Constraints — What Are They?

A constraint is a relation among a set of variables. We
consider only finite-domain variables — ie each variable
has a finite set of values.

Consider the square packing problem in case study 3.
Each square is represented with two variables for the
position of a corner, and we have a non-overlap
constraint:

(xa, ya) (xb, yb)
| / Constraint satisfied
[because:
- xa + Widtha < xb

X

We are interested in solving constraint satisfaction
problems. This involves finding an assignment to each
variable such that all constraints are satisfied. This is
typically done by:

e Search - trying out assignments and backtracking if
they do not lead to a solution

e Propagation — reasoning on the constraints to
remove values from variable domains, when they
cannot take part in any solution

Propagation and Support

Constraint propagation algorithms filter values out of
variable domains when the values cannot be part of a
global solution. For example, consider the following
less-than constraint:

Before propagation: After propagation:

X < y X < y
3 3 — 3
2 2 2 2
1 1 1 1
0 0 0 =g

Because of the constraint, value 3 of x and value O of y
cannot take part in any solution, so they are deleted.

Support

If a value is contained in a satisfying assignment for
the constraint (eg x=2, y=3 for <) then it is not
deleted, and we call the satisfying assignment a
support for the value. This concept of support is
pervasive in propagation algorithms.

Some supports in green:
X <Yy
—— 3
2 ;
1 1
0 o

University of St Andrews
School of Computer Science

EPSRC

Ploneering research
and skills

Short Supports

The key concept for this paper is short supports.
Some constraints can be satisfied by assigning only a
few of their variables — after the assignment, the
constraint doesn't care about the values of the rest. A
short assignment that satisfies the constraint is called
a short support.

A conventional support will only support the values
contained in it. A short support will support all values
of any variable not mentioned in it. For example:

Domains x1:{1,..,11}, x2, x3:{1,..,10}
Constraint: (x1 = x2 OR x1 = x3)
Short support S: (x1 - 1,x2 > 1)

S supports x1 = 1, x2 = 1 and all values of
x3

We use short supports to develop a new, much more
efficient propagation algorithm called ShortGAC.

Explicit and Implicit Support

S supports x1 = 1, x2 = 1 explicitly
S supports all values of x3 implicitly

ShortGAC is designed to handle implicit support very
efficiently.

Exploiting Short Supports for
Generalised Arc Consistency
for Arbitrary Constraints

Peter Nightingale, Ian P Gent, Chris Jefferson and Ian Miguel

The ShortGAC Algorithm

Consider, for example, the Element constraint
Element([x[0], x[1], x[2]1], v, 2)

With the variables x[0], x[1], x[2], y € {0,..,2}, 2 €
{0,..,3}.

This constraint is satisfied iff x[y] =z, the value of the
x variable indexed by y is equal to the value of z.

Suppose we have found one short support, A. The
major data structures are as follows:

Supports: | A: ax9o—1,y—0,z—1

supportListPerLit: Variable
Value | xo

ShortGAC with Element instantiation

Constructive Or

Just Another Table Constraint?

There is already a lot of research on
propagating table constraints efficiently. Is
this just another table propagator?

No — ShortGAC is much more efficient than
a generic table constraint when short
supports are available.

The aim is to compete with special-purpose
propagators, and other approaches such as
Constructive Or.

For all three of the case studies, the
constraint can be naturally represented as a
disjunction of simpler constraints. Hence it
is natural to compare ShortGAC with
Constructive Or. In each case, ShortGAC is
much faster.

L1) Y Z
01 v U U A U
L4y o U U 4
R U S C R

3| X X X X {}
supportsPerVar: 1 0 0 1 1

numSupports: 1

supportListPerLit has a linked list of short supports
for each variable and value.

supportsPerVar has a counter for each variable,
indicating how many short supports mention the
variable.

numSupports is the number of short supports
currently known to the algorithm.

If supportsPerVar[w] <numSupports, then:
* there is a short support not containing w
 all values of w are implicitly supported

» variable w can be completely ignored

Variables x[1] and x[2] can be ignored in the current
state.

There is no short support that supports z = 4, so this

value is deleted. When the algorithm has a full set of

short supports (ie all remaining values are supported)
the data structures look like this:

ShortGAC with Lex instantiation

GAC-Schema

Supports: | A: ro— 1L,y—0,2—1
B: r1— 0, y— 1,20
OF ro+— 2,y — 0,2 — 2
D: ro— 0,y +— 2,20
supportListPerLit: Variable
Value | o 1 T2 Y 2z

01 + By Dy {4,Cp {B,Dj
LAy 0 U 1B 147
21¢r Ay 4y D} 105

31 X X X X X

supportsPer Var: 2 1 1 4 4
numSupports: 4
Acknowledgements

We would like to thank anonymous reviewers for their
comments, and EPSRC for funding this work through
grants EP/H004092/1 and EP/E030394/1.

	Slide 1

