i in the sequene, the lause (:pj _ zj�1)auses pj = False. When all possible variables pj are set, all the hannellingand validity lauses are satis�ed.Theorem 1. Using the ladder enoding of AllDi�erent, when unit propagationstops with no empty lause, the pairwise deomposition not-equal onstraints arear-onsistent.Proof. Consider the variables xvi where v is the CSP variable and i is the value.Suppose we have a set of urrent domains of the x variables in whih no unitpropagation is possible, and no domain is empty. Consider any v; w; j suh that



there is no support in v for w = j. That is, for eah possible supporting valuei 2 1::(w � 1); (w + 1)::d, xvi = False.In this situation the olumn ladder auses xvj = True by lemma 2, then the rowladder auses xwj = False by lemma 3. That is, the value j is not in the domainof variable w, and the domains are pairwise ar-onsistent as required.Theorem 2. Using the ladder enoding of AllDi�erent, in a situation where allthe pairwise deomposition not-equal onstraints are ar-onsistent, onstrut aSAT partial assignment as follows. Variable xvi = True if v = i in the CSP,and variable xvi = False if i is not in the domain of v. xvi is left unassigned ifi is in the domain of v but other values remain in the domain of v. Performingunit propagation, some ladder variables y will be set in a valid state. Followingthis, every lause in the SAT enoding is either satis�ed or ontains two or moreliterals and the propagation on ladder variables does not set any x variables.Proof. We work by ase analysis, �rst onsidering the ase where v = i in theCSP, orresponding to xvi = True. In the olumn ladder, xvj will be set Falsefor all j 6= i by lemma 3, and in the proof of lemma 3 it an be seen that bothvalidity and hannelling lauses in the olumn ladder are all satis�ed. In therow ladder, again xwi will be set False for all w 6= v by lemma 3, and againit an be seen that both validity and hannelling lauses in the row ladder aresatis�ed, and the value i is not present in the domains of variables w as requiredby ar-onsisteny. This ase also overs the possibility that xvj = False for allj 6= i, sine this implies that xvi = True by lemma 2.The only other ase to onsider is where v 6= i in the CSP, but at least twovalues remain in the domain of v. This orresponds to xvi = False, and there areat least two remaining unset variables in the olumn. Of the hannelling lausesfor the olumn ladder, (:xvi _yvi�1)^(:xvi _:yvi ) are satis�ed and (:yvi�1_yvi _xvi )simpli�es to (:yvi�1_yvi ). There are three possibilities, (1) if xvi�1 = False or xvi�1does not exist, then yvi�1 = True hene yvi = True and the lause is satis�ed, or(2) xvi+1 = False or xvi+1 does not exist, then yvi = False hene yvi�1 = Falseand the lause is satis�ed, or (3) the lause remains with two literals. The laddervalidity lauses are not relevant here sine they annot beome unit. The laddervariables are set in sequene from the top and bottom, but sine there are atleast two unset xv variables, not all ladder variables an be set by the lauseabove. Hene there is no j suh that yvj�1 = True and yvj = False, therefore nounit propagation ours on the lause (:yvj�1 _ yvj _ xvj ), and no x variables areset. Other hannelling lauses (:xvj _yvj�1)^(:xvj _:yvj ) are satis�ed or non-unitbeause either xvj = False or yvj�1 and yvj are both unset. A similar, but simpler,argument applies to the hannelling lauses for the row ladder: the argument issimpler beause all variables may be set false, and so we do not need to appealto the existene of two unset variables.Theorem 3. Using the pairwise enoding of AllDi�erent, formed from the AMOenoding in formula 4 and the ALO in formula 1, when unit propagation stopswith no empty lause, the pairwise deomposition not-equal onstraints are ar-onsistent.



Proof. Consider the situation desribed in theorem 1. By the ALO lause �Wi=1d xvi �,xvj = True. Hene, by the pairwise AMO lause (:xvj _:xwj ), xwj = False. Thatis, the value j is not in the domain of variable w, and the domains are pairwisear-onsistent as required.Theorem 4. Using the pairwise enoding of AllDi�erent, inluding the AMOenoding in formula 4, in a situation where all the pairwise deomposition not-equal onstraints are ar-onsistent, onstrut a SAT partial assignment as fol-lows. Variable xvi = True if v = i in the CSP, and variable xvi = False if i isnot in the domain of v. xvi is left unassigned if i is in the domain of v but othervalues remain in the domain of v. Every lause in the SAT enoding is eithersatis�ed or ontains two or more literals.Proof. We work by ase analysis, �rst onsidering the ase where v = i in theCSP, orresponding to xvi = True. By the relevant pairwise lauses (:xvi _:xwi )where v 6= w, xwi = False, as required by ar-onsisteny. By the other set ofpairwise lauses (:xvi _ :xvj ) where i 6= j, xvj = False as required. The ALOlause for v is satis�ed by xvi = True. The only other ase to onsider is wherev 6= i in the CSP, but at least two values remain in the domain of v. Thisorresponds to xvi = False, and there are at least two remaining unset variablesin the olumn. The ALO lause for v is not unit sine it ontains two unsetliterals. The pairwise lauses (:xvi _ :xwi ) where v 6= w, and (:xvi _:xvj ) wherei 6= j, are all satis�ed. No other lauses ontain xvi .3 Experimental evaluationTo make a omparison between the enodings presented above, we used thequasigroup ompletion problem. A quasigroup2 is an n � n table of symbolsontained in alphabet �, where j�j = n. n is the order of the quasigroup om-pletion problem. Eah row and olumn of the table ontains a permutation ofthe symbols in �. The ompletion problem is to �ll in blank entries in suh atable, maintaining the permutation property. It is NP-omplete [7℄.We generated the instanes using the method suggested by Ahlioptas et.al., whih is to reate a random omplete quasigroup and punh holes to reatea quasigroup with holes (QWH) problem [7℄. The method used to generate arandom quasigroup is a Markov hain Monte Carlo approah proposed by Ja-obson and Matthews [18℄. The quasigroups generated this way are uniformlydistributed. The seond step is to punh a set number of holes in the quasi-group. The positions of the holes are hosen with uniform distribution. Thisdoes not give a uniform distribution over all satis�able QCP instanes, beausesome satis�able QCP instanes an be generated from more than one ompletequasigroup. A weakness of this approah is that the problems are all satis�able.There exists a trivial algorithm for ompleting an empty quasigroup, anda full quasigroup is also trivial to omplete, hene the di�ult region for this2 Or, more properly, the multipliation table of a quasigroup, whih is a Latin square.



NP-omplete problem must lie between these extremes. Ahlioptas et. al. showthat with randomly plaed holes, the omputational ost peak for QWH (for aninomplete algorithm (WalkSat) and a omplete algorithm (Satz)) ours whenthe number of holes is 1:6 � n1:55. This orresponds to the bakbone overing50% of the variables. We use only instanes from the ost peak (rounding thenumber of holes to the nearest integer).To enode these instanes into SAT, we use a 3D table of Boolean variables,with size n� n� n. This is the 2D quasigroup table extended in a third dimen-sion to provide a Boolean variable for eah symbol in �. For eah entry in thequasigroup table, exatly one symbol is required. This is ahieved using n2 EOstrutures. Similarly, eah symbol ours exatly one on eah row of the quasi-group table, and again for the olumns, making a total of 3n2 EO strutures.Two ways of forming an EO struture were desribed above: the ladder,and the ombined ALO lause and AMO pairwise lauses. We do not mix thetwo enodings for an instane of QWH, beause there is no readily apparentreason why it would be bene�ial. From here we will refer to these as ladderand pairwise enodings. Note that the pairwise enoding is the 3D enodingproposed by Kautz et. al. [8℄. Reall that the pairwise EO struture has O(n2)lauses and the ladder struture has O(n): the pairwise enoding has O(n4)lauses in total and the ladder has O(n3). Both enodings have O(n3) Booleanvariables, although the pairwise enoding has n3 and the ladder enoding has4n3 � 3n2.The ladder enoding has a better size bound, but it does not neessarily showan improvement in solution time for instanes we an feasibly solve.3.1 Experimental resultsWe used a seletion of reent SAT solvers to evaluate the enodings: ZCha�[11℄, SATO version 4.1 [12℄, and Siege version 4 [13℄. Unfortunately, GRASP[15℄ and 2lseq [14℄ exeeded the available memory (1 GB) on instanes of order30 and above, so we have omitted them from the evaluation. All these solversare based on the Davis-Putnam-Logemann-Loveland proedure [9,10℄. Sine theladder enoding is designed for unit propagation, we did not onsider loal searhalgorithms. We also use a simpler solver to gain some insight into the enodings:BT+lex. This is baktrakingwith unit propagation and pure literal propagation,with a stati (lexiographi) variable ordering and stati branh ordering. Theinternal data strutures are desribed in [16℄.All experiments were arried out on a Pentium 4 3.06 GHz mahine with 1GB of RAM, and all runtimes are measured in seonds. The time to the �rstsolution is measured. Sizes of the QWH problems were hosen so that runtimesdid not exeed 10 000 seonds.Figure 1 shows runtimes and node ounts for SATO. The line indiates equalruntime. Initially these results are somewhat surprising, beause they show thatneither enoding is onsistently better, even though they have idential propaga-tion harateristis. However, the di�erent lause set and the additional variablesof the ladder enoding a�et the variable ordering heuristi of SATO in suh a



 0.1

 1

 10

 100

 1000

 10000

 0.1  1  10  100  1000  10000

R
un

tim
e 

w
ith

 p
ai

rw
is

e 
A

M
O

Runtime with ladder

QCP
x

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100  1000  10000  100000  1e+06

N
od

es
 w

ith
 p

ai
rw

is
e 

A
M

O

Nodes with ladder

QCP
x

Fig. 1. 100 � order 33 QWH problems, with randomly plaed holes and on the phasetransition. Runtime and nodes for SATO v4.1.way that the runtimes are not as well orrelated as we expeted. The orrelationoe�ient of the log of the runtimes is 0.74, indiating that the two variables aremoderately well orrelated. The ladder enoding is better for 60/100 instanes,although the median run time for the ladder enoding is 19.29s whereas for thepairwise enoding it is 17.02s. Interestingly, the node ounts for the ladder en-oding are mostly lower, indiating that the SATO heuristis work better withladder than pairwise.ZCha� and Siege an be run for larger instanes. Figure 2 shows data forZCha� with instanes of order 35. The orrelation oe�ient is 0.70 for the logof the runtimes, similar to the previous experiment. 49/100 instanes performedbetter with the ladder enoding. The median run time for the ladder enod-ing is 25.975s, and 19.795s for the pairwise enoding. The plot of node ounts
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Fig. 2. 100 � order 35 QWH problems, with randomly plaed holes and on the phasetransition. Runtime and nodes for ZCha�.shows that neither enoding has a signi�ant advantage in terms of the ZCha�heuristis.Figure 3 shows data for the Siege solver for the same instanes of order 35.The orrelation oe�ient is 0.78 for the log of the runtimes, whih is strongerthan previous experiments. Siege seems less well suited to the ladder enoding,with only 12/100 instanes performing better with the ladder enoding. Themedian run time for the ladder enoding is 8.40s, and 1.855s for the pairwiseenoding. Although the node ount plot is omitted for spae reasons, it showsno advantage for either enoding. Therefore the di�erene in runtime is ausedby inreased unit propagation ost.From these results, it appears that SATO is best suited to the ladder en-oding. It is also generally the worst-performing solver. For ZCha� and Siege,
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Fig. 3. 100 � order 35 QWH problems, with randomly plaed holes and on the phasetransition. Runtime for Siege v4.order (n) lauses literals variablespairwise enodingAMO (size 2) ( 32n3(n � 1)) ALO (size n) (3n2) Units Total25 562500 1875 390 564765 1172265 1562533 1724976 3267 728 1728971 3558491 3593735 2186625 3675 829 2191129 4502704 42875ladder enodingSize 2 (3(3n � 2)n2) Size 3 (3(n� 2)n2) Units Total25 136875 43125 390 180390 403515 6062533 316899 101277 728 418904 938357 14048135 378525 121275 829 500629 1121704 167825Table 1. Comparing sizes of the enodingsperhaps we annot sale high enough to �nd the bene�t of the ladder enod-ing. Table 1 shows that the ladder enoding is approximately a quarter the sizeof the pairwise enoding (omparing either the literals or lauses) at order 35.However, it appears that the state of the art solvers an e�iently handle prob-lems with over 5 million literals, and the pairwise enoding allows heaper unitpropagation with Siege.3.2 Propagation performaneThe experiments above do not ontrol the variable and branh ordering, and asa result the ladder and pairwise run times an be several orders of magnitudedi�erent, due to di�erent heuristi hoies. To remove the e�et of the orderingheuristis, it is neessary to �x the variable and branh ordering. If the unary
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Fig. 4. 100 � order 25 QWH problems, with randomly plaed holes and on the phasetransition. Runtime for BT+lex.variables are all set, the additional ladder variables will be set ompletely by unitpropagation, so it is possible to traverse the same searh tree with both enod-ings. This allows us to ompare the enodings purely on their unit propagatione�ieny.Algorithms suh as on�it bakjumping and lause learning an also ausedi�erenes in the searh tree, so we use a simple baktraking algorithm, withpure literal elimination and unit propagation. Unfortunately, the state-of-the-art SAT solvers do not allow us to use a �xed variable ordering, or to turno� on�it bakjumping or lause learning. Therefore we use the QBF solverBT+lex, whih has e�ient data strutures based on literal and lause wathing.The implementation is desribed by Gent et. al. [16℄. The fat that BT+lex anaept the QBF problem does not a�et its behaviour on a SAT problem, sineQBF is a diret generalization of SAT.Figure 4 shows a omparison between the enodings using BT+lex, and or-der 25 QWH instanes. The pairwise enoding is performing better for mostinstanes. The exeption is the easiest instanes, whih seem to show the over-head of the larger enoding. (Even at this size, the pairwise enoding is overtwie the size of the ladder; see table 1.) The median run time for the ladderenoding is 3.77s, ompared to 1.875s for the pairwise enoding. Hene at thissale, unit propagation over the pairwise enoding is approximately two timesfaster with this partiular implementation.To ompare BT+lex to a more apable SAT solver, �gure 5 shows run timesfor SATO on the same instanes. The median run times here are 0.38s and 0.44sfor ladder and pairwise respetively. The lower bounds on the run times aresimilar to BT+lex, but the upper bound is muh lower.
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Fig. 5. 100 � order 25 QWH problems, with randomly plaed holes and on the phasetransition. Runtime for SATO.4 ConlusionsThis artile has introdued the ladder enoding for the AllDi�erent onstraintinto SAT. The AllDi�erent is ommonly used in onstraint programming. Thenew enoding sales well in the number of lauses. However, empirial evaluationon feasibly sized instanes of the quasigroup ompletion problem shows that thenew enoding does not perform as well as the pairwise enoding, restriting itsuse to ases where the formula is so large that size beomes a more importantonsideration than solution speed. This may be the ase for large, easy problemsaway from the phase transition. Finding enodings of AllDi�erent whih providemore powerful propagation remains an open researh question.Finally, although the ladder enoding was not very suessful here, the ladderstruture is a useful enoding trik in other situations [4,5,6℄. There are not manysuh triks for enoding into SAT at the moment. It would be bene�ial to theSAT ommunity to develop and publish more enoding tehniques.AknowledgmentsWe thank Andrew Rowley for the use of his BT+lex solver, and Carla Gomesfor her random omplete quasigroup generator. The �rst author is supportedby a Royal Soiety of Edinburgh SEELLD Support Fellowship, and the seondby an EPSRC Dotoral Training Grant. We also thank the referees for helpfulomments.Referenes1. E�ient CNF Enoding of Boolean Cardinality Constraints, Olivier Bailleux andYaine Boufkhad, Proeedings of CP 2003, pages 108-122, 2003.
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