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Abstract 
Building fast and accurate classifiers for large-scale 

databases is an important task in data mining. There is 
growing evidence that integrating classification and 
association rule mining together can produce more 
efficient and accurate classifiers than traditional 
classification techniques. In this paper, the problem of 
producing rules with multiple labels is investigated. We 
propose a new associative classification approach called 
multi-class, multi-label associative classification 
(MMAC).  This paper also presents three measures for 
evaluating the accuracy of data mining classification 
approaches to a wide range of traditional and multi-
label classification problems. Results for 28 different 
datasets show that the MMAC approach is an accurate 
and effective classification technique, highly competitive 
and scalable in comparison with other classification 
approaches. 

 
     

1. Introduction 
 
Classification is a well-known task in data mining 

that aims to predict the class of an unseen instance as 
accurately as possible. While single label classification, 
which assigns each rule in the classifier the most obvious 
label, has been widely studied [9, 11, 13, 18], little work 
has been done on multi-label classification.  Most of the 
work to date on multi-label classification is related to 
text categorisation [10, 15]. There are many approaches 
for building single class classifiers from data, such as 
divide-and-conquer [14] and separate-and-conquer [8]. 
Most traditional learning techniques derived from these 
approaches, such as decision trees [7, 13], and statistical 
and covering algorithms [11], are unable to treat 
problems with multiple labels.  

The most common multi-label classification 
approach is one-versus-the rest (OvR) [17], which 
constructs a set of binary classifiers obtained by training 
on each possible class versus all the rest. OvR approach 
performs the winner-take-all strategy that assigns a real 
value for each class to indicate the class membership.  

Another known approach in multi-label classification 
is one-versus-one (OvO) [15], which constructs a 
classifier that has been trained on each possible pair of 
classes. For K classes, this results in (K-1) K/2 binary 
classifiers, which may be problematic if K is large. On 
the other hand, the OvR approach has been criticised for 
training on several separate classification problems, 
since each class can easily be separated from the rest, 
and therefore problems a rise, like contradictory 
decisions, i.e. whenever two or more rules predict the 
test instance, and no decision, i.e. whenever none of the 
resulting rules can predict the test instance [6]. 

Another important task in data mining is the 
discovery of all association rules in data. Classification 
and association rule discovery are similar, except that 
there is only one target to predict in classification, i.e., 
the class, while association rule can predict any attribute 
in the data. In recent years, a new approach that 
integrates association rule with classification, named 
associative classification, has been proposed [9, 12]. A 
few accurate classifiers that use associative classification 
have been presented in the past few years, such as CBA 
[12], CMAR [9], and CPAR [18].  

In existing associative classification techniques, only 
one class label is associated with each rule derived, and 
thus rules are not suitable for the prediction of multiple 
labels. However, multi-label classification may often be 
useful in practise. Consider for example, a document 
which has two class labels “Health” and “Government”, 
and assume that the document is associated 50 times 
with the “Health” label and 48 times with the 
“Government” label, and the number of times the 
document appears in the training data is 98. A traditional 
associative technique like CBA generates the rule 
associated with the “Health” label simply because it has 
a larger representation, and discards the other rule. 
However, it is very useful to generate the other rule, 
since it brings up useful knowledge having a large 
representation in the training data, and thus could take a 
role in classification. In this paper, a novel approach for 
multi-class and multi-label classification, named multi-
class, multi-label associative classification (MMAC), is 
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introduced. It assumes that for each instance that passes 
certain thresholds, there is a rule associated with not only 
the most obvious class, but with the second, third,…, kth 
possible class label. Three evaluation methods are 
presented in this research paper in order to evaluate 
classifiers derived by MMAC on different application 
themes, and compare them to other approaches. 

The multi-label classification problem is introduced 
in Section 2. Basic concepts of association rule and 
associative classification are discussed in Section 3. The 
MMAC approach and our methods for evaluation of 
traditional and multi-label classifiers are presented in 
Section 4, and the experimental results are given in 
Section 5. Finally the conclusions are presented in 
Section 6. 
 
2. Multi-label Classification  

 
Most of the research conducted on classification in 

data mining has been devoted to single label problems. A 
traditional classification problem can be defined as 
follows: let D denote the domain of possible training 
instances and Y be a list of class labels, let H denote the 
set of classifiers for YD → , each instance d e D is 
assigned a single class y that belongs to Y. The goal is to 
find a classifier h e H that maximises the probability that 
h(d) = y for each test case (d, y). In multi-label problems, 
however, each instance d e D can be assigned multiple 
labels y1, y2, …, yk  for yi e y, and is represented as a 
pair (d, (y1, y2, …, yk )) where (y1, y2, …, yk )is a list of 
ranked class labels from y associated with the instance d 
in the training data.  
 
3. Classification Based on Association Rule 
 
3.1 Frequent Items, Support and 
Confidence  

 
Let T be the training data with n attributes A1, A2, … 

, An and C is a list of class labels. A particular value for 
attribute Ai will be denoted ai, and the class labels of C 
are denoted cj. 
Definition 1: An item is defined by the association of 
an attribute and its value (Ai, ai), or a combination of 
between 1 and n different attributes values, e.g. < (A1, 
a1)>, < (A1, a1), (A2, a2)>, (A1, a1), (A2, a2), (A3, a3)>, 
… etc. 
Definition 2: A rule r for multi-label classification is 
represented in the form: 

imiimimiiii cccaAaAaA ∨∨∨→∧∧∧ ...),(...),(),( 2112211
  

where the condition of the rule is an item and the 
consequent is a list of ranked class labels.  
Definition 3: The actual occurrence (ActOccr) of a rule 
r in T is the number of cases in T that match r’s 
condition. 

Definition 4: The support count (SuppCount) of r is the 
number of cases in T that matches r’s condition, and 
belong to a class ci. When the item is associated with 
multiple labels, there should be a different SuppCount 
for each label.  
Definition 5: A rule r passes the minimum support 
threshold (MinSupp) if for r, the SuppCount(r)/ |T| ≥ 
MinSupp, where |T| is the number of instances in T. 
Definition 6: A rule r passes the minimum confidence 
threshold (MinConf) if SuppCount(r)/ActOccr(r) ≥ 
MinConf. 
Definition 7: Any item in T that passes the MinSupp is 
said to be a frequent item. 
 
3.2 Associative Classification 

 
Generally, in association rule mining, any item that 

passes MinSupp is known as a frequent item. If the 
frequent item consists of only a single value, i.e. items < 
(A1, x1)>, < (A1, x2)> and < (A2, y1)> in Table 1, it is 
said to be a frequent single item. The frequent single 
items are inputs to the process of finding possible 
frequent pairs of items, the frequent pairs of items are 
input to discover frequent triples of items, and so on. 
Associative classification techniques generate frequent 
items by making multiple passes over the training data. 
In the first pass, they count the support of single items 
and determine whether it is frequent, and then in each 
subsequent pass, they start with items found to be 
frequent in the previous pass in order to produce new 
possible frequent items. 

 After frequent items have been discovered, 
associative classification methods derive a complete set 
of class-association-rules (CAR) for those frequent items 
that pass MinConf. These kinds of techniques are often 
called confidence-based methods, since they generate 
only the most obvious class per association rule. One of 
the first algorithms to bring up the idea of using an 
association rule for classification was proposed in [12]. 
It has been named CBA. 
It consists of two main 
phases; phase one 
implements the famous 
Apriori algorithm [2] in 
order to discover 
frequent items. Phase two 
involves building the 
classifier. Experimental 
results indicated that 
CBA produced classifiers 
which are competitive to 
popular learning methods 
like decision trees [13].  

 
 
 

Table 1. Training data 1 
RowIds A1 A2 Single 

Class 
1 x1 y1 c1 

2 x1 y2 c2 

3 x1 y1 c2 

4 x1 y2 c1 

5 x2 y1 c2 

6 x2 y1 c1 

7 x2 y3 c2 

8 x1 y3 c1 

9 x2 y4 c1 

10 x3 y1 c1 
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Input: Training data, confidence and support (σ) 
thresholds  
Output: A set of multi-label rules and the 
classification accuracy 
Phase 1: 
� Scan the training data T with n columns to 

discover frequent items 
� Produce rules seti  by converting any frequent 

item that passes MinConf into a rule. 
� Rank the rules set according to (confidence, 

support, …, etc). 
� Evaluate the rules seti in order to remove 

redundant rules. 
Phase 2:  
� Discard instances Pi associated with rules seti 
� Generate new training data 

iPTT −←/  

� Repeat phase 1 on /T  until no further  
    frequent item is found 

Phase 3: 
� Merge rules sets generated at each iteration to 

produce a multi-label classifier 
� Classify test objects 

 
Figure 1. MMAC algorithm 

 

Definition 8: Given two rules, ra and rb, ra  
precedes rb if : 
1. The confidence of ra is greater than that 

of rb 
2. The confidence values of ra and rb are the 

same, but the support of ra is greater than 
that of rb 

3. The confidence and support values of ra 
and rb are the same, but ra has larger 
ActOccr than rb in the training data 

4. Both confidence and support and ActOccr 
values of ra and rb are the same, but ra has 
fewer conditions in its left hand side 
(LHS) than that of rb 

5. All above criteria are identical for  ra and 
rb, but ra was generated before  rb  

   
Figure 2. Rules ranking technique of MMAC 

  

4. MMAC 
 

Our proposed algorithm consists of three phases: 
rules generation, recursive learning and classification. In 
the first phase, it scans the training data to discover and 
generate a complete CAR. In the second phase, MMAC 
proceeds to discover more rules that pass the MinSupp 
and MinConf thresholds from the remaining unclassified 
instances, until no further frequent items can be found. 
In the third phase, the rules sets derived at each iteration 
will be merged to form a global multi-class label 
classifier that will then tested against test data. Figure 1 
represents a general description of our proposed method, 
which we will explain in more detail below.  Training 
attributes can be categorical, i.e. attributes with limited 
distinct values, or continuous, i.e., real and integer 
attributes. For categorical attributes, we assume that all 
possible values are mapped to a set of positive integers. 
At the present time, our method does not treat 
continuous attributes.  

 
4.1 Building the Classifier  

 
4.1.1 Frequent Items Discovery and Rules Generation. 
To increase the efficiency of frequent items discovery 
and rules generation, MMAC employs a new technique 
based on an intersection method that has been presented 
in [21]. We have extended their method to accomplish 
classification. Our method scans the training data once to 
count the occurrences of single items, from which it 

determines those that pass MinSupp and MinConf 
thresholds, and stores them along with their occurrences 
(rowIds) inside fast access data structures. Then, by 
intersecting the rowIds of the frequent single items 
discovered so far, we can easily obtain the possible 
remaining frequent items that involve more than one 
attribute. The rowIds for frequent single items are useful 
information, and can be used to locate items easily in the 
training data in order to obtain support and confidence 
values for rules involving more than one item.  

To clarify the picture, consider for instance frequent 
single items A and B, if we intersect the rowIds sets of A 
and B, then the resulting set should represent the tuples 
where A and B happen to be together in the training data, 
and therefore the classes associated with A^B can be 
easily located, in which the support and confidence can 
be accessed and calculated, which they will be used to 
decide whether or not A^B is a frequent item and a 
candidate rule in the classifier. Since the training data 
have been scanned once to discover and generate the 
rules, this approach is highly effective in runtime and 
storage because it does not rely on the traditional 
approach of discovering frequent items [1], which 
requires multiple scans.  

Once an item has been identified as a frequent item, 
MMAC checks whether or not it passes the MinConf 
threshold. If the item confidence is larger than MinConf, 
then it will be generated as a candidate rule in the 
classifier. Otherwise, the item will be discarded.  Thus, 
all items that survive MinConf are generated as candidate 
rules in the classifier. 
 
4.1.2 Ranking of Rules and Pruning. In order to ensure 
a subset of effective rules form the classifier, a detailed 
ranking technique, which is shown in Figure 2, is 
presented. It reduces the need for random selection and 
aims to ensure that high confidence general and detailed 
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Table 2. Training 
data  

RowId A1 A2 Class 

 1 x1 y1 c1 

2 x1 y2 c2 

3 x1 y1 c2 

4 x1 y2 c1 

5 x2 y1 c2 

6 x2 y1 c1 

7 x2 y3 c2 

8 x1 y3 c1 

9 x2 y4 c1 

 10 x3 y1 c1 

rules are kept for classification. Pruning takes place by 
discarding any item that has a support value less than the 
MinSupp, and a confidence value less than the MinConf 
threshold. Another pruning of the rules occurs in the rule 
evaluation which we will discuss in the next subsection. 

 
4.1.3 Rules Evaluation. A rule r is said to be significant 
if and only if it covers at least one training instance. 
After a set of rules is generated and ranked, an 
evaluation step takes place to test each rule in order to 
remove redundant rules. If a rule correctly classifies at 
least a single instance, then it will be marked as a 
survivor, and a good candidate rule. In addition, all 
instances correctly classified by it will be deleted from 
the training data. In the case that a rule has not classified 
any training instance, it will then be removed from the 
rules set. 
 
4.1.4 Recursive Learning. For given training instances 
D, other associative classification algorithms like CBA 
and CPAR derive a single label rules set, and form a 
default class for the remaining unclassified instances in 
D. On the other hand, the MMAC derives more than one 
rules set, and merges them to form a multi-label 
classifier. For D, the proposed method produces the first 
rules set in which each rule is associated with the most 
obvious class label. Once this rules set is generated, all 
training instances associated with it will be discarded. 
The remaining unclassified instances will then become 
new training data, say /D , and the MMAC checks 
whether there are still any more frequent items 
remaining undiscovered in /D  (rules derived from D 
which may be associated with more than one class label). 
If so, a new set of rules will be generated from /D , and 
the remaining unclassified instances in /D  will form 
new training data, and so forth. The algorithm proceeds 
with learning until no more frequent items could be 
discovered. At that stage, any remaining unclassified 
instance will form a default class. 

This process results in learning from several subsets 
of the original training data and generating few rules 
sets. Consider for example the training data shown in 
Table 2. Assume that the MinSupp and MinConf have 
been set to 20% and 40%, respectively. At the first 
iteration, MMAC 
derives a set of rules 
that covers the 
instances that are not 
underlined in Table 2, 
which eventually will 
be discarded at the end 
of the iteration. The 
remaining unclassified 
instances which are 
underlined will 
represent the new 
training data for 

iteration two, in which two more rules will be learned 
and produced to form the second rules set. When the 
learning process is finished, a merging of the rules sets 
which have been produced at iterations 1 and 2 will be 
performed to obtain a global multi-label classifier. In 
many cases, a rule will be presented in more than one 
rules set and is associated with different class labels like 
item <(A1, x1)> which has two representations in Table 
2, one with class label “c1” in rules set 1, and one with 
class label “c2” in rules set 2. A good question will be 
how one can rank the class labels in a rule to represent 
this item. 

 
4.1.5 Ranking of Class Labels. Definition 9: A class 
label l1 < l2, also known as l1, precedes l2 in a rule r if it 
has a larger representation in the training data. Consider, 
for example, an item < (A, a)(B, b)> which is associated 
with three labels (“c1”, “c2”, “c3”). Assume that it has 
100 representation in the training data in which it is 
associated with labels “c1”, “c2” and “c3”, 50, 30, and 
20 times. Moreover, assume that this item has passed 
MinSupp and MinConf thresholds when associated with 
“c1”, “c2” and “c3”. MMAC ranks these labels based on 
their number of occurrences (“c1”<“c2”<“c3”), and a 
rule will be presented for this instance in the following 
form: 321),(),( cccbBaA ∨∨→∧ .  

 
4.2 Classification 

 
In classification, let R be the set of generated rules 

and T the training data. The basic idea of the proposed 
method is to choose a set of high confidence rules in R to 
cover T. In classifying a test object, the first rule in the 
set of rules that matches the test object condition 
classifies it. This process ensures that only the highest 
ranked rules classify test objects.  

 
4.3 Comparison of MMAC and CBA 

 
CBA and MMAC were applied on the training data 

shown in Table 1 by using a MinSupp of 20% and 
MinConf of 40% to illustrate the effectiveness of the 
rules sets derived by both algorithms. Table 3a 
represents the classifier generated by CBA, which 
consists of two rules and covers 8 training instances, 
which are (1, 2, 3, 4, 5, 6, 8, 10). The remaining two 
instances form a default class rule that covers 20% of the 
entire data.  

Table 3b represents the classifier produced by 
MMAC on the same training data, in which more rules 
have been discovered, i.e. two more rules than the CBA 
classifier. The rules extracted will be then ranked and 
merged to form a multi-class label classifier in which 
some of its rules are associated with a list of ranked class 
labels.  In this particular example, there is only one rule 
derived by our proposed algorithm from Table 1 that has 
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Table 3a. CBA classifier 
RuleId Frequent 

Item 
Support Confidence Class 

Label 
1 x1 3/10 3/5 C1 
3 y1 3/10 3/5 C1 

default    C2 

 
Table 3b. MMAC classifier 

RuleId Frequent 
Item 

Support Confidence Class 
Label 

1a x1 3/10 3/5 C1 
1b x1 2/10 2/5 C2 
2 x2 2/10 2/4 C2 
3 y1 3/10 3/5 C1 

default    C1 

 
multiple labels which is 21)1,1( ccxA ∨→ . The MMAC 

classifier covers nine training instances, and the 
remaining one forms the default class. Unlike the CBA 
algorithm that was unable to produce rules with multiple 
labels, our proposed method generates rules that can 
predict multiple labels. Moreover, the default rule of 
MMAC classifier covers only 10% of the training data, 
and therefore it has less impact on the classification of 
unseen data that may significantly affect the accuracy in 
the classification, and could lead to deterioration in the 
overall error rate.  

Generally, the main differences between MMAC and 
other associative algorithms are the following: 
•  MMAC presents not only a single class classifier but 

also a multi-label one, in which each instance is 
associated with its ranked list of classes.  

• Other associative classification techniques often use 
multiple passes to discover frequent items. 
Alternatively, MMAC uses a new technique for 
discovering the rules, which requires only one scan. 

• MMAC introduces a detailed rule ranking technique 
that minimises randomisation when a choice point 
among two or more rules occurs in the rules ranking 
process. 

• The proposed method presents a recursive learning 
phase that discovers more rules, and minimises the 
role of the default class in classifying test objects.  

• Other associative techniques discover frequent items 
in one phase, and generate the rules in a separate 
phase. The proposed method discovers and generates 
rules in one phase. 

 
4.4 Evaluation Measures 

 
Since multi-label classification has been investigated 

mostly in text categorisation, there is very little work 
conducted on developing evaluation measures for its 
classifiers.  There are no standard evaluation techniques 
applicable to the multi-label classification problems. 
Moreover, the right measure is often problematic and 
depends heavily on the features of the conducted 
problem, such as those used in [3]. In this section, we 

introduce three evaluation measures suitable for the 
majority of binary, multi-class and multi-label 
classification problems.   
 
4.4.1 Top-label. This evaluation measure takes into 
consideration only the top-ranked class label and ignores 
any other labels associated with an instance. For 
traditional classification task where there is only one 
class label to assign to the test object, and given an 
instance and its associated class label <d, y>, a classifier 
H predicts a list of ranked class 

labels
k

jjjj YYYY ,...,, 21= , if the predicted first 

class label matches the true class label y of the instance, 

i.e. yYj =1
 , then the classification is correct. The top-

label method estimates how many times the top-ranked 
class label is the correct class label. So, for a set of 
single-class instances I = < (x1, y1), (x2, y2),…,(xm, ym)>, 

the top-label is ( )∑
=

=
m

j
jj yYm

1

11 , where m represents the 

number of instances. 
 
4.4.2 Any-label. This evaluation technique measures 
how many times any of the predicted labels of an 
instance matches the actual class label in all cases of that 
instance in the test data. If any of the predicted class 
labels of an instance d matches the true class label y, 

i.e. yY i
j =  , then the classification is correct. For a set 

of single-class instances I = < (x1, y1), (x2, y2),…,(xm, 

ym)>, the any-label is ( )∑
=

=
m

j
j

i
j yYm

1

1 , where m 

represents the number of instances. 
 
4.4.3 Label-weight. This technique enables each 
predicted label for an instance to play a role in 
classifying a test case based on its ranking, and therefore 
it could be considered as a multi-label evaluation 
measure. An instance may belong to several class labels, 
each one associated with it by a number of occurrences 
in the training data. Each class label can be assigned a 
weight according to how many times that label has been 
associated with the instance. Let rule rj be associated 

with a list of ranked labels
k

jjjj YYYY ,...,, 21= , 

and denote wj
k as the set of weights for Yj 

where∑
=

=
k

j

k
jw

1

1.  A classifier H is defined as 

YD → such that it assigns a weight of the correct class 

label to an instance as  
iWdH =)(  , where deD, and 

k
j

i WW ∈ . For a set of single-class instances I = < (x1, 

y1), (x2, y2),…,(xn, yn)> , the label-weight 
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Table 4. Classification accuracy of PART, 
RIPPER, CBA and MMAC 

Dataset PART RIPPER CBA MMAC 

Tic-Tac 92.58  97.54  98.60  99.29  
Contact-
lenses 83.33  75.00  66.67  79.69  

Led7 73.56 69.34  72.39  73.20  
Breast-
cancer 71.32  70.97  68.18  72.10  

Weather 57.14  64.28  85.00  71.66  

Heart-c 81.18  79.53  78.54  81.51  

Heart-s 78.57  78.23  71.20  82.45  

Lymph 76.35  77.70  74.43  82.20  

Mushroom 99.81 99.90  98.92  99.78  
primary-
tumor 39.52  36.28  36.49  43.92  

Vote 87.81  87.35  87.39  89.21  

CRX 84.92  84.92  86.75  86.47  

Sick 93.90  93.84  93.88  93.78  
Balance-

scale 77.28  71.68  74.58  86.10  

Autos 61.64  56.09  35.79  67.47  

Breast-w 93.84  95.42  94.68  97.26  

Hypothyroid 92.28 92.28  92.29  92.23  

zoo 91.08  85.14  83.18  96.15  

kr-vs-kp 71.93 70.24  42.95  68.75 
 

is ( )∑
=

m

k
ii

i ydHw
m 1

),((*
1 δ  , where 

⎭
⎬
⎫

⎩
⎨
⎧

≠
=

=
yxif

yxif
yx

0

1
),(δ . 

For example, if an item (A ,a) is associated with class 
labels “c1”, “c2” and “c3”,  7, 5  and 3 times, 
respectively, in the training data. Each class label will be 
assigned a weight, i.e. 7/15, 5/15, and 3/15, respectively, 
for labels “c1”, “c2” and “c3”. This technique assigns 
the predicted class label weight to the case if the 
predicted class label matches the case class label. For 
instance if label “c2” of item (A, a) matches a case in the 
test data that has “c2” as its class, then the case will be 
considered a hit, and 5/15 will be assigned to the case.  

 
5. Experimental Results 

 
We investigated our approach against 19 different 

datasets from [20] as well as a different datasets for 
forecasting the behaviour of an optimisation heuristic 
within a hyperheuristic framework [5, 16]. Stratified ten-
fold cross-validation was used to derive the classifiers 
and error rates in the experiments. Cross-validation is a 
standard evaluation measure for calculating error rate on 
data in machine learning. Three popular classification 
techniques a decision tree rule (PART), RIPPER and 
CBA have been compared to MMAC in terms of 
classification accuracy, in order to evaluate the 
predictive power of the proposed method.  

The choice of such learning methods is based on the 
different strategies they use to generate the rules. Since 
the chosen techniques are only suitable for traditional 
classification problems where there is only one class 
assigned to each training instance, we therefore used 
classification accuracy derived by only the top-label 
evaluation measure for fair comparison.  

All experiments were conducted on a Pentium IV 1.6 
GH PC.  The experiments of PART and RIPPER were 
conducted using the Weka software system [20]. Weka 
stands for Waikato Environment for Knowledge 
Analysis. It is an open java source code for the machine 
teaching community that includes implementations of 
different methods for several different data mining tasks 
such as classification, clustering, association rule and 
regression. CBA experiments were conducted using a 
VC++ implementation version provided by [19]. Finally, 
MMAC was implemented using Java. 

We have evaluated 19 selected datasets from Weka 
data collection [20], in which, a few of them (6) were 
reduced by ignoring their integer and/or real attributes. 
Several tests using ten-fold cross-validation have been 
performed to ensure that the removal of any real/integer 
attributes from some of the datasets does not 
significantly affect the classification accuracy. To do so, 
we only considered datasets where the error rate was not 

more than 6% worse than the error rate obtained on the 
same dataset before the removal of any real/integer 
attributes.  Thus, the ignored attributes do not impact on 
the error rate too significantly.  

Many studies have shown that the support threshold 
plays a major role in the overall classification accuracy 
of the set of rules produced by existing associative 
classification techniques [9, 12]. Moreover, the support 
value has a larger impact on the number of rules 
produced in the classifier and the processing time and 
storage needed during the algorithm rules discovery and 
generation. From our experiments, we noticed that the 
support rates that ranged between 2% to 5% usually 
achieve the best balance between accuracy rates and the 
size of the resulted classifiers. Moreover, the classifiers 
derived when the support was set to 2% and 3% 
achieved high accuracy, and most often better than that 
of decision trees rule (PART), RIPPER and CBA. Thus, 
the MinSupp was set to 3% in the experiments. The 
confidence threshold, on the other hand, is less complex 
and does not have a large effect on the behaviour of any 
associative classification method as support value, and 
thus it has been set to 30%.  

Table 4 represents the classification rate of the 
classifiers generated by PART, RIPPER, CBA and 
MMAC against 19 benchmark problems from Weka data 
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Figure 3a. Difference of accuracy between  
MMAC evaluation measures and CBA   
algorithm. 
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collection. The accuracy of MMAC has been derived 
using the top-label evaluation measure. Our algorithm 
outperforms the rule learning methods in terms of 
accuracy rate, and the won-loss-tied records of MMAC 
against PART, RIPPER and CBA 13-6-0, 15-4-0 and 15-
4-0, respectively.  

The evaluation measures of MMAC have been 
compared on 9 solution runs produced by the Peckish 
hyperheuristic [5] with regard to accuracy, and number 
of rules produced. Figures 3a and 3b represent the 
relative prediction accuracy that indicates the difference 
of the classification accuracy of MMAC evaluation 
measures with respect to those derived by CBA and 
PART, respectively. In other words, how much better or 
worse MMAC measures perform with respect to CBA 
and PART learning methods. The relative prediction 
accuracy numbers shown in Figures 3a and 3b are 
conducted using the formula 

PART

PARTMMAC

Accuracy

AccuracyAccuracy )( −  and 

CBA

CBAMMAC

Accuracy

AccuracyAccuracy )( −  respectively. After 

analysing the charts, we found out that there is 
consistency between the top-label and label-weight 
measures, since both of them consider only one class in 
the prediction. The top-label takes into account the top-
ranked class, and the label-weight considers only the 
weight for the predicted class that matches the test case. 
Thus, both of these evaluation measures are applicable to 
traditional single-class classification problems. On the 
other hand, the any-label measure considers any class in 
the set of the predicted classes as a hit whenever it 
matches the predicted class regardless of its weight or 
rank. Is should be noted that, the relative accuracy of 
MMAC evaluation methods against dataset number 8 in 
Figure 3a and 3b, is negative since CBA and PART 
achieved a higher classification rate against this 
particular dataset. 

A comparison of the knowledge representation 
produced by our method, PART and CBA has been 
conducted to evaluate the effectiveness of the set of rules 
derived. Figure 4 represents the classifiers generated 
form the hyperheuristic datasets. Analysis of the rules 
sets indicated that MMAC derives a few more rules than 
PART and CBA for the majority of the datasets. In 
particular, the proposed method produced more rules 
than PART and CBA on 8 and 7 datasets, respectively. A 
possible reason for extracting more rules is based on the 
recursive learning phase that MMAC employs to 
discover more hidden information that most of the 
associative classification techniques discard, since they 
only extract the highest confidence rule for each frequent 
item that survives MinConf.  
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6. Conclusions 
 
A new approach for multi-class, and multi-label  

classification has been proposed that has many 
distinguishing features over traditional and associative 
classification methods in that it (1) produces classifiers 
that contain rules with multiple labels, (2) presents three 
evaluation measures for evaluating accuracy rate, (3) 
employs a new method of discovering the rules that 
require only one scan over the training data, (4) 
introduces a ranking technique which prunes redundant 
rules, and ensures only high effective ones are used for 
classification, and (5)  integrates frequent items set 
discovery and rules generation in one phase to conserve 
less storage and runtime. Performance studies on 19 
datasets from Weka data collection and 9 hyperheuristic 
scheduling runs indicated that our proposed approach is 
effective, consistent and has a higher classification rate 
than the-state-of-the-art decision tree rule (PART), CBA 
and RIPPER algorithms. In further work, we anticipate 
extending the method to treat continuous data and 
creating a hyperheuristic approach to learn “on the fly” 
which low-level heuristic method is the most effective. 
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