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Abstract

The Extended Global Cardinality Constraint (EGCC) is a vital component of
constraint solving systems, since it is very widely used to model diverse prob-
lems. The literature contains many different versions of this constraint, which
trade strength of inference against computational cost. In this paper, I focus on
the highest strength of inference usually considered, enforcing generalized arc
consistency (GAC) on the target variables. This work is an extensive empirical
survey of algorithms and optimizations, considering both GAC on the target
variables, and tightening the bounds of the cardinality variables. I evaluate
a number of key techniques from the literature, and report important imple-
mentation details of those techniques, which have often not been described in
published papers. Two new optimizations are proposed for EGCC. One of the
novel optimizations (dynamic partitioning, generalized from AllDifferent) was
found to speed up search by 5.6 times in the best case and 1.56 times on av-
erage, while exploring the same search tree. The empirical work represents by
far the most extensive set of experiments on variants of algorithms for EGCC.
Overall, the best combination of optimizations gives a mean speedup of 4.11
times compared to the same implementation without the optimizations.

Keywords: global cardinality constraint, constraint programming, global
constraints, propagation algorithms

1. Introduction

Constraint programming is a powerful and flexible means of solving combin-
atorial problems. Constraint solving of a combinatorial problem proceeds in two
phases. First, the problem is modelled as a set of decision variables, and a set of
constraints on those variables that a solution must satisfy. A decision variable
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represents a choice that must be made in order to solve the problem. The do-
main of potential values associated with each decision variable corresponds to
the options for that choice.

Consider a sports scheduling problem, where each team plays every other
team exactly once in a season. No team can play two or more matches at
the same time. Each team plays in a particular stadium at most twice during
the season. In this example one might have two decision variables per match,
representing the two teams. For a set of matches played in the same stadium,
a global cardinality constraint [24] could be used to ensure no more than two
occurrences of each team.

The second phase consists of using a constraint solver to search for solu-
tions: assignments of values to decision variables satisfying all constraints. The
simplicity and generality of this approach is fundamental to the successful ap-
plication of constraint solving to a wide variety of disciplines such as scheduling,
industrial design and combinatorial mathematics [34, 11].

The Global Cardinality Constraint (GCC) is a very important global con-
straint, present in various constraint solving toolkits, solvers and languages. It
restricts the number of occurrences of values assigned to a set of variables. In
the original version of the constraint [24], each value is given a lower bound and
upper bound. In any solution, the number of occurrences of the value must fall
within the bounds. The literature contains many propagation algorithms for
this constraint, which trade strength of inference against computational cost,
for example bound consistency [13, 19], range consistency [18], and generalized
arc-consistency (GAC) [24, 18]. GCC is widely used in a variety of constraint
models, for diverse problems such as routing and wavelength assignment [30],
car sequencing [25], and combinatorial mathematics [11].

Returning to the sports scheduling example, GCC can be used to express
the stadium constraint (that a team plays in a particular stadium at most twice
during the season). Each value (representing a team) is given the bounds (0, 2),
and the variables are all slots at a particular stadium.

GCC has been generalized by replacing the fixed bounds on values with
cardinality variables [18], where each cardinality variable represents the number
of occurrences of a value. To avoid confusion, I refer to this as the Extended
Global Cardinality Constraint (EGCC). Thus an EGCC constraint has target
variables (where the number of occurrences of some values are constrained) and
cardinality variables.

In this paper, I focus on the highest strength of inference (enforcing GAC) on
the target variables. This allows the study of various methods in great depth,
and leads to some surprising conclusions. I also survey methods for pruning
the cardinality variables in depth. The main contributions of the paper are as
follows.

• A literature survey of GAC propagation algorithms for the target vari-
ables, and their optimizations, in §3.

• Discussion of important implementation decisions in §3 that are frequently
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omitted from original papers, perhaps due to lack of space. For example,
how to find augmenting paths for Régin’s algorithm [24].

• The proposal of two new optimizations in §3.4. One of these is based on
modifying the flow network of Régin’s algorithm for greater efficiency, and
the other is a novel generalization of the dynamic partitioning optimization
of AllDifferent [6].

• A careful description of three concrete algorithms for pruning the cardin-
ality variables in §4.

• Easily the largest empirical study of GAC propagation methods for the
target variables of EGCC, in §5. This involves two basic algorithms and
seven optimizations.

• Experimental conclusions and implementation advice for GAC for the tar-
get variables, in §6.

• An empirical study of pruning the cardinality variables, comparing the
three methods, in §5.8, leading to experimental conclusions in §6.

• It is shown that an appropriate combination of optimizations is over 4
times faster on average than a careful but unoptimized implementation of
Régin’s algorithm (§5.10), for our benchmark set.

• A fast variant of EGCC is typically orders of magnitude better than a set of
occurrence constraints. Even when EGCC propagation was least effective,
it slowed the solver down by only 1.66 times or less in our experiments
(§5.10).

2. Background

2.1. Preliminaries

A CSP P = 〈X ,D, C〉 is defined as a set of n variables X = 〈x1, . . . , xn〉, a
set of domains D = 〈D(x1), . . . , D(xn)〉 where D(xi) ( Z, |D(xi)| < ∞ is the
finite set of all potential values of xi, and a conjunction C = C1 ∧ C2 ∧ · · · ∧ Ce

of constraints.
For CSP P = 〈X ,D, C〉, a constraint Ck ∈ C consists of a sequence of m > 0

variables Xk = 〈xk1
, . . . , xkm

〉 with domains Dk = 〈D(xk1
), . . . , D(xkm

)〉 s.t.
Xk is a subsequence1 of X , Dk is a subsequence of D, and each variable xki

and domain D(xki) matches a variable xj and domain D(xj) in P. Ck has
an associated set CS

k ⊆ D(xk1
) × · · · ×D(xkm

) of tuples which specify allowed
combinations of values for the variables in Xk.

1I use subsequence in the sense that 〈1, 3〉 is a subsequence of 〈1, 2, 3, 4〉.
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Although I define a constraint Ck to have scope 〈xk1 , . . . , xkm〉, when dis-
cussing a particular constraint I frequently omit the k subscript, and refer to
the variables as 〈x1, . . . , xm〉, and to the domains as 〈D(x1), . . . , D(xm)〉.

A literal is defined as a variable-value pair, xi 7→ j such that xi ∈ X and
j ∈ Z. To prune a literal is to remove the value j from the domain D(xi). In
the context of a constraint Ck, I refer to a tuple τ of values as being acceptable
iff τ ∈ CS

k , and valid iff |τ | = m and ∀j : τ [j] ∈ D(xkj ) (i.e. each value in the
tuple is in its respective domain).

A solution to a CSP P = 〈X ,D, C〉 is a tuple τ of size |X| where ∀i :
τ [i] ∈ D(xi) (τ represents an assignment to all variables), and all constraints
are satisfied by τ : for each constraint Ck in C with scope 〈xk1

, . . . , xkm
〉, a new

tuple τ ′ is constructed where ∀j : τ ′[j] = τ [kj ], and τ ′ ∈ CS
k (τ ′ is acceptable).

Generalized Arc-Consistency (GAC) for constraint Ck is defined as a func-
tion from domains Dk to a set of literals P . Note that the set CS

k is defined in
terms of Dk. A literal xi 7→ j where j ∈ D(xi) is in P iff it is not present in any
tuple in CS

k : @τ ∈ CS
k : τ [i] = j. Literals in P are not part of any acceptable

and valid tuple of the constraint, therefore they can be pruned without reducing
the set of solutions of the CSP P.

2.1.1. Graph theory

Régin’s algorithm [24] and Quimper’s algorithm [18] for pruning EGCC make
use of network flow and bipartite matching theory [2] as well as strongly con-
nected components [31]. Similarly, Régin’s AllDifferent algorithm [23] makes
use of results from graph theory, in particular maximum bipartite matching [1]
and strongly connected components.

A bipartite graph G = 〈V,E〉 is defined as a set of vertices V and a set of
edges E ⊆ V ×V , where the edges are interpreted as having no direction and the
vertices can be partitioned into two sets V1 and V2 such that no two elements
in the same set are adjacent.

A digraph G = 〈V,E〉 is defined as a set of vertices V and a set of edges
E ⊆ V × V , where the edges are interpreted as having direction.

2.1.2. Propagation and search

Propagation is one of the basic operations of most constraint solvers: it
simplifies a CSP by pruning values from the domains. For example, applying
GAC (defined above) to a constraint gives a set of values that may be pruned
without changing the solution set. Constraint solvers provide a propagation
algorithm (or propagator) for each type of constraint, and these are applied
until the fixpoint is reached for all constraints.

Propagation is typically interleaved with splitting. Splitting is the basic
operation of search, and a splitting operation transforms a CSP into two or
more simpler CSPs. Hence a depth-first backtracking search is performed, with
propagation occurring at each node in the search tree.

A propagator Prop(Ck,Dk) for constraint Ck computes a function from the
domains Dk to new domains D′

k. For example, the propagator may compute the
GAC prunings P (defined above), and then prune each literal in P from Dk to
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construct D′
k. Propagators only reduce variable domains (they are contracting):

∀j : D′
kj
⊆ Dkj . Propagators must also be correct with respect to Ck (the set

CS
k is preserved when the propagator is applied) and must not allow assignments

that do not satisfy the constraint. These conditions (correctness and weak
monotonicity) are defined by Schulte and Tack [28].

The propagators considered in this paper are idempotent (assuming that
no variable is duplicated in 〈xk1

, . . . , xkm
〉), which means that one applica-

tion of the propagator will reach a fixpoint for the constraint: Prop(Ck,Dk) =
Prop(Ck,Prop(Ck,Dk)).

2.2. Extended GCC

A traditional Global Cardinality Constraint has just one set of variables
(the target variables). Each domain value has fixed lower and upper bounds
associated with it. An assignment to the target variables is a solution iff the
number of occurrences of each value is within the bounds for that value.

The main focus of this paper is the Extended Global Cardinality Constraint
(EGCC). The EGCC has a second set of variables (cardinality variables) rep-
resenting the number of occurrences of each value. Cardinality variables replace
the fixed bounds on each value, hence EGCC is much more flexible than GCC.
EGCC has the following form.

egcc(X,V,C)

X is the vector of target variables, V is a vector of domain values of interest,
and C is a vector of cardinality variables, one for each value in V . The constraint
is satisfied under an assignment iff for all indices i of V , the number of variables
in X set to Vi is equal to Ci. There is no restriction on the number of occurrences
of any value not in V . (In Régin’s original definition of GCC [24], each value in
the target domains has a cardinality interval. In contrast, V might not include
all values so a default interval of 0 . . .∞ is used.) Throughout, I use r as the
number of target variables |X| for the constraint in question. I use d to represent
the number of target variable domain values: d = |D(x1) ∪ . . . ∪D(xr)| where
X = 〈x1 . . . xr〉.

Propagation of EGCC would typically be in two phases, to prune the target
and cardinality variables respectively. Quimper et al [18] have shown that en-
forcing GAC on EGCC is NP-Hard in general. However it is known that when
the domains of the cardinality variables are an unbroken interval then GAC is
tractable [26]. To exploit this tractable case, the algorithms used in this paper
read (and prune) only the bounds of the cardinality variables, and prune the
target variables using only the bounds of the cardinality variables. The pruning
of the target variables is similar to GAC (§2.1), however a new definition is
required.

Definition 2.1. For constraint Ck = egcc(X,V,C) with target variables X =
〈x1 . . . xr〉 and cardinality variables C = 〈c1 . . . c|V |〉, GAC-On-X is defined
as a function from Dk to literal set P as follows. A new constraint C ′

k =
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x1 x2 x3 x4

1 2 3 4

t

s

x1 x2 x3 x4

1 2 3 4
(a) Bipartite variable-value graph B

(b) Flow network N(C)

[2,2]
[1,2]

[0,1]
[0,1]

Figure 1: Example of variable-value graph and flow network

egcc(X,V,C ′) is constructed with C ′ = 〈c′1 . . . c′|V |〉, and domains ∀i : D(c′i) =

{ci . . . ci}. The GAC function is applied to C ′
k to obtain literals P ′. Finally P

is the set of literals in P ′ pertaining to X: P = {(yi 7→ a) ∈ P ′ | yi ∈ X}.

GAC-On-X for an EGCC constraint is equivalent to reading the bounds of
the cardinality variables, creating a new GCC constraint with those bounds,
and enforcing GAC on the GCC.

Samer and Szeider identify other tractable cases, for example when the
treewidth of the variable-value graph is bounded [26]. While this work is of
theoretical interest, it is not clear that the tractable cases would be found in
typical uses of the EGCC constraint.

2.3. Basic definitions for EGCC

I will refer to the target variables X as x1, . . . , xr and their domains as
D(x1), . . . , D(xr). The size of the union of all target domains is d. For simplicity,
domain elements are assumed to be 1 . . . d.

First the variable-value graph is defined. The variable-value graph has one
set of vertices representing target variables, and a second set representing values.
There is an edge between a variable xi and a value a iff a ∈ D(xi). Figure 1(a)
gives an example of a variable-value graph.

Definition 2.2. Given an EGCC K, the bipartite variable-value graph is defined
as B(K) = 〈V,E〉 where V = {x1, . . . , xr, 1, . . . , d} and E = {xi ↔ j | j ∈
D(xi)}

Next a flow network N(K) for an EGCC K is defined. It is derived from
the variable-value graph. N(K) has both a capacity c and lower bound l on
each edge. It includes the vertices in the variable-value graph, and also a source
vertex s and a sink t. It is defined below and an example is given in Figure 1(b).
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Definition 2.3. Given an EGCC K with parameters X = 〈x1 . . . xr〉, V =
〈v1 . . . vm〉, and C = 〈c1 . . . cm〉2, the flow graph N(K) is defined as a digraph
N(K) = 〈V,E〉 where V = {x1, . . . , xr, 1, . . . , d, s, t}. E is the union of the
following edge sets.

• For each edge in B(K), orient the edge from values to variables. For all
edges (v, x) in this set l(v, x) = 0 and c(v, x) = 1.

• For all value vertices vi ∈ V , there is an edge (s, vi) with lower bound
l(s, vi) = ci and capacity c(s, vi) = ci (i.e. the flow through (s, vi) is
within the bounds of the cardinality variable ci).

• For all values a in {1 . . . d} but not in V , there is an edge (s, a) with
l(s, a) = 0 and c(s, a) =∞.

• For all variables xi, there is an edge (xi, t) where l(xi, t) = 0 and c(xi, t) =
1.

The intuition behind N(K) is that an integer flow from s to t corresponds
to an assignment to the target variables. If the flow uses an edge (xi, a) then
in the assignment, xi = a. If a flow in N(K) covers all the variable vertices,
and meets all the lower bounds and capacities, it corresponds to a satisfying
assignment to the target variables.

2.4. Hall sets and EGCC

Hall sets are useful for understanding the pruning of the target variables
in EGCC. Two types of Hall set are required, for the upper bounds and lower
bounds respectively. The following definition of upper-bound Hall set is equi-
valent to Quimper’s definition (see [17] §5.1).

Definition 2.4. A UB-Hall set Hu is a set of variables with corresponding
values D(Hu) =

⋃
{D(xi) | xi ∈ Hu} such that the sum of the upper bounds of

D(Hu) equals the number of variables: |Hu| =
∑

vi∈D(Hu)
ci.

In any solution to the constraint, the variables Hu are assigned to values in
D(Hu) and this assignment meets the upper bound for each value in D(Hu).
Therefore no other variable xj /∈ Hu can be assigned a value in D(Hu), and
some pruning may be performed. Variables Hu consume the values D(Hu).

A small example of a UB-Hall set is given in Figure 2(a). In this case, three
variables {x1, x2, x3} are adjacent to only the values {1, 2}. The sum of the
upper bounds of {1, 2} is three, therefore {x1, x2, x3} is a UB-Hall set.

For lower bounds, the Hall set is similar but variables and values are swapped.
This definition is equivalent to unstable sets as defined by Quimper (see [17]
§5.2).

2For simplicity it is assumed that V ⊆ {1, . . . , d}. If this is not the case, for each value vi
not in {1, . . . , d} the corresponding cardinality variable ci is set to 0.
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x1 x2 x3 x4

1 2 3 4

(a) Example of a UB-Hall set.
Variables {x1, x2, x3} consume values {1,2}.

The dotted lines will be pruned. 

[0,1] [0,2] [0,1] [0,1]

x1 x2 x3 x4

1 2 3 4
[1,2] [2,4] [0,1] [0,1]

(b) Example of an LB-Hall set.
Values {1,2} consume variables {x1, x2, x3}.

The dotted lines will be pruned.

GCC instances represented as variable-value graphs. Values are labelled with their lower and 
upper bound as an interval [a,b].

Figure 2: Example of a UB-Hall set and an LB-Hall set

Definition 2.5. An LB-Hall set Hl is a set of values with corresponding vari-
ables Vars(Hl) = {xi |Hl ∩ D(xi) 6= ∅} such that the sum of the lower bounds
of Hl equals the number of variables: |Vars(Hl)| =

∑
vi∈Hl

ci.

In this case, in any solution to the constraint, the variables Vars(Hl) must be
assigned to values in Hl exclusively, to meet the lower bounds of Hl. Therefore
other values may be pruned. The values Hl consume the variables Vars(Hl).

A small example of an LB-Hall set is shown in Figure 2(b). The sum of
the lower bounds for values {1, 2} is three, and the two values are adjacent to
three variables {x1, x2, x3}, therefore {1, 2} is an LB-Hall set. This leads to the
pruning of two values.

The definition of LB-Hall set captures the reason for prunings but not fail-
ure. The constraint fails (CS

k = ∅) if there exists a set of values Hl where the
sum of the lower bounds is greater than the number of variables: |Vars(Hl)| <∑

vi∈Hl
ci.

UB and LB-Hall sets are closely related to enforcing GAC-On-X (Definition
2.1). Quimper [17] proved that lower bounds and upper bounds can be con-
sidered separately without losing GAC-On-X (thus decomposing EGCC into
an upper-bound constraint (ubc) and a lower-bound constraint (lbc)). He also
showed the correspondence between Hall’s marriage theorem and the satisfiabil-
ity of the ubc. It follows that finding all UB-Hall sets Hu and pruning values in
D(Hu) from other variables is sufficient to enforce GAC-On-X on the ubc. For
lbc, Quimper shows directly that finding all LB-Hall sets is sufficient to enforce
GAC-On-X.

The algorithms presented in the next section make use of UB- and LB-Hall
sets to prune the target variables.

2.5. Experimental context

Experiments were performed with Minion [4, 5] version 0.9. The solver was
modified only to add variants of EGCC. In this section I give an overview of
Minion.
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Constraint solvers provide a propagation loop that calls propagators until
the global fixpoint is reached. Propagators subscribe to variable events and are
scheduled to be executed when one of the events occurs. Subscription to an
event is referred to as placing a trigger, where a trigger is an object and it is
placed into a list related to the event. A propagator is triggered when it is called
because an event occurred. Minion provides the following variable event types:
max(D(xi)) changed; min(D(xi)) changed; value a removed from D(xi); D(xi)
changed in any way; xi is assigned.

Triggers are identified by a number which is passed to the propagator. There-
fore a propagator can identify the exact event that caused it to be called. Noti-
fication of the events is important for several of the EGCC propagators; without
this facility the propagator would scan the variable domains, adding a linear or
quadratic cost. The exact use of variable events is described in §3.5.2.

Minion is a variable-centric solver with an additional constraint-centric queue.
The solver has two queues for efficiency reasons: the variable queue is very fast,
because adding a variable event to the queue is an O(1) operation (whereas
with the constraint queue, each trigger is copied to the queue). However, the
variable queue does not allow constraints to be given different priorities. Having
the additional constraint queue overcomes this limitation.

The variable queue contains the variable events listed above. The constraint
queue contains pointers to constraints. Constraints are responsible for adding
themselves to the constraint queue as necessary. It has a lower priority than
the variable queue: the variable queue is emptied before each item is processed
from the constraint queue. In all the experiments presented below, only EGCC
and AllDifferent constraints use the constraint queue.

Propagators may require internal state for efficiency. Minion provides both
backtracked memory (that is restored as search backtracks) and non-backtracked
memory. The backtracked memory must be allocated before search begins, and
is blocked together. It is backtracked by copying the block. The consequences
of this memory architecture are discussed in §5.2.1.

3. Pruning the target variables of EGCC

In this section I discuss pruning the target variables, beginning with a survey
of the relevant literature. There are two published algorithms to enforce GAC-
On-X, given lower and upper bounds for the occurrence of each value. Régin
[24] presented an algorithm based on network flow. It makes use of the Ford-
Fulkerson algorithm [2] to compute a flow which represents an assignment to the
target variables. The assignment satisfies the lower and upper bounds for each
value. Then Tarjan’s algorithm is used to compute the set of edges that cannot
belong to any maximum flow. These edges correspond to domain values to be
pruned. The time complexity of one call to the algorithm is O(r2d), dominated
by the Ford-Fulkerson algorithm.
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An alternative algorithm was presented by Quimper et al [18, 17]3. The
approach here is to split the GCC into two constraints, such that enforcing
GAC on both is equivalent to enforcing GAC on the GCC. In this way they
obtain a better time bound than Régin’s algorithm.

3.1. Régin’s algorithm

The first stage of Régin’s algorithm computes a flow that is both feasible (it
meets all lower bounds) and maximum, without exceeding capacities. First a
feasible flow is computed, then it is extended to a maximum flow.

3.1.1. Computing a feasible flow

To compute a feasible flow, a second flow network LB(K) is used that is
identical to N(K) with one additional edge. There is an edge (t, s) with l(t, s) =
0 and c(t, s) =∞.

In order to use the Ford-Fulkerson algorithm [2], Régin defines the residual
graph for a flow network and flow. A flow is a function mapping all edges to
the quantity of material passing through them (a non-negative integer). The
intuition behind the residual graph is that there is an edge from vertex a to
vertex b iff it is possible to increase the flow from a to b without violating the
capacity c(a, b), or to reduce the flow from b to a without violating the lower
bound l(b, a). (The first case applies when (a, b) is an edge in N(K), and the
second case applies when (b, a) is an edge in N(K)).

Definition 3.1. The residual graph Res(G, f) is derived from a flow network
G and a flow f . It is a digraph with the same set of vertices as G. For each
edge (a, b) in G, if f(a, b) > l(a, b) then the edge (b, a) is present in Res(G, f).
If f(a, b) < c(a, b) then the edge (a, b) is present in Res(G, f). No other edges
are present in Res(G, f).

The algorithm to compute a feasible flow is as follows. Suppose f is an
infeasible flow. Pick an edge (a, b) from LB(K) such that f(a, b) < l(a, b). Find
a simple path from b to a in Res(LB(K), f). This is named an augmenting
path, and (by the definition of Res(LB(K), f)) the flow can be increased along
this path and through (a, b) by 1 unit. This is denoted applying the augmenting
path. For each edge (x, y) in the path, either f(x, y) is increased or (if the edge
is oriented (y, x) in LB(K)) f(y, x) is decreased. This creates a new flow f ′

where f ′(a, b) > f(a, b). In this context, the increase in the flow through (a, b)
is always 1. If there is no augmenting path from b to a, then it is impossible to
satisfy the lower bound and the EGCC fails.

Figure 3 shows two examples of augmenting paths in the residual graph
Res(LB(K), f). The existing flow f passes through (s, 3), (3, x3), (x3, t), and
(t, s). In CSP terms, this flow represents the assignment x3 = 3.

3The algorithm was described in Claude-Guy Quimper’s PhD thesis [17] therefore I refer
to it as Quimper’s algorithm throughout.
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x1 x2 x3 x 4

1 2 3 4
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s

(a) Augmenting path for edge (s,1) 
that passes through t

(b) Augmenting path for edge (s,2)
that does not pass through t

[2,2]
[1,2]

[0,1]
[0,1]

x1 x2 x3 x 4

1 2 3 4

t

s

[2,2]
[1,2]

[0,1]
[0,1]

Figure 3: Examples of augmenting paths in the residual graph to compute a feasible flow

For EGCC, the only edges where the lower bound is non-zero are those from s
to a domain value, (s, vi). An augmenting path has one of two forms. It passes
through the edge (t, s) as shown in Figure 3(a), or it does not pass through
(t, s) as shown in Figure 3(b). In the first case, applying the augmenting path
increases the overall flow from s to t (by assigning x2 to 1 in this example). In
the second case, applying the augmenting path does not affect the overall flow
from s to t. In this example, the flow through (s, 2) is increased (by setting x3
to 2) and the flow through (s, 3) is decreased.

For this paper the implementation iterates through the values vi where
f(s, vi) < l(s, vi) and meets the lower bound for vi if possible. An augmenting
path is sought starting at the vertex vi. The search succeeds when it discovers
s or t or fails when all reachable vertices have been explored. Terminating at s
corresponds to Figure 3(b). When terminating at t, the edge (t, s) is appended
to the augmenting path and this corresponds to Figure 3(a).

3.1.2. Computing a maximum flow from a feasible flow

Given a feasible flow f0, the Ford-Fulkerson algorithm is used again to com-
pute a maximum feasible flow. An augmenting path is sought from s to t in
Res(N(K), f0). This is applied to create flow f1. The process is repeated for
f1 to create f2, etc. The algorithm terminates when no augmenting path exists
from s to t in Res(N(K), fk). If the maximum feasible flow fk does not cover all
variable vertices, then the constraint fails. An example is given in Figure 4(a).
In this example, the feasible flow f0 uses edges (1, x1), (1, x2) and (2, x3), there-
fore these edges are reversed in Res(N(K), f0). The augmenting path uses edge
(4, x4) and completes the maximum flow.
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(a) Augmenting path from s to t (b) SCCs of the residual graph

x1 x2 x3 x 4

1 2 3 4
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s

[2,2]
[1,2]

[0,1]
[0,1]

x1 x2 x3 x 4

1 2 3 4

t
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[2,2]
[1,2]

[0,1]
[0,1]

Figure 4: Examples of computing a maximum feasible flow and the SCCs of the residual graph

3.1.3. Finding augmenting paths in Ford-Fulkerson

The two main options here are depth-first search (FF-DFS) and breadth-first
search (FF-BFS). The problem is very similar to maximum bipartite matching:
an augmenting path alternates between variables and values (ignoring s and t).
Therefore I refer to the bipartite matching literature.

Setubal empirically compared ABMP, FF-BFS, FF-DFS and Goldberg’s al-
gorithm [29]. He generated bipartite graphs with 2p vertices in each partition,
where p ∈ {8 . . . 17}. With an estimate of 29 vertices or fewer in each parti-
tion4, an examination of Setubal’s results on sequential computers (taking the
size closest to 29 and all smaller sizes) shows that FF-BFS is competitive for
all classes and is most efficient (or equal) in 8/11 classes of graphs, and 10/13
sets of a particular size. Setubal recommends using FF-BFS for graphs up to
thousands of vertices. Given these results I used FF-BFS throughout.

3.1.4. Pruning the domains

The second stage of Régin’s algorithm makes use of strongly connected com-
ponents (SCCs). An SCC is a maximal set of vertices of a digraph with the
property that there is a path from any vertex to any other in the set. It fol-
lows that there are cycles within the SCCs, and no cycles with edges between
SCCs. The set of SCCs forms a partition of the vertices of the digraph. Tar-
jan’s algorithm can be used to efficiently compute the SCCs of any digraph in
O(|V |+ |E|) time [31].

An edge of the form (vi, xj) from N(K) that cannot be in any maximum

4The largest EGCC constraint in the benchmark instances has 200 variables and fewer
values, so they are all smaller than 29.
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feasible flow corresponds to a value to be pruned (i.e. vi is pruned from xj).
Given the maximum feasible flow f that covers all variable vertices, the resid-
ual graph Res(N(K), f) is partitioned into its SCCs. If an edge (vi, xj) goes
between two SCCs and is not used in the flow f , then the algorithm prunes vi
from D(xj).

The intuition behind this result is that for any edge (vi, xj) in the residual
graph, if vi and xj are in the same SCC then there is a simple path from xj to
vi (by the definition of SCCs). This path may be used as an augmenting path
to increase the flow through (vi, xj). Hence (vi, xj) can take part in a maximum
feasible flow. However, if vi and xj are in different SCCs, there is no path from
xj to vi. (vi, xj) cannot take part in any maximum feasible flow, unless it is in
f . In this case the algorithm prunes vi from xj .

Another understanding of Régin’s algorithm comes from Hall sets. Every
pruning is justified by a UB-Hall set (def. 2.4) or an LB-Hall set (def. 2.5); see
§2.4. For a deletion of a from D(xi), either a is consumed by a UB-Hall set
that does not contain xi, or xi is consumed by an LB-Hall set that does not
contain a. In both cases, the Hall set corresponds directly to an SCC of the
residual graph: in the first case, the SCC containing a; in the second the SCC
containing xi.

Figure 4(b) shows an example where f flows through edges (1, x1), (1, x2),
(2, x3) and (4, x4). SCCs of Res(N(K), f) are marked with thick dotted lines.
The edges (4, x3), (3, x3) and (3, x1) cross between SCCs, so the corresponding
values are pruned from the target domains. Tarjan’s algorithm and the pruning
of domains is implemented exactly as described in [6].

3.1.5. Time complexity of Régin’s algorithm

If δ is the number of edges in B(K) (i.e. the sum of the sizes of target variable
domains), and r is the number of target variables, the time to find a maximum
feasible flow with Ford-Fulkerson is O(rδ). (No more than r augmenting paths
are found and applied.) The complexity of Tarjan’s algorithm is Θ(δ) (i.e.
run time is bounded above and below by δ asymptotically), because Tarjan’s
algorithm uses every edge in the graph.

Régin suggests that Dinic’s algorithm [32] should be faster in practice than
Ford-Fulkerson [24]. However Dinic’s algorithm with the Sleator-Tarjan method
of finding a blocking flow (as described by Tarjan [32]) has an upper bound of
O(rδ log(r+d)). (This bound may not be tight for our problem.) In this paper I
do not consider Dinic’s algorithm because of its greater complication and worse
time bound.

3.2. Quimper’s algorithm in detail

The approach taken by Quimper et al [18, 17] is to split the GCC into a lower
bound constraint (lbc) and an upper bound constraint (ubc). The lbc ensures
that the lower bound for each value is respected, and similarly the ubc enforces
the upper bound. Enforcing GAC on the lbc and ubc independently prunes the
same values as GAC on the GCC [19]. For both the lbc and ubc, a two-stage
algorithm similar to Régin’s is used.
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For the first stage (of both lbc and ubc), the variable-value graph B(K) is
used, and a structure similar to a maximum matching is computed. A conven-
tional maximum matching M is a maximum-cardinality set of edges of B(K)
such that no vertex occurs more than once in M . This is generalized by allowing
some vertices to occur more than once: value vertices may occur multiple times
up to a capacity cap(a) for a value a. Variable vertices occur at most once.

A generalized maximum matching is computed using a modified Hopcroft-
Karp algorithm [10]. The modification is very simple and does not affect the
worst-case execution time. In the lbc cap(a) is set to the lower bound of a for
each value a, and for ubc the upper bound is used. At this point, the lbc fails if
the matching does not meet all the lower bounds. The lbc matching is completed
(to cover all variable vertices) by matching each unmatched variable vertex with
an arbitrary value. The ubc fails if the generalized matching does not cover all
variables.

For the second stage of both algorithms, the matchings are translated to flows
in N(K). For a matching M and corresponding flow fM , each edge (x, y) ∈M
carries a unit of flow in fM . Each edge from B(K) not in M carries no flow in
fM .

The second stage of Régin’s algorithm is used with changes to the bounds:
for the ubc 0 is used as the lower bound for all values; and for the lbc ∞ is used
as the upper bound for all values.

Finally, it is not necessary to run the two propagators alternately to a fix-
point to enforce GAC on the GCC. It is sufficient to run one then the other.
The implementation used in this paper runs the lbc propagator then the ubc
propagator.

The use of Hopcroft-Karp in place of Ford-Fulkerson produces a tighter time
bound of O(r1.5d) (or O(r0.5δ)) for one call to the propagator. Although Quim-
per’s algorithm has a tighter upper bound, it may not be better in practice
because it maintains two maximal matchings rather than one in Régin’s al-
gorithm, and makes two calls to Tarjan’s algorithm rather than one. The two
algorithms are compared experimentally in §5.3.

3.3. Review of optimizations of the basic algorithms

The algorithms described above are similar to each other and to Régin’s
AllDifferent algorithm [23]. A number of optimizations to this collection of
algorithms have been proposed by various authors. They are surveyed in this
section.

3.3.1. Incremental matching

The maximum flow M (or matchings Ml and Mu in the case of Quimper’s
algorithm) may be maintained incrementally during search [24]. This is done
by storing M between calls to the propagator. When the propagator is called,
M may no longer be maximum because of domain removals, so the flow or
matching algorithm is used to repair it. For AllDifferent, incremental matching
has been shown to improve efficiency [6].
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3.3.2. Incremental graph maintenance

The original GAC AllDifferent algorithm [23] stores its graph between calls,
maintaining the graph incrementally as variable domains change. One para-
meter of the algorithm is the set of values deleted from variable domains, and
the first step of the algorithm is to update the graph. This idea has two costs:
updating the graph by removing edges; and backtracking the graph as search
backtracks. Whether the benefit outweighs the cost is an empirical question
which is answered below. The implementation of incremental graph mainten-
ance is discussed in §3.5.1.

An algorithm without incremental graph maintenance can discover the graph
as it is traversed, by querying variable domains and the maximum flow. This is
the approach used for AllDifferent by Gent et al [6].

3.3.3. Priority queue

Many constraint solvers have a priority queue for constraints (e.g. Choco [14],
Gecode [27]), such that the priorities determine the order in which constraint
propagators are executed. It is standard practice for the EGCC to have a low
priority. Schulte and Stuckey demonstrate the importance of priority queueing
[27], and it is evaluated in the experiments here.

3.3.4. Staged propagation

Schulte and Stuckey proposed multiple or staged propagation for AllDifferent
[27], where a cheap propagator with a high priority is combined with a more
expensive, low priority propagator.

I do not experiment with staged propagation for EGCC in this paper, how-
ever it would be an interesting area for future work.

3.3.5. Dynamic Partitioning

Gent et al [6] proposed an algorithm which partitions an AllDifferent con-
straint during search. Suppose for example we have AllDifferent(x1 . . . x6) and
have x1 . . . x3 ∈ {1 . . . 3}, x4 . . . x6 ∈ {4 . . . 6}. This can be partitioned into two
independent cells: AllDifferent(x1 . . . x3) and AllDifferent(x4 . . . x6). The main
benefit is that if some variable xi has changed, the propagator need only be
executed on the cell containing xi, not the original constraint. This saves time
in Tarjan’s algorithm.

A cheap way of obtaining the partition is to use the SCCs of the residual
flow network, which are computed as part of Régin’s AllDifferent algorithm.
In some cases it is possible to find a finer partition than the SCCs. However,
experiments showed that using SCCs as the partition is effective in practice [6].

In this paper I generalize dynamic partitioning to the EGCC constraint.
This is described in §3.4.2.
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3.3.6. Assigned variable removal

The implementation of EGCC in Gecode [27] updates its array of target
variables each time it is called, removing assigned variables5. This promises to
be a lightweight and effective optimization. It is evaluated in §5.6.

Dynamic partitioning subsumes assigned variable optimization, because any
assigned variable is a singleton SCC and therefore cannot be in any active cell
of the constraint. However, dynamic partitioning is likely to be more expensive.

3.3.7. Domain Counting

Recall that Quimper’s algorithm divides the constraint into the upper-bound
constraint (ubc) and lower-bound constraint (lbc). Quimper and Walsh ob-
served that the ubc need not be propagated when domains are large [20]. They
proposed an algorithm that constructs a sorted list of the sizes of all target
variable domains. It iterates through the list and determines whether the ubc
propagator is run. I suspect this algorithm would be too expensive for general
use, although on some problem classes it may prove valuable. Quimper and
Walsh do not give a domain counting algorithm for the lbc.

A simpler form of domain counting has been used for AllDifferent. Lagerkvist
and Schulte used the following scheme: when triggered by a target variable xi
the propagator only runs if |D(xi)| ≤ r (where r is the arity of the constraint)
[15]. Gent et al improved the threshold to |D(xi)| ≤ r − 1 [6], but did not find
domain counting to be useful in experiments.

It is possible to derive a similar domain size threshold for the ubc, using the
definition of a UB-Hall set (definition 2.4). However it is not possible for the
lbc. Consider the definition of an LB-Hall set (definition 2.5). The size of the
domains of the variables in the LB-Hall set is not restricted by the definition.
Since it is not possible for the lbc, it is not possible for the EGCC. I do not
experiment with domain counting in any form.

3.3.8. Important Edges

Katriel observed that many value removals affecting a GCC constraint result
in no other value removals, and so work processing them is wasted [12]. She
introduces the concept of an important edge of the residual graph. An import-
ant edge is one whose removal causes the pruning of some variable-value pair.
Therefore, when an unimportant edge is removed, it is not necessary to run the
propagator.

Where r is the number of target variables, Katriel gave an upper bound of
3r on the number of important edges that correspond to domain values (i.e.
edges between variable vertices and value vertices).

Katriel shows that if there are many allowed values per variable, the expected
cost of propagation can be reduced. She proposes to keep a count of pruned
values, and run the propagator only when the counter reaches a threshold value.
The threshold is set so that the propagator is likely to prune a value when

5Guido Tack, personal communication
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executed. This algorithm does not always enforce GAC on the GCC. Katriel
does not report an implementation, and observes that the risks of failing to
propagate may outweigh the reduced cost of propagation.

While an implementation of Katriel’s probabilistic algorithm would be in-
teresting, the fact that it does not maintain GAC on the GCC puts it outside
the scope of this paper.

Gent et al [6] gave an algorithm for AllDifferent to identify a small set of
edges containing the important edges and possibly others. The identified edges
correspond to important domain values. The propagator is only executed when
an important domain value has been removed, thus maintaining GAC with fewer
calls to the propagator. This approach is adapted for EGCC in §3.5.3.

3.3.9. Entailment

Quimper et al give the conditions under which the GCC constraint is entailed
(i.e. there are no unacceptable tuples in the relation of the constraint, under the
current domains) [18]. If the constraint is entailed, it need not be propagated
at the current search node or its descendents. For the lower bound constraint,
the condition is that for each value v with lower bound LB(v), LB(v) variables
are assigned to v. Similarly, for the upper bound constraint, for each value v,
at most UB(v) domains contain v. However, EGCC cannot be entailed until all
variables are assigned. If some variable is not assigned, any acceptable tuple
may be turned into an unacceptable tuple by changing the value of that variable.

I did not experiment with entailment of GCC because the conditions are
quite tight, and are likely to occur only when a large number of variables are
assigned, therefore the benefit appears to be limited. Also the architecture of
Minion is not well suited to entailment (as discussed in §5.2.1).

3.4. Novel optimizations for pruning the target variables

In this section I describe two optimizations. The first is a change to Régin’s
algorithm intended to improve the computation of a maximum flow. The second
generalizes dynamic partitioning (described in §3.3.5) to EGCC.

3.4.1. Transpose graph for computing the maximum flow

To compute a maximum feasible flow from a feasible flow, Régin’s algorithm
uses the graph N(K), and seeks paths from s to t in N(K). An alternative
would be to use the transpose of N(K) denoted N(K)T . The transpose is
N(K) with the direction of every edge reversed. A path from t to s in N(K)T

is equivalent to a path from s to t in N(K).
The direction of the flow f is reversed to form fT , and the algorithm searches

for paths from t to s in the residual graph Res(N(K)T , fT ). The algorithm
works as follows. Iterate through edges (t, xi) that carry no flow. For each
edge, search for a path p from xi to s. If there is such a path, augment the flow
along p and through (t, xi). If there is no path p, it is not possible to construct
a flow that covers all variables so the algorithm fails immediately.

The conventional Régin’s algorithm completes the maximum flow before
testing if it covers all variables. When using the transpose graph, the algorithm
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can potentially stop much earlier, when it discovers a variable that cannot take
part in a maximum flow. Also, each search for an augmenting path is more
focused since it starts with a specific variable. Quimper’s algorithm uses the
transpose graph, however (like Régin’s algorithm) it completes the maximum
flow before testing if it covers all variables [18].

In §5.4 this approach is evaluated compared to Régin’s original algorithm.
For both algorithms, a breadth-first search is used to find augmenting paths.

3.4.2. Dynamic Partitioning

Dynamic partitioning essentially re-writes the EGCC constraint into mul-
tiple independent constraints as domains are narrowed. As described in §3.3.5,
Gent et al gave an algorithm for dynamic partitioning of AllDifferent [6]. The
AllDifferent algorithm maintains a partition of the set of variables. I generalize
the algorithm to EGCC. Consider the following EGCC constraint.

x1 . . . x3 ∈ {1, 3}, x4 . . . x6 ∈ {2, 3, 4},
c1, c2 ∈ {0, 1}, c3, c4 ∈ {0, 1, 2},
EGCC([x1 . . . x6], [1, 2, 3, 4], [c1, c2, c3, c4])

GAC-On-X propagation removes value 3 from variables x4 . . . x6. Following
this, the domains of x1 . . . x3 and x4 . . . x6 are disjoint, and the constraint can
be re-written into two constraints as shown below.

EGCC([x1 . . . x3], [1, 3], [c1, c3])

EGCC([x4 . . . x6], [2, 4], [c2, c4])

Suppose x3 were assigned to 3. The first of the two constraints can be
re-written again as follows.

EGCC([x1, x2], [1, 3], [c1, (c3 − 1)])

EGCC([x3], [3], [1])

EGCC([x4 . . . x6], [2, 4], [c2, c4])

In this case, the domains of [x1, x2] and x3 are not disjoint, they share the
value 3. One occurrence of 3 resides with x3, and c3 − 1 occurrences of 3 reside
with [x1, x2]. Suppose x1 were also assigned 3. Now the occurrences of 3 have
reached its upper bound, so after propagation and further re-writing we have
this situation.

EGCC([x2], [1], [1])

EGCC([x1], [3], [1])

EGCC([x3], [3], [1])

EGCC([x4 . . . x6], [2, 4], [c2, c4])
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Figure 5: The refinement of the partition as an EGCC constraint is re-written as multiple
constraints.

The EGCC algorithm maintains a partition of the set containing target vari-
ables and values. The major changes from AllDifferent are that values are in-
cluded in the partition, and corner cases of EGCC (involving singleton variables
and values) are accounted for. Initially the partition has one cell, consisting of all
target variables and values. The partition is refined as propagation and search
progresses, and restored as search backtracks. In the example above, the final re-
fined partition would be {{x1}, {x2}, {x3}, {1}, {3}, {x4, x5, x6, 2, 4}}. Assigned
variables are singleton sets, and so are values where the number of occurrences
has reached the upper bound.

The partition I use corresponds to the SCCs of the residual graph (§3.1.4),
and these are stored in the partition data structure described in [6]. (Target
variables are represented using integers 0..r − 1, and values using r..r + d − 1
if there are d values.) The data structure allows an item to be located in O(1)
time, and its cell to be iterated in linear time. Splitting a cell also takes linear
time, and undoing the split operation on backtracking is O(1).

Figure 5 gives an example of how the partition data structure of [6] works on
EGCC. Each cell is stored in setElements in a contiguous block in no particular
order. The array splitPoint marks where a cell ends. Only splitPoint is back-
tracked as search backtracks, hence cells join back together but the elements
may be in a different order. (A third array maps a variable or value to its index
in setElements, hence allowing it to be located in O(1) time.)

An assigned target variable forms a singleton SCC, therefore the assigned
variables are removed from the active cells of the constraint and cause almost
no overhead.
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Triggering with Dynamic Partitioning

The constraint maintains a set τ of target variables and values to be pro-
cessed. When the constraint is notified of a domain change event, it adds the
variable changed (for target variables) or the corresponding value (for cardin-
ality variables) to τ . τ is cleared after the propagator executes and whenever
search backtracks.

When the propagator is called, it iterates through τ and constructs a set of
the cells to be propagated. A cell is propagated iff the cell contains a variable
or value in τ . Propagation is performed on each cell in this set independently.
Cells that are not propagated are almost cost-free. This scheme relies on the
solver notifying the propagator of changed variables. If this information were
not available, the propagator could discover the changed variables by iterating
through each target variable domain, however this would add a quadratic cost
and may outweigh any speed-up caused by the optimization.

Dynamic partitioning affects the worst-case analysis of Tarjan’s algorithm.
Without dynamic partitioning, the bound is Θ(δ), where δ is the number of
edges in the residual graph. With dynamic partitioning, the bound is O(δ)
because it only runs Tarjan’s algorithm on triggered cells of the constraint, in
effect ignoring parts of the residual graph.

3.5. Implementation of optimizations from the literature

In this section I describe the implementation details of optimizations found
in the literature, when these are not specified in the original papers.

3.5.1. Incremental graph maintenance

In this optimization, the variable-value graph is stored between calls and
updated incrementally. This was first used by Régin [23] and is described in
Section 3.3.2. For each vertex in the variable-value graph, an iterable list of
adjacent vertices is required. The order of iteration is not important, but ob-
taining the next element should be O(1). Similarly removing an element and
testing its presence in the list should be O(1) operations. Restoring the list on
backtracking should be as cheap as possible.

The following representation is used, where each vertex is represented by a
unique integer from a small range.

List An array of vertices (integers), not backtracked.

ListSize A single integer representing the size of the adjacency list. This must
be backtracked.

InvList An array mapping vertices to their positions in List. Not backtracked.

This representation has the advantages of minimizing the backtracking memory
and being directly iterable. The removal operation for a vertex a is to swap it
with the item at the end of the list (i.e. place it in position ListSize-1), and
then to reduce ListSize by one, thus a disappears from the list. On backtrack-
ing, ListSize is restored and a reappears in the list, at the end. InvList allows a
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to be found in constant time, and is updated when the swap is performed. Thus
the removal operation is O(1). An item a is in the list iff InvList[a] < ListSize.
This data structure is used by the solver Mistral [8]. ListSize is backtracked by
copying, as described in §2.5.

The constraint is notified of each pruned value for all target variables. These
events are used to maintain the adjacency lists and queue the constraint for
propagation if necessary.

Fixpoint reasoning

It may be helpful to perform fixpoint reasoning [27]. The EGCC propagator
is idempotent if there are no repeated variables. When it prunes a value from
a target variable, it will be notified later of the pruning but there is no need to
run the propagator again. When using adjacency lists, the two relevant lists are
updated immediately when the pruning occurs. When the constraint is notified
of a pruning, it tests whether the lists need to be updated. If not, the constraint
is not queued for propagation. Hence when using adjacency lists the propagator
does some limited fixpoint reasoning.

3.5.2. Priority queueing and triggering

EGCC places triggers on the upper and lower bounds of all cardinality vari-
ables. If it is using incremental graph maintenance, it is notified individually of
each value that is removed from a target variable. Otherwise, it is notified of
changes to target variables, specifying the variable affected but not the value(s)
removed.

The EGCC is triggered in one of three ways depending on configuration:

• Normal priority: The propagator is executed whenever it is notified of
any event.

• Low priority: The propagator is queued (added to the constraint queue if
not already present) for any event.

• Low priority with incremental graph: The propagator is queued for any
event from a cardinality variable. For the target variables, the propagator
is queued whenever it is notified of a value removal that is not already
reflected in the adjacency lists.

3.5.3. Important Edges and Dynamic Triggers

The edges of the residual graph can be partitioned into important and un-
important (as discussed in §3.3.8). Only the removal of an important edge can
cause pruning of the target variables. The number of calls to Régin’s algorithm
can be reduced by ignoring the removal of unimportant edges.

The algorithm presented by Gent et al [6] records the edges T that Tar-
jan’s algorithm uses in its internal proof that each SCC is strongly connected.
Tarjan’s algorithm performs a depth-first search (DFS) in the residual graph
R. The edges of R which are traversed by the DFS are included in T . The
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Figure 6: Finding important edges (T ) in Res(N(K), f). The flow f uses edges (x1, 1), (x2, 2)
and (x3, 3). The DFS tree of Tarjan’s algorithm is shown in red dotted thick lines. The three
other edges in T are shown in thick black lines. Three edges corresponding to domain values
are unimportant.

algorithm also maintains an integer named lowLink for each vertex. During
the DFS, the lowLink values are updated using edges in the graph, and the
criterion for identifying an SCC is based on the lowLink value. For each vertex,
the lowLink value may be changed several times, but only its final value is used
in identifying SCCs, therefore the edge used to obtain its final value is included
in T . All other edges in R are not included in T . This algorithm is also correct
for EGCC; figure 6 shows an example of finding T for an EGCC constraint.

While the edges in T remain in the residual graph, each component will
remain strongly connected and therefore no pruning is possible. This method
yields at most 2r + d edges that correspond to domain values. Compared to
Katriel’s theoretical bound of 3r [12], there are d − r spurious edges. However
the method is simple and fast, with only minimal instrumentation of Tarjan’s
algorithm and no change to the time bound.

Two variants of AllDifferent were implemented by Gent et al [6] based on
important edges. The first variant used dynamic triggers (movable triggers
that are restored on backtracking), moving at most 2r + d value triggers each
time Tarjan’s algorithm is executed. Dynamic triggers are substantially more
expensive than static triggers, and in experiments the cost of dynamic triggers
outweighed the benefit in most cases.

The second variant records the important domain values in backtracking
arrays. When the propagator is triggered, it returns immediately if no important
value has been removed. The main cost is backtracking the arrays by block
copying. In experiments this was a minor improvement with an average 6%
speed-up. This approach is referred to as internal dynamic triggers because it
simulates dynamic triggers within the constraint.

The internal dynamic triggers method of Gent et al [6] can be trivially ad-
apted for EGCC. The algorithm for constructing set T is used unchanged. For
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each variable, a list of values is stored corresponding to edges in T . The lists
are linked lists, stored in a block of backtracking memory with size O(3r + d).
This allows O(1) append, quick iteration, and linear-time clear.

The propagator is changed in only two places. Tarjan’s algorithm is changed
to record the T values into the backtracking array. When a cell with target
variables Xcell is triggered, each changed variable xi ∈ Xcell is checked against
its list of T values. If no T values have been deleted, then the target variables
are not pruned for that cell6. Cardinality variables are pruned regardless. This
approach is evaluated in §5.7.

4. Pruning the cardinality variables

In this section I describe three algorithms for pruning the cardinality vari-
ables. The first is a simple approach that counts values in the target domains, it
does not make use of the flow network. The second approach is to use the simple
algorithm and add an implied sum constraint. The third approach computes a
maximum and minimum flow for a particular value. In all cases, the algorithm
described is run after pruning the target variables.

These three methods are compared empirically in §5.8.

4.1. A simple algorithm

For a domain value a, a simple upper bound is the number of target variables
that have a in their domain. A lower bound is the number of target variables
that are assigned to a.

For each value a, when not using incremental graph maintenance, the al-
gorithm iterates through all target variables and computes the upper and lower
bound. When using incremental graph maintenance, the upper bound is already
known: it is the length of the adjacency list for a. The algorithm finds the lower
bound by iterating through the adjacency list of a and counting assigned vari-
ables.

If dynamic partitioning is used, the algorithm only processes values in those
cells of the constraint that have been triggered. Assigned variables are removed
from active cells of the constraint, therefore values that only occur in assigned
variables will not be processed.

The algorithm described above is stateless (i.e. requires no backtracking
state) and quadratic (O(rd)), and it behaves well combined with dynamic par-
titioning and incremental graph maintenance. A stateless O(r + d) algorithm
is possible but preliminary experiments did not show any benefit, and this al-
gorithm does not partition dynamically, therefore I disregarded it. It is also
possible to construct a stateful O(d) algorithm, by maintaining the number of
variables assigned to each value in a set of backtracking integers. I avoided this
because it requires backtracking memory.

6If dynamic partitioning is not used, consider the constraint to have one cell containing all
target variables.
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4.2. An implied sum constraint

A second approach is to use the simple algorithm and add an implied sum
constraint over the cardinality variables. The total occurrences of all values
must equal the number of target variables.

egcc(X,V,C) ∧
∑

C = r

This implied constraint is sound iff all values in the domains of target vari-
ables are in V , and therefore have a corresponding cardinality variable.

This is the approach used by Gecode [27]7. However, in Gecode the definition
of EGCC is slightly different: the variables in X are only allowed to take values
in V . Therefore the sum constraint is always sound in Gecode.

4.3. A flow network algorithm

Quimper et al [18] proposed an algorithm based on the flow network N(K).
For a value a and cardinality variable ca, the algorithm finds a maximum flow
containing the minimum occurrences of a. This is used to prune the lower bound
of ca. Similarly, it finds a maximum flow containing the maximum occurrences
of a to prune the upper bound of ca.

This is an expensive method, but it provides the maximum possible pruning
under the assumption that domains of cardinality variables are an unbroken
interval.

4.3.1. Pruning lower bounds

The algorithm described by Quimper et al is as follows. Take an existing
maximum flow f that respects the upper bounds for all values. Remove all units
of flow that pass through value-vertex a, to form the reduced flow fa. Similarly,
remove vertex a and all incident edges from N(K) to form a new network
N(K)a. Using the Ford-Fulkerson algorithm on network N(K)a, augment fa
to find a maximum flow f ′a from s to t.

f ′a represents a maximum assignment to the target variables X such that a is
not used and all values are within their upper cardinality bounds. Therefore to
complete the assignment to X, there must be r−|f ′a| occurrences of a, therefore
ca ≥ r − |f ′a|.

The implementation makes use of the transpose graph and is almost identical
to that described in §3.4.1, with three changes: the algorithm does not stop when
it encounters a variable-vertex with no augmenting path; the graph N(K)Ta is
used in place of N(K)T ; and the algorithm halts if the size of the flow reaches
r − ca, because in this case it is not possible to prune ca.

The time required to prune all cardinality lower bounds is O(r2d) [18], or
O(rδ) where δ is the number of edges in N(K). This is because the algorithm
seeks at most r augmenting paths.

7Guido Tack, personal communication
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4.3.2. Pruning upper bounds

To find a new upper bound for value a, the flow through edge (s, a) in N(K)
is maximized while observing the lower cardinality bound for all other values.
Quimper et al prove that this can be done in O(r2.66) time. To find the upper
bound of a, they start with a non-maximal flow fl with exactly cb occurrences
of each value b (therefore the maximum number of free variables). The goal is
to maximize the flow using paths from a to a free variable. If a value-vertex is
not used in fl then it cannot be part of a path (excluding s) from a to a free
variable in Res(N(K), fl). The number of reachable vertices is no more than
2r+ 1. The authors identify the network as a special case and cite a proof that
the maximum flow can be found in O(r2.66) time.

The implementation used here is simpler. It begins with a maximum flow f
that respects the lower bounds for all values. To find the upper bound for a,
the algorithm maximizes the flow through (s, a) by finding augmenting paths
with a BFS in N(K) (excluding s) starting at a and ending at a value-vertex b
where f(s, b) > cb (i.e. the flow through b is greater than its lower bound). The
path is applied to increase the flow through a and decrease b. The algorithm
halts if the size of the flow through a reaches ca, because in this case it is not
possible to prune ca. The final flow through edge (s, a) is the new upper bound
for ca.

In common with Quimper’s algorithm, the number of reachable vertices is
2r+ 1 or fewer. To prune all capacity variables C, the time bound is O(|C|r3),
a factor of r1/3 less efficient.

5. Experimental Evaluation

In this section I describe the context of the experimental evaluation. Then I
present two groups of experiments. First I compare various algorithms and op-
timizations for pruning the target variables, in experiments one to five. Secondly,
I compare algorithms for pruning the cardinality variables in experiment six. Fi-
nally, in §5.10, the best propagation method for the target variables is compared
against a careful but unoptimized implementation of Régin’s algorithm. Also,
the best EGCC propagator is compared against the decomposition of EGCC
into a set of occurrence constraints, demonstrating the utility of EGCC as a
global constraint.

5.1. Benchmark Set

In this section I describe the problem classes and instances used to compare
propagation algorithms.

5.1.1. Car Sequencing

The car sequencing problem [9] (prob001) is to sequence cars on a conveyor
through a factory. There are a number of optional parts that may be fitted
to the cars, and each optional part has a corresponding machine which fits the
part. For an option i, the machine cannot accept more than pi cars in every qi.
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Therefore, in every contiguous subsequence of length qi there must be no more
than pi cars requiring the option.

There are a number l of different types of car, where each type has a set of
options that it requires. A fixed number of each type is required in the sequence.
Finally, the length n of the sequence is given.

Three models for this problem are presented below. They all share a common
core. There is an explicit representation seq of the sequence. This is an array
of length n of variables with domain {0 . . . l− 1} (representing the type of car).
An EGCC constraint is placed on seq, to enforce the required number of each
type of car.

All models also contain a two-dimensional array optused of Boolean vari-
ables. For each sequence index j and option k, optused [j, k] indicates whether
the car at position j requires option k. Each element optused [j, k] is connected
to seq [j] by a binary table constraint.

Model A

Régin and Puget presented an encoding of the capacity constraints for the
machines as a set of EGCC constraints [25]. It is a very complex model and I
do not reproduce it in full.

For each option i, there are n+ qi − 1 subsequences of seq to consider. For
each subsequence, we need to state that no more than pi of the cars require
option i. This is done using n × qi extra variables, and qi EGCC constraints
(each with n target variables).

There is also a cardinality variable for each subsequence, giving the number
of cars in the subsequence that do not require option i. Two consecutive sub-
sequences of the same length overlap by qi− 1 cars, therefore the corresponding
cardinality variables cannot differ by more than 1, and the difference is easily
determined. A set of logic and arithmetic constraints are added to capture this
fact.

The key advantage of Régin and Puget’s model is that the EGCC constraints
combine subsequence capacities with constraints on the whole sequence. Each
car type that requires option i is represented in the auxiliary variables, and the
required number of that car type is enforced by all the EGCC constraints.

Régin and Puget do not report the level of consistency that was used for the
EGCC cardinality variables. However, on instance 2, Régin and Puget report
9355 fails in ILOG Solver [25]. Minion performs 9452 left branches (using the
simple cardinality pruning algorithm in §4.1). Instance 1 is also similar (0 fails
in ILOG Solver, 113 left branches in Minion). This suggests that the model,
propagation and variable ordering may be equivalent.

Model B

In car sequencing, a single sequence constraint [33] may be used to represent
the capacity constraints for one option. The sequence constraint for option i is
given parameters pi and qi, and is posted on variables optused [i, ∗]. It restricts
the number and position of occurrences of value 1 in optused [i, ∗].
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Van Hoeve et al [33] proposed an encoding of the sequence constraint as
a regular constraint (i.e. a constraint that recognizes a regular language). In
this case the language is the set of all assignments to optused [i, ∗] that satisfy
the capacity constraints for option i. The corresponding deterministic finite
automaton (DFA) has O(2qi) states. A cost parameter is added to fix the total
number of cars with option i (i.e. to fix the number of 1’s in optused [i, ∗]),
and the cost-regular propagator [3] is used to enforce GAC on the resulting
constraint.

Minion does not have cost-regular or regular propagators, therefore the con-
straint is encoded into table constraints. First, the DFA is augmented with a
counter that counts the number of 1’s in the sequence. Only sequences with
the correct number of 1’s are accepted by the augmented DFA. The number of
states is increased to O(n2qi). The augmented DFA is encoded into a set of
ternary table constraints as described by Quimper and Walsh [21], and GAC is
enforced on these table constraints. This is equivalent to enforcing GAC on the
original cost-regular constraint.

Model AB

Model AB is the combination of models A and B. This is very similar to
model ‘(C) A + REG with cost’ in van Hoeve et al [33].

Variable and value ordering

All three models use the variable and value ordering by Régin and Puget [25].
First, the options are ordered according to a measure of how tightly constrained
they are. For each option i, the measure uses the demand of i, denoted ki,
which is the number of cars in the sequence that require it. The slack of option
i is n− qi(ki/pi) (where low slack indicates the option is tightly constrained8).

The optused variables are searched. First, the options are ordered by slack,
with the least slack first. For each option, the variables are branched from the
middle out (i.e. at each step the unassigned variable closest to the middle of the
sequence is selected). Finally, the value order is 1 then 0.

80 instances were used. Instances 0 to 4 are from Régin and Puget9, and 5
to 79 are the other instances given on CSPLib (prob001) [9].

5.1.2. Magic Sequence

The magic sequence problem [9] (prob019) is to find a sequence of length
n such that element i in the sequence is the number of occurrences of i in the
sequence. It is modelled as a list X of n variables with domain {0 . . . n − 1}.

8Régin and Puget claim that negative slack means the capacity constraint for the option
cannot be satisfied [25]. This is not true because the ends of the sequence are a special case.
Consider a problem where n = 8 and an option i has parameters pi = 2, qi = 3 and demand
ki = 6. The slack for option i is −1, and the capacity constraint can be satisfied with the
optused sequence 〈1, 1, 0, 1, 1, 0, 1, 1〉.

9For instances 0 and 3 the option ordering derived from slack is not the same as that
reported by Régin and Puget [25], which may have been adjusted by hand.

27



c1 0 0 1 1 2 2
c2 0 1 0 2 1 2
c3 0 1 2 0 2 1
c4 0 2 1 2 0 1
c5 0 2 2 1 1 0

Table 1: EFPA example with v = 5, q = 3, λ = 2, d = 4

There is one constraint: EGCC(X, 〈0 . . . n− 1〉, X). The variables are searched
in index order, and values are explored in ascending order. Instances were
generated for n ∈ {20, 30, 40, 50, 100, 150, 200, 300}.

5.1.3. Equidistant Frequency Permutation Arrays (EFPAs)

The EFPA problem [11] is to find a set (often of maximal size) of code-
words, such that any pair of codewords are Hamming distance d apart. Each
codeword (which may be considered as a sequence) is made up of symbols from
the alphabet {1, . . . , q}, with each symbol occurring a fixed number λ of times
per codeword. A fourth parameter v is the number of codewords in the set.
Typically v would be maximized. Table 1 shows an example of an EFPA.

The problem is modelled as a two-dimensional array of variables where each
row represents a codeword. The model is given by Huczynska et al [11] (the non-
Boolean model with the implied constraint set). The variable and value ordering
described there is used. The 24 instances of EFPA used in the experiments in
[11] are also used here, with two added: d = 4, q = λ = 5, v ∈ {11, 12}. This
provides a mixture of 13 satisfiable instances and 13 unsatisfiable or unknown
instances.

Each row of the model has an EGCC constraint with qλ target variables to
enforce λ occurrences of each symbol. There are also EGCC constraints with λ
target variables used in the implied constraints.

5.1.4. Round-robin Sports Scheduling

The round-robin sports scheduling problem [9] (prob026) is to schedule
games among n teams on n/2 pitches over n−1 weeks. The model and variable
and value ordering is given in [6], and EGCC constraints are added to enforce
the requirement that each team plays on each pitch at most twice. This gives
n/2 EGCCs with 2(n − 1) target variables and capacities 0 . . . 2 for all values.
Instances were generated with n ∈ {10, 12, 14, 16}.

5.2. Experimental Setup

For all experiments I use Minion as described in §2.510. The instances are
not preprocessed. I used a timeout of 1800s. The experiments were run on a
Linux (Ubuntu 9.10) server with two Intel Xeon quad-core E5520 CPUs clocked
at 2.27GHz and 12GB of RAM.

10Source code for the solver is available at http://www.cs.st-andrews.ac.uk/~pn/egcc/
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Minion performs a binary search where the left branch assigns a variable. It
counts left branches. The speed of search is measured by dividing the number
of left branches by time taken, this is referred to as branch rate.

In this setup, timings (and branch rates) exhibit some variation. To measure
the variation, I used the PriorityQ-IncMatch-IncGraph propagator (§ 5.5), and
measured the branch rate twice for each benchmark (with a timeout of 1800s).
For each instance, the absolute difference between the two rates was divided by
the smaller rate to obtain a proportional difference. The mean of these values
is 0.03 (i.e. the larger branch rate is 3% larger than the smaller one) and the
maximum is 0.50. Those instances that completed in less than 0.1s showed the
most variation; excluding those, the mean is 0.03 and maximum is 0.17.

In all experiments below, the median of three runs is used. For each experi-
ment comparing algorithms A and B, to determine statistical significance I used
the Wilcoxon paired signed-rank test implemented in R [22]. The branch rates
of A and B are measured for all benchmark instances. The null hypothesis is
that the branch rates are drawn from the same distribution (i.e. A and B run
at the same speed). The difference between A and B is deemed to be significant
if the probability of the null hypothesis is less than 0.01.

The various implementations of EGCC were extensively tested and de-bugged,
and all variants report the same branch count on instances that complete within
the time-out.

5.2.1. Solver architecture

The EGCC propagators make use of some Minion features that may not
be available in all solvers. Perhaps the most important is notification of which
variables have been changed, and (when using the incremental graph) which
values have been pruned. This granularity of events is widely available however
(for example in Gecode via advisors [15] and Choco [14]).

Another important consideration is memory architecture. Minion allows
propagators to have both backtracked and non-backtracked memory. The back-
tracked memory for all propagators is blocked together, and cannot be allocated
or freed during search. Memory is backtracked by copying the block, which
is very efficient when the amount of backtracked memory is small and static.
Memory architecture affects most of the optimizations for EGCC, therefore
experimental results that are marginal could be reversed with a different archi-
tecture. Different data structures may be required with a different architecture.

In contrast to Minion, Gecode backtracks all state, and it does so by copying.
When search branches Gecode traverses a tree of objects (including constraints
and variables) and copies each individually. This architecture has very different
properties to Minion. Entailment (§3.3.9) is a case in point: in Gecode, if a
constraint is entailed, it is removed from the tree (and its triggers are removed)
thus the cost of copying the constraint and its triggers is removed. In Min-
ion triggers are not copied when search branches, and any backtracking state
the constraint has cannot be de-allocated. Therefore the potential gain from
detecting entailment is much less in Minion. Gecode employs entailment for
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Figure 7: Speedup of Baseline-Régin compared to Baseline-Quimper. The graph is a scatter-
plot, with each point comparing results on a single instance. The x-axis represents the run
time of Quimper’s algorithm to solve the instance. The y-axis gives the speedup obtained by
using Régin’s algorithm instead of Quimper’s algorithm. A ratio of 1 indicates that the two
methods run at the same speed, with ratios higher than 1 indicating that Régin’s algorithm is
faster, and ratios less than 1 indicating that Quimper’s algorithm is faster. The ratio is calcu-
lated by dividing the branch rate with Régin’s algorithm by that with Quimper’s algorithm.
In this graph we can see that Régin’s algorithm almost always performs substantially better
than Quimper’s algorithm.
All subsequent graphs labelled ‘Speedup of X compared to Y’ follow the same conventions,
where in this case X=Baseline-Régin and Y=Baseline-Quimper.

GCC11.

5.3. Experiment One: Comparing Quimper’s and Régin’s algorithms

In this section I compare the two basic algorithms for pruning the target
variables. To do this, various other choices must be made. These choices are
mainly based on the current state-of-the-art from the literature. I use a priority
queue where EGCC has a low priority (§3.5.2), incremental matching (§3.3.1),
and incremental graph maintenance (§3.5.1), including fixpoint reasoning. I do
not use dynamic partitioning (§3.4.2), assigned variable removal (§3.3.6), dy-
namic triggers (§3.5.3), or the transpose graph (§3.4.1). The weakest algorithm
is used to prune cardinality variables (§4.1). The two algorithms are referred to
as Baseline-Régin and Baseline-Quimper.

Figure 7 shows the experimental results comparing Régin’s algorithm to
Quimper’s. The results are strongly in favour of Régin’s algorithm, despite the
better worst-case bound of Quimper’s algorithm. The results are statistically

11Guido Tack, personal communication
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Instance Search Calls Proportion Proportion
nodes in flow in Tarjan’s

algorithm algorithm
EFPA-4-4-4-8 27100 86824 14% 71%
Magic sequence 40 145 40157 1.4% 67%
Car seq A instance 1 113 6400 5.7% 65%
Car seq B instance 1 111 116 7.3% 92%
Car seq AB instance 1 111 6064 5.8% 64%
Sports scheduling 10 36926 324860 7.4% 76%

Table 2: Instructions spent in the flow algorithm and in Tarjan’s algorithm, as a proportion
of the propagator Baseline-Régin. To avoid inlining, the solver was re-compiled without
optimizations.

significant, with a mean speed-up of 1.62 times. Recall that the speed of the
whole solver is measured, so 1.62 is a lower bound on the true speed-up of the
EGCC propagator.

The performance of the two algorithms is closest on car sequencing model
B. These instances contain only one EGCC constraint and a large set of table
constraints (typically over 1000) and other constraints. Therefore the potential
to speed them up by improving the EGCC algorithm is limited.

Quimper’s algorithm intends to speed up the first stage of the process —
computing a maximum flow or matching — by using a more sophisticated al-
gorithm. The second stage is almost identical to Régin’s, except that it must
be performed twice in Quimper’s algorithm. To investigate further, I profiled
Baseline-Régin using Callgrind [35]. Table 2 shows the proportion of CPU in-
structions spent in the flow algorithm and Tarjan’s algorithm. The solver was
profiled on one easy satisfiable instance from each problem class. For all six
instances, the algorithm spends over 60% of its CPU instructions in Tarjan’s
algorithm, and less than 15% in the flow algorithm. This is consistent with the
empirical results: if Tarjan’s algorithm is the more expensive stage, it would be
counterproductive to run it twice in order to speed up the first stage.

In all six cases, the proportion of instructions spent in the maximum flow
algorithm is surprisingly low, with the bulk of instructions spent in Tarjan’s al-
gorithm. While the flow algorithm has a worse upper bound, Tarjan’s algorithm
always reaches its upper bound (§3.1.5).

Based on these results, only Régin’s algorithm is used for the rest of the
experiments.

5.4. Experiment Two: Making use of the transpose graph

In §3.4.1 I described a change to Régin’s algorithm intended to speed up the
computation of a maximum flow. To evaluate this I use the same experimental
set-up as in the previous experiment, and simply compare Régin’s original al-
gorithm with the variant. Figure 8 is a plot of the results. It appears that
measurement noise hides the difference between the two algorithms. The differ-
ence is not statistically significant.
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Figure 8: Speedup of Transpose compared to Régin’s original algorithm

Instance Search Calls Standard Transpose Instructions
nodes Régin’s in max flow

algorithm for standard
EFPA-4-4-4-8 27100 86824 267m 247m 14%
Magic seq 40 145 40157 315m 297m 1.4%
Car seq A 1 113 6400 290m 193m 5.7%
Car seq B 1 111 116 4.63m 4.62m 7.3%
Car seq AB 1 111 6064 284m 188m 5.8%
Sports sched 10 36926 324860 1724m 1201m 7.4%

Table 3: Instruction counts for finding or repairing a maximum flow, with and without the
transpose graph. To avoid inlining, the solver was re-compiled without optimizations.

To obtain more exact data, I profiled the solver using Callgrind [35]. The
profiler provides the total number of instructions spent in a function and other
functions it called. Table 3 shows instruction counts for finding or repairing the
maximum flow with and without the transpose graph. The proportion compared
to the whole propagator is also given.

Using the transpose graph does give substantial gains in some cases. For
example on the car sequencing A instance, it is 33% better. However, on that
instance, the overall gain is very low because the propagator only spends 5.7%
of its instructions in the maximum flow algorithm.

Based on the results of this experiment, from here on I use only Régin’s
algorithm with the transpose graph.
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Figure 9: Speedup of PriorityQ compared to Simple

5.5. Experiment Three: Standard optimizations of Régin’s algorithm

In this section I experiment with optimizations found in the literature, and
investigate whether they are worthwhile. The following variants of Régin’s al-
gorithm are used.

Simple The algorithm described in §3.1 with the transpose graph optimization
(§3.4.1), run at normal priority. The weakest algorithm is used to prune
cardinality variables (§4.1).

PriorityQ The Simple algorithm run at low priority as described in §3.5.2.

PriorityQ-IncMatch PriorityQ plus incremental matching as described in
§3.3.1.

PriorityQ-IncMatch-IncGraph PriorityQ-IncMatch plus incremental graph
maintenance as described in §3.5.1.

Figure 9 shows that it is worthwhile to use the priority queue. All instances
are faster with PriorityQ compared to Simple. Even Magic Sequence instances
(with one constraint) benefit from PriorityQ because the propagator is called
once for multiple variable events.

Figure 10 shows that it is worthwhile to use incremental matching. Almost
all instances are faster with PriorityQ-Incmatch compared to PriorityQ, with
very substantial speedups in some cases.

Finally, Figure 11 shows that in most cases it is worthwhile to use PriorityQ-
IncMatch-IncGraph compared to PriorityQ-IncMatch. The main exception is
the magic sequence problem, where all eight instances are slower with PriorityQ-
IncMatch-IncGraph.
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Figure 10: Speedup of PriorityQ-IncMatch compared to PriorityQ
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Figure 11: Speedup of PriorityQ-IncMatch-IncGraph compared to PriorityQ-IncMatch
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Figure 12: Speedup of Baseline-AVR compared to Baseline

For all three comparisons, the difference is statistically significant. Based on
these results, I use PriorityQ-IncMatch-IncGraph as a baseline for all subsequent
experiments.

The results for PriorityQ and IncMatch are broadly similar for AllDiffer-
ent [6]. However, for AllDifferent the speedup for IncGraph is less substantial
[16]. Also, when using dynamic partitioning, IncGraph is detrimental for most
instances [16].

5.6. Experiment Four: Assigned Variable Removal and Dynamic Partitioning

In this experiment I evaluate assigned variable removal (AVR) and dynamic
partitioning. These two optimizations are closely related: dynamic partitioning
subsumes AVR, because it partitions assigned variables into a singleton cell. I
compare the following three variants experimentally.

Baseline The same as PriorityQ-IncMatch-IncGraph in the previous section

Baseline-AVR Baseline with assigned variable removal (§3.3.6)

Baseline-Cell Baseline with dynamic partitioning as described in §3.4.2.

The second stage of Régin’s algorithm (i.e. Tarjan’s algorithm) is often more
expensive than the first stage (Table 2). As discussed in §3.4.2, dynamic parti-
tioning improves the time bound of Tarjan’s algorithm from Θ(δ) to O(δ). AVR
does not have this effect.

Figure 12 shows that it is worthwhile to remove assigned variables in most
cases, and for some of the most difficult instances. In the best case, it sped up
the solver by 2.5 times, and in the worst case slowed it down by about 35%.
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Figure 13: Speedup of Baseline-Cell compared to Baseline

The comparison of Baseline-Cell against Baseline is plotted in Figure 13. In
this case the results are much more pronounced than AVR, with a speed up of
5.6 times in the best case. Car sequencing models A and AB and the magic
sequence problem benefit substantially from dynamic partitioning. EFPA and
sports scheduling show a less substantial benefit. Car sequencing model B also
shows benefit, with 67/80 instances running faster with dynamic partitioning,
even though there is only one EGCC constraint. The mean average speedup is
1.56.

For both comparisons, the difference is statistically significant.
For AllDifferent, dynamic partitioning is very effective [6], yielding a mean

speedup of 2.98 times (with the assignment optimization). Dynamic partition-
ing superficially appears to be more effective for AllDifferent, however the two
benchmark sets are entirely different.

5.7. Experiment Five: Internal Dynamic Triggers

All previous optimizations were intended to speed up some part of the
propagator. In contrast, internal dynamic triggers (IDT, §3.5.3) is intended
to reduce the number of times that Régin’s algorithm is called.

Dynamic partitioning reduces the cost of pruning target variables, therefore
it reduces the potential for internal dynamic triggers to save time. Therefore, I
evaluate internal dynamic triggers both with and without dynamic partitioning.
Four variants are used.

Baseline The same as Baseline in the previous section

Baseline-IDT Baseline with internal dynamic triggers (§3.5.3)
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Instance Search Calls Calls
nodes with with

Baseline Baseline-IDT
EFPA-4-4-4-8 27100 86824 57260
Magic sequence 40 145 40157 8116
Car seq A instance 1 113 6400 1856
Car seq B instance 1 111 116 114
Car seq AB instance 1 111 6064 1662
Sports scheduling 10 36926 324860 196472

Table 4: Calls to Régin’s algorithm comparing Baseline to Baseline-IDT
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Figure 14: Speedup of Baseline-IDT compared to Baseline

Baseline-Cell Baseline with dynamic partitioning.

Baseline-Cell-IDT Baseline-Cell with internal dynamic triggers.

Table 4 shows the number of calls to Régin’s algorithm with Baseline and
Baseline-IDT for the six easy problems used previously. It shows that the dy-
namic triggers approach can substantially reduce the number of calls. The most
encouraging is magic sequence 40 where the number of calls is reduced by 80%.

Figure 14 shows the empirical results comparing Baseline-IDT to Baseline.
The magic sequence problem benefits the most from IDT, but this could be
a red herring because of its very unusual structure. For other problems, the
difference ranges from 0.5 to 1.6 times faster. Overall the mean speedup is
1.15. This indicates that the overhead of maintaining and backtracking the
internal dynamic triggers cancels out the benefit in most cases. Although the
two algorithms are similar, the difference is statistically significant.

37



As expected, dynamic partitioning reduces the benefit of dynamic triggers.
Baseline-Cell-IDT is 7% slower on average than Baseline-Cell on the bench-
marks. Baseline-Cell-IDT was faster for 69 of 278 instances. The maximum
speed-up was just 7%. The difference is statistically significant.

As discussed in §3.5.3, the cost of collecting the trigger values is negligible,
so it seemed likely that IDT would help, particularly with long constraints.
However, this is not what was observed. Dynamic triggers were also unsuccessful
in AllDifferent when applied with dynamic partitioning [6].

5.8. Experiment Six: Pruning the Cardinality Variables

In this experiment I compare the three methods of pruning the cardinality
variables described in §4. Dynamic partitioning (Baseline-Cell) has been found
to be a substantial improvement over Baseline, therefore I use Baseline-Cell and
combine it with the three methods as follows.

Baseline-Cell The same as Baseline-Cell in the previous section. This employs
the simple cardinality algorithm described in §4.1.

Baseline-Cell-Sum Baseline-Cell with the additional sum constraint as de-
scribed in §4.2. For all benchmarks, the sum constraint is correct.

Baseline-Cell-Flow Baseline-Cell with the flow cardinality algorithm described
in §4.3.

The three variants perform different levels of propagation (and are ordered
from least to most powerful). In this experiment I compare run times rather than
branch rates. I also do not evaluate on those instances where the cardinalities are
constants. This leaves car sequencing models A and AB, magic sequence, and
EFPA. The Wilcoxon paired signed-rank test was applied to run time rather
than branch rate, with the result that each pair of methods are significantly
different.

Since Baseline-Cell-Sum is an improvement of Baseline-Cell, I will compare
these first. Figure 15 shows that the usefulness of the sum constraint depends
very much on problem class. On magic sequence, it is consistently very useful.
It is also useful on the majority of car sequencing problems where neither variant
timed out.

As shown in Table 5, Baseline-Cell-Sum is able to solve one additional in-
stance (magic sequence 300) within the time limit. For 20 instances of 109 it
reduced the number of search nodes. These 20 instances consist of all eight
magic sequences, the three unsatisfiable EFPA instances where d = 3, and nine
of car sequencing model A.

There are a number of car sequencing model AB instances where Baseline-
Cell-Sum reached the same fixed point faster at the root node. However, only
one of these instances is also faster during search.

In conclusion, adding the sum constraint is low-risk and is sometimes very
helpful, and would be a good default choice in place of Baseline-Cell.
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Figure 15: Time comparison between Baseline-Cell-Sum and Baseline-Cell. The x-axis is
the time taken by Baseline-Cell and the y-axis is the proportion of total times, Baseline-Cell
divided by Baseline-Cell-Sum. The timeout was 1800s.

Instances Saved nodes Saved nodes
solved (of 194) vs Simple vs Sum

Baseline-Cell 108 — —
Baseline-Cell-Sum 109 20 —
Baseline-Cell-Flow 111 33 23

Table 5: For each cardinality algorithm: the number of instances solved; and the number of
instances with a reduced node count vs the weaker algorithms.
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Next Baseline-Cell-Flow is compared to Baseline-Cell-Sum. Table 5 shows
that Baseline-Cell-Flow is more robust, solving two extra instances within the
time limit (car sequencing 12 with models A and AB). Baseline-Cell-Flow ex-
plores fewer nodes for 21% of 111 benchmarks. The two instances that are
solved only by Baseline-Cell-Flow appear in the upper right corner of Figure 16.

Baseline-Cell-Flow can be inefficient, as shown by Figure 16: in the worst
case it is 48 times slower than Baseline-Cell-Sum on easy car sequencing in-
stances. The bulk of this slow-down is at the root node: surprisingly the solver
takes over 45s to reach the fixed point for most of the car sequencing bench-
marks. In contrast Baseline-Cell-Sum never takes over 1.31s at the root node.
For the first propagation of the EGCC, dynamic partitioning has no effect so
all cardinality variables are pruned. For car sequencing this is very costly, but
not for EFPA and magic sequence.

If the root node is excluded, in the worst case Baseline-Cell-Flow takes 5.73
times longer than Baseline-Cell-Sum (this would be 0.17 on the y-axis of Fig-
ure 16).

Both Sum and Flow are hugely more efficient than Baseline-Cell on the magic
sequence problem. In both cases, this is mainly not because they explore fewer
branches. Taking magic sequence 100 as an example, Baseline-Cell solves it in
385 branches, with 675192 executions of the EGCC propagator (average 1754
calls per branch). This is extremely pathological behaviour for an instance with
only one constraint, and is caused by the cardinality variables being the same
as the target variables. Baseline-Cell-Sum reduces this pathological behaviour,
solving it in 242 branches and 41428 calls to the propagator (average 171 calls
per branch). The speed-up of 47 times is much greater than the 1.59 times
reduction in the number of branches, and greater than the 16 times reduction
in the number of calls. Therefore adding the sum constraint reduces the average
time taken per call to EGCC, as well as reducing the number of calls.

In conclusion, Baseline-Cell-Flow is risky, frequently slowing the solver down
substantially and does not appear to be a good default choice. However, it is
able to solve more instances within the half-hour time limit.

5.9. Experiment Seven: Comparing EGCC to AllDifferent

Given an efficient implementation of EGCC, is it worthwhile implement-
ing GAC AllDifferent? The Baseline-Cell propagator was adapted by removing
the cardinality variables and using {0, 1} as the cardinality for all values. The
adapted Baseline-Cell is compared to the SCC-AssignOpt variant of AllDiffer-
ent described by Gent et al [6], using the benchmarks from that paper. The
difference is statistically significant, AllDifferent is 1.31 times faster on average.

5.10. Evaluating all optimizations combined

In the previous sections, I individually evaluated many efficiency measures
for pruning the target variables of EGCC. In this section, I consider the effect
of them all together. When using the simple cardinality algorithm, the most
efficient variant is Baseline-Cell. Baseline-Cell is 51.5 times faster than Simple
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Figure 16: Time comparison between Baseline-Cell-Flow and Baseline-Cell-Sum. The x-axis
is the time taken by Baseline-Cell-Sum and the y-axis is the proportion of total times, Sum
divided by Flow. The timeout was 1800s.

on average, with a maximum speedup of 237 times. However, Simple does not
include the priority queue optimization, which is ubiquitous and external to the
propagator. Figure 17 compares Baseline-Cell with PriorityQ. The mean speed
up is 4.11 times, and the maximum is 20.9. Baseline-Cell is a substantial im-
provement over PriorityQ, and this underlines the importance of implementing
EGCC well.

Figure 18 is a plot of the nodes explored per second by Baseline-Cell. This
gives an idea of the speed of the propagator on different classes of instances. The
EFPA instances are very fast, exceeding 20,000 nodes per second in all cases,
which is perhaps remarkable when maintaining GAC-On-X. In this case the
constraints are quite short. For example on the instance 〈4, 4, 4, 9〉 the longest
EGCC has 16 target variables.

Magic sequence is by far the slowest class, with a single EGCC constraint
whose arity is the length of the sequence. This class has extremely pathological
behaviour with Baseline-Cell, making a very large number of calls to the propag-
ator to reach a fixed point after each branch (e.g. on instance 100, average 1754
calls per branch). This is caused by the target and cardinality variables being
the same, therefore the constraint triggers itself many times before reaching a
fixed point.

Finally, I compare one of the best EGCC variants (Baseline-Cell-Sum) against
the decomposition of the EGCC constraint into a set of occurrence constraints.
The decomposition is as follows. For each constraint egcc(X,V,C), for each
value a ∈ V and corresponding cardinality variable ca ∈ C, an occurrence
constraint occurrence(X, a, ca) is created, stating that ca is the number of oc-
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Figure 17: Speedup of Baseline-Cell compared to PriorityQ
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Figure 18: Plot of Baseline-Cell branches per second. The x-axis is Baseline-Cell runtime,
and the y-axis the number of branches searched per second.
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Figure 19: Time comparison between Baseline-Cell-Sum and Occurrence. The x-axis is the
time taken by Occurrence, and the y-axis is the proportion of total times, Occurrence divided
by Sum. The timeout was 1800s.

currences of a in X. The decomposition is referred to as Occurrence.
Figure 19 compares Baseline-Cell-Sum against Occurrence. Many instances

were solved by Baseline-Cell-Sum and not by Occurrence, these are at the right-
hand side of the plot. The speed-up can be many orders of magnitude, with
the most extreme point being magic sequence 20, where Occurrence times out
and Baseline-Cell-Sum takes 0.01s. Baseline-Cell-Sum appears to be faster for
all problem classes except EFPA. Occurrence is faster for 15 instances (all from
the class EFPA) and solves 21 in total, whereas Baseline-Cell-Sum solves 109.
The proportion of run times ranges from 0.6 to 180000.

For most (14/15) cases where Occurrence wins, the number of branches is
within 10% of Baseline-Cell-Sum: the EGCC propagation is ineffective. How-
ever, even with almost the same size of search tree, EGCC slows down the solver
by only 1.66 times or less.

6. Experimental Conclusions

In this section I summarize the most important outcomes of the experiments.

6.1. The basic algorithm for pruning target variables

First of all, there are two published algorithms for enforcing GAC-On-X:
Régin’s algorithm and Quimper’s algorithm. Quimper’s algorithm has a tighter
worst-case bound, and therefore seems to be a more attractive choice. However,
I found Régin’s algorithm to be more efficient by a substantial margin (1.62
times faster on average).
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The second stage of Régin’s algorithm (i.e. Tarjan’s algorithm) appears to
be much more expensive than the first, based on solver profiling. This coun-
terintuitive observation may inform further optimizations, and explains why
Quimper’s algorithm is less efficient than Régin’s.

Despite the experimental findings it is possible that Quimper’s algorithm
will out-perform Régin’s on very large constraints. However given the size of
problems that can be solved in real life, and the small asymptotic difference
between the two algorithms, the constants are more important than asymptotic
behaviour.

Also, it is not clear which maximum flow algorithm should be used with
Régin’s algorithm. Only one was experimented with: Ford-Fulkerson with
breadth-first search. Depth-first search and Dinic’s algorithm are other pos-
sibilities that cannot be ruled out.

6.2. Optimizations to the basic algorithm

The results show there is huge benefit from using the following optimiza-
tions: using a priority queue and running EGCC at a low priority; incremental
matching; incremental graph maintenance; and dynamic partitioning. The res-
ults on these optimizations are substantial enough that they are unlikely to be
reversed by different implementation choices or the study of different instances,
and these optimizations remain effective when combined.

It is not possible to give a definitive order of importance of these optimiza-
tions, because the experiments were cumulative. However, it seems likely that
the priority queue is by far the most important, and among the others dynamic
partitioning is particularly important because it showed the most benefit for the
largest and hardest instances.

Using the transpose graph to compute the maximum flow was not meas-
urably faster, although it was shown to be using fewer CPU instructions by
profiling.

Some of the results depend on the context in which EGCC is used. In
particular, internal dynamic triggers (IDT) were not of much benefit on the
benchmarks (and when combined with dynamic partitioning, actually slow the
solver down). In our benchmarks, the target domains are small: in all cases,
smaller than or equal the number of target variables. IDT is expected to work
best when target domains are large, and hence the proportion of important
values is small. Therefore, IDT could be considered if an EGCC constraint will
be used with very large domains, to ameliorate the overheads in this case.

6.3. Algorithms for pruning the cardinality variables

The findings for pruning cardinality variables are straightforward. Adding
an implied sum constraint over the cardinality variables has a low overhead and
is frequently helpful in reducing the number of branches or the time to reach
the fixpoint.

Using Quimper’s flow-based algorithm is expensive, slowing down a substan-
tial number of the benchmarks, therefore I cannot recommend it as a default
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choice. However it is more powerful than the simple algorithm with the sum
constraint, solving two extra instances within the half-hour time limit.

6.4. Comparing against Occurrence

Baseline-Cell-Sum never takes more than twice as long as Occurrence to
solve any of the benchmarks, and is typically orders of magnitude faster. This
is encouraging, and suggests that Baseline-Cell-Sum could perhaps be used as
a default choice by an automated modelling assistant.

6.5. Other levels of consistency

In this paper I have focused exclusively on GAC-On-X, and this allowed
an extensive study of algorithms for that case. However, I have not compared
GAC-On-X against bounds or range consistency, so can offer no conclusions
on the relative merits of different levels of consistency. This would be a very
interesting avenue of further work.

7. Conclusions

I have presented an extensive survey of propagation methods for the EGCC
constraint, studying the pruning of both target variables and cardinality vari-
ables, surveying many methods from the literature and presenting some methods
that have not been previously reported.

I focused on generalized arc-consistency for the target variables (GAC-On-X)
and evaluated two basic algorithms from the literature along with five optimiz-
ations found in the literature, and two novel optimizations. In each case I have
reported on their implementation and given an empirical analysis of their beha-
viour. While it was impossible to experiment with every possible combination of
optimizations, I took care to compare each optimization against an appropriate
baseline method, and to avoid straw men. Particular attention was paid to eval-
uating combinations of optimizations, which is (naturally) not usually a feature
of papers that propose optimizations. The experiments presented here comprise
easily the deepest experimental analysis of GAC-On-X algorithms. Based on
them, I was able to conclude that some optimizations are key and others are
less generally useful.

I would like to draw particular attention to the results with dynamic par-
titioning, a novel generalization of an optimization for AllDifferent [6]. With
EGCC dynamic partitioning was 1.56 times faster on average, with a maximum
of 5.6 times. The largest gains were seen on the most difficult instances where
the solver timed out. The gain for EGCC is less pronounced than for AllDiffer-
ent [6], albeit on entirely different benchmarks, and with a different combination
of other optimizations.

For the best combination of optimizations, I found a mean improvement of
more than 4 times in runtime over a careful but unoptimized implementation
of Régin’s algorithm. This confirms that optimizations are an essential part of
a practical implementation of EGCC.

45



Regarding the cardinality variables, I was able to confirm that the implied
sum constraint used by Gecode is indeed valuable, and also that the stronger
flow-based pruning algorithm given by Quimper et al [18] can also be valuable,
since it solves more instances within a time limit than either other method.

Finally, a fast variant of EGCC is typically orders of magnitude better than a
set of occurrence constraints. Even when EGCC propagation was not effective,
it slowed the solver down by only 1.66 times or less in the experiments.
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