
Peter Nightingale, Ian P. Gent, Peter Nightingale, Ian P. Gent,

Chris Jefferson and Ian Miguel

Constraints, GAC
� Suppose we have finite-domain variables x1, x2, x3 with

domains x1:{1,..,11}, x2, x3:{1,..,10}

� Constraint: (x1 = x2 OR x1 = x3)

� Generalised Arc-Consistency (GAC) requires that each � Generalised Arc-Consistency (GAC) requires that each
value of each variable is contained in a satisfying tuple
of the constraint

� To establish GAC: x1 ≠ 11

Support
� Suppose we have finite-domain variables x1, x2, x3 with

domains x1:{1,..,11}, x2, x3:{1,..,10}

� Constraint: (x1 = x2 OR x1 = x3)

� Traditional definition of GAC support: a satisfying � Traditional definition of GAC support: a satisfying
tuple of the constraint

� Value x1→11 has no support, and is deleted

� Value x1→1 is not deleted because it has support 〈1, 1, 3〉
(for example).

Short Support
� The key idea of this paper:

� A constraint may be satisfied by an assignment to a
small subset of its variables

� We re-define support as short support� We re-define support as short support

� Exploit these short supports to maintain GAC faster

� The novel aspect is not really the idea of short support,
but the algorithm

Short Support – Example
� Consider the running example again

� Domains x1:{1,..,11}, x2, x3:{1,..,10}

� Constraint: (x1 = x2 OR x1 = x3)

Short support: (x → 1, x → 1)� Short support: (x1 → 1, x2→ 1)

� Any extension of this short support to cover x3 is a full-
length support

� Assuming we always use values in the domain

� Supports x1 → 1, x2 → 1, and all values of x3

Short Support – Explicit and

Implicit
� Consider the running example again

� Domains x1:{1,..,11}, x2, x3:{1,..,10}

� Constraint: (x1 = x2 OR x1 = x3)

Short support: (x → 1, x → 1)� Short support: (x1 → 1, x2 → 1)

� Explicitly supports x1 → 1, x2 → 1

� Implicitly supports all values of x3

SHORTGAC
� A new GAC algorithm

� Designed around implicit support:

� Never spends any time finding new supports for a
variable that is implicitly supportedvariable that is implicitly supported

� Exploits watched literals:

� The algorithm is not invoked unless a short support has
been lost

� O(0) for other value deletions

� Can simulate watched-literal unit propagation (not very
quickly)

SHORTGAC
� Like GAC-Schema, can be instantiated in different

ways

� Generic:

� List – a list of short supports is given� List – a list of short supports is given

� Constraint specific:

� Lex-ordering

� Element

� Square Packing

Just Another Table Constraint?

�¡No! (translation: No!)�¡No!
� SHORTGAC competes with:

� Special-purpose propagators such as Element, Lex

� Constructive Or

� Aim to be orders of magnitude faster than table
constraints

� When short supports are available

The Natural Habitat of a Short

Support
� Short supports are disjunctive

� Each literal may be supported by S1 or S2 or ….

� They arise typically from a disjunction

The running example: (x = x or x = x)� The running example: (x1 = x2 or x1 = x3)

� 2d short supports of size 2

� Therefore we compare SHORTGAC to Constructive Or

� A careful incremental implementation similar to Würtz
and Müller

Case Study 1: Element
� Element constraint X[y]=z for a vector X, index

variable y and result variable z

� (y=0 and X[0]=z) or (y=1 and X[1]=z) or …

� d2 short supports of size 3� d2 short supports of size 3

Case Study 1: Element
� SHORTGAC closely mimics the state-of-the-art

Watched Element propagator

� Because of watched literals, SHORTGAC is called only
when Watched Element is calledwhen Watched Element is called

� Same short supports as Watched Element uses implicitly

� However, SHORTGAC does more work when called

� Does not go straight to value that lost explicit support – see
future work

Case Study 1: Element
� Order by speed:

� Watched Element 8.2

� SHORTGAC with Element 1 (normalised)

� SHORTGAC with List 0.57� SHORTGAC with List 0.57

� Constructive Or 0.0042

� GAC-Schema 0.0011

� SHORTGAC with full-length 0.0004

� Huge separation between short supports and the rest

� All methods explore the same search tree

Case Study 2: Lex
� Lex-ordering constraint between two vectors of

variables X and Y

� Ensures that X comes before Y in dictionary order

� aardvark<apple� aardvark<apple

� X[1]<Y[1] or (X[1]=Y[1] and X[2]<Y[2]) or …

Case Study 2: Lex
� Order by speed:

� GACLex propagator 1.74

� SHORTGAC with Lex 1

� Constructive Or 0.0045� Constructive Or 0.0045

� GAC-Schema 0.0036

� SHORTGAC with full-length 0.0033

� Again, huge separation between short supports /
special-purpose propagator and the rest

� SHORTGAC very close to special-purpose state-of-the-
art propagator

Case Study 3: Square Packing
� Squares to be packed into rectangle

� Squares represented by coordinates of corner

� Non-overlap (arity 4) constraint: does not overlap in x-
or y-dimensionor y-dimension

x

y Constraint satisfied
because:
xa + Widtha ≤ xb

(xa, ya) (xb, yb)

Case Study 3: Square Packing
� Order by speed:

� SHORTGAC with SquarePacking 1

� GAC-Schema 0.11

� SHORTGAC with List 0.11� SHORTGAC with List 0.11

� SHORTGAC with full-length 0.035

� Constructive Or 0.023

� Smaller separation between short supports and the rest

� Possibly because constraint only arity 4

� Implicit support covers at most 2 variables

Future (Current) Work
� SHORTGAC poor against GAC-Schema on full-length

supports

� SHORTGAC very poor at finding a literal that lost its last
explicit supportexplicit support

� We have improved this in a new algorithm

� SHORTGAC backtracks all its data structures

� In many cases short supports are backtrack-stable

� This is exploited in a second new algorithm

Conclusions
� SHORTGAC, a new generic GAC algorithm

� Exploits idea of short support, implicit in some
special-purpose propagators

� Faster than Constructive Or, GAC-Schema in our � Faster than Constructive Or, GAC-Schema in our
experiments, approaches special-purpose propagators

