
 1

MMAC: A New Multi-class, Multi-label Associative Classification Approach

Fadi A. Thabtah
Modelling Optimisation

Scheduling And Intelligent
Computing Research Centre
Fabdelja@bradford.ac.uk

 Peter Cowling
Modelling Optimisation

Scheduling And Intelligent
Computing Research Centre
P.i.Cowling@bradford.ac.uk

Yonghong Peng
Department of Computing,

University of Bradford, BD7
1DP, UK

Y.h.Peng@bradford.ac.uk

Abstract
Building fast and accurate classifiers for large-scale

databases is an important task in data mining. There is
growing evidence that integrating classification and
association rule mining together can produce more
efficient and accurate classifiers than traditional
classification techniques. In this paper, the problem of
producing rules with multiple labels is investigated. We
propose a new associative classification approach called
multi-class, multi-label associative classification
(MMAC). This paper also presents three measures for
evaluating the accuracy of data mining classification
approaches to a wide range of traditional and multi-
label classification problems. Results for 28 different
datasets show that the MMAC approach is an accurate
and effective classification technique, highly competitive
and scalable in comparison with other classification
approaches.

1. Introduction

Classification is a well-known task in data mining

that aims to predict the class of an unseen instance as
accurately as possible. While single label classification,
which assigns each rule in the classifier the most obvious
label, has been widely studied [9, 11, 13, 18], little work
has been done on multi-label classification. Most of the
work to date on multi-label classification is related to
text categorisation [10, 15]. There are many approaches
for building single class classifiers from data, such as
divide-and-conquer [14] and separate-and-conquer [8].
Most traditional learning techniques derived from these
approaches, such as decision trees [7, 13], and statistical
and covering algorithms [11], are unable to treat
problems with multiple labels.

The most common multi-label classification
approach is one-versus-the rest (OvR) [17], which
constructs a set of binary classifiers obtained by training
on each possible class versus all the rest. OvR approach
performs the winner-take-all strategy that assigns a real
value for each class to indicate the class membership.

Another known approach in multi-label classification
is one-versus-one (OvO) [15], which constructs a
classifier that has been trained on each possible pair of
classes. For K classes, this results in (K-1) K/2 binary
classifiers, which may be problematic if K is large. On
the other hand, the OvR approach has been criticised for
training on several separate classification problems,
since each class can easily be separated from the rest,
and therefore problems a rise, like contradictory
decisions, i.e. whenever two or more rules predict the
test instance, and no decision, i.e. whenever none of the
resulting rules can predict the test instance [6].

Another important task in data mining is the
discovery of all association rules in data. Classification
and association rule discovery are similar, except that
there is only one target to predict in classification, i.e.,
the class, while association rule can predict any attribute
in the data. In recent years, a new approach that
integrates association rule with classification, named
associative classification, has been proposed [9, 12]. A
few accurate classifiers that use associative classification
have been presented in the past few years, such as CBA
[12], CMAR [9], and CPAR [18].

In existing associative classification techniques, only
one class label is associated with each rule derived, and
thus rules are not suitable for the prediction of multiple
labels. However, multi-label classification may often be
useful in practise. Consider for example, a document
which has two class labels “Health” and “Government”,
and assume that the document is associated 50 times
with the “Health” label and 48 times with the
“Government” label, and the number of times the
document appears in the training data is 98. A traditional
associative technique like CBA generates the rule
associated with the “Health” label simply because it has
a larger representation, and discards the other rule.
However, it is very useful to generate the other rule,
since it brings up useful knowledge having a large
representation in the training data, and thus could take a
role in classification. In this paper, a novel approach for
multi-class and multi-label classification, named multi-
class, multi-label associative classification (MMAC), is

 2

introduced. It assumes that for each instance that passes
certain thresholds, there is a rule associated with not only
the most obvious class, but with the second, third,…, kth
possible class label. Three evaluation methods are
presented in this research paper in order to evaluate
classifiers derived by MMAC on different application
themes, and compare them to other approaches.

The multi-label classification problem is introduced
in Section 2. Basic concepts of association rule and
associative classification are discussed in Section 3. The
MMAC approach and our methods for evaluation of
traditional and multi-label classifiers are presented in
Section 4, and the experimental results are given in
Section 5. Finally the conclusions are presented in
Section 6.

2. Multi-label Classification

Most of the research conducted on classification in

data mining has been devoted to single label problems. A
traditional classification problem can be defined as
follows: let D denote the domain of possible training
instances and Y be a list of class labels, let H denote the
set of classifiers for YD → , each instance d e D is
assigned a single class y that belongs to Y. The goal is to
find a classifier h e H that maximises the probability that
h(d) = y for each test case (d, y). In multi-label problems,
however, each instance d e D can be assigned multiple
labels y1, y2, …, yk for yi e y, and is represented as a
pair (d, (y1, y2, …, yk)) where (y1, y2, …, yk)is a list of
ranked class labels from y associated with the instance d
in the training data.

3. Classification Based on Association Rule

3.1 Frequent Items, Support and
Confidence

Let T be the training data with n attributes A1, A2, …

, An and C is a list of class labels. A particular value for
attribute Ai will be denoted ai, and the class labels of C
are denoted cj.
Definition 1: An item is defined by the association of
an attribute and its value (Ai, ai), or a combination of
between 1 and n different attributes values, e.g. < (A1,
a1)>, < (A1, a1), (A2, a2)>, (A1, a1), (A2, a2), (A3, a3)>,
… etc.
Definition 2: A rule r for multi-label classification is
represented in the form:

imiimimiiii cccaAaAaA ∨∨∨→∧∧∧ ...),(...),(),(2112211

where the condition of the rule is an item and the
consequent is a list of ranked class labels.
Definition 3: The actual occurrence (ActOccr) of a rule
r in T is the number of cases in T that match r’s
condition.

Definition 4: The support count (SuppCount) of r is the
number of cases in T that matches r’s condition, and
belong to a class ci. When the item is associated with
multiple labels, there should be a different SuppCount
for each label.
Definition 5: A rule r passes the minimum support
threshold (MinSupp) if for r, the SuppCount(r)/ |T| ≥
MinSupp, where |T| is the number of instances in T.
Definition 6: A rule r passes the minimum confidence
threshold (MinConf) if SuppCount(r)/ActOccr(r) ≥
MinConf.
Definition 7: Any item in T that passes the MinSupp is
said to be a frequent item.

3.2 Associative Classification

Generally, in association rule mining, any item that

passes MinSupp is known as a frequent item. If the
frequent item consists of only a single value, i.e. items <
(A1, x1)>, < (A1, x2)> and < (A2, y1)> in Table 1, it is
said to be a frequent single item. The frequent single
items are inputs to the process of finding possible
frequent pairs of items, the frequent pairs of items are
input to discover frequent triples of items, and so on.
Associative classification techniques generate frequent
items by making multiple passes over the training data.
In the first pass, they count the support of single items
and determine whether it is frequent, and then in each
subsequent pass, they start with items found to be
frequent in the previous pass in order to produce new
possible frequent items.

 After frequent items have been discovered,
associative classification methods derive a complete set
of class-association-rules (CAR) for those frequent items
that pass MinConf. These kinds of techniques are often
called confidence-based methods, since they generate
only the most obvious class per association rule. One of
the first algorithms to bring up the idea of using an
association rule for classification was proposed in [12].
It has been named CBA.
It consists of two main
phases; phase one
implements the famous
Apriori algorithm [2] in
order to discover
frequent items. Phase two
involves building the
classifier. Experimental
results indicated that
CBA produced classifiers
which are competitive to
popular learning methods
like decision trees [13].

Table 1. Training data 1
RowIds A1 A2 Single

Class
1 x1 y1 c1

2 x1 y2 c2

3 x1 y1 c2

4 x1 y2 c1

5 x2 y1 c2

6 x2 y1 c1

7 x2 y3 c2

8 x1 y3 c1

9 x2 y4 c1

10 x3 y1 c1

 3

Input: Training data, confidence and support (σ)
thresholds
Output: A set of multi-label rules and the
classification accuracy
Phase 1:
� Scan the training data T with n columns to

discover frequent items
� Produce rules seti by converting any frequent

item that passes MinConf into a rule.
� Rank the rules set according to (confidence,

support, …, etc).
� Evaluate the rules seti in order to remove

redundant rules.
Phase 2:
� Discard instances Pi associated with rules seti
� Generate new training data

iPTT −←/

� Repeat phase 1 on /T until no further
 frequent item is found

Phase 3:
� Merge rules sets generated at each iteration to

produce a multi-label classifier
� Classify test objects

Figure 1. MMAC algorithm

Definition 8: Given two rules, ra and rb, ra
precedes rb if :
1. The confidence of ra is greater than that

of rb
2. The confidence values of ra and rb are the

same, but the support of ra is greater than
that of rb

3. The confidence and support values of ra
and rb are the same, but ra has larger
ActOccr than rb in the training data

4. Both confidence and support and ActOccr
values of ra and rb are the same, but ra has
fewer conditions in its left hand side
(LHS) than that of rb

5. All above criteria are identical for ra and
rb, but ra was generated before rb

Figure 2. Rules ranking technique of MMAC

4. MMAC

Our proposed algorithm consists of three phases:
rules generation, recursive learning and classification. In
the first phase, it scans the training data to discover and
generate a complete CAR. In the second phase, MMAC
proceeds to discover more rules that pass the MinSupp
and MinConf thresholds from the remaining unclassified
instances, until no further frequent items can be found.
In the third phase, the rules sets derived at each iteration
will be merged to form a global multi-class label
classifier that will then tested against test data. Figure 1
represents a general description of our proposed method,
which we will explain in more detail below. Training
attributes can be categorical, i.e. attributes with limited
distinct values, or continuous, i.e., real and integer
attributes. For categorical attributes, we assume that all
possible values are mapped to a set of positive integers.
At the present time, our method does not treat
continuous attributes.

4.1 Building the Classifier

4.1.1 Frequent Items Discovery and Rules Generation.
To increase the efficiency of frequent items discovery
and rules generation, MMAC employs a new technique
based on an intersection method that has been presented
in [21]. We have extended their method to accomplish
classification. Our method scans the training data once to
count the occurrences of single items, from which it

determines those that pass MinSupp and MinConf
thresholds, and stores them along with their occurrences
(rowIds) inside fast access data structures. Then, by
intersecting the rowIds of the frequent single items
discovered so far, we can easily obtain the possible
remaining frequent items that involve more than one
attribute. The rowIds for frequent single items are useful
information, and can be used to locate items easily in the
training data in order to obtain support and confidence
values for rules involving more than one item.

To clarify the picture, consider for instance frequent
single items A and B, if we intersect the rowIds sets of A
and B, then the resulting set should represent the tuples
where A and B happen to be together in the training data,
and therefore the classes associated with A^B can be
easily located, in which the support and confidence can
be accessed and calculated, which they will be used to
decide whether or not A^B is a frequent item and a
candidate rule in the classifier. Since the training data
have been scanned once to discover and generate the
rules, this approach is highly effective in runtime and
storage because it does not rely on the traditional
approach of discovering frequent items [1], which
requires multiple scans.

Once an item has been identified as a frequent item,
MMAC checks whether or not it passes the MinConf
threshold. If the item confidence is larger than MinConf,
then it will be generated as a candidate rule in the
classifier. Otherwise, the item will be discarded. Thus,
all items that survive MinConf are generated as candidate
rules in the classifier.

4.1.2 Ranking of Rules and Pruning. In order to ensure
a subset of effective rules form the classifier, a detailed
ranking technique, which is shown in Figure 2, is
presented. It reduces the need for random selection and
aims to ensure that high confidence general and detailed

 4

Table 2. Training
data

RowId A1 A2 Class

 1 x1 y1 c1

2 x1 y2 c2

3 x1 y1 c2

4 x1 y2 c1

5 x2 y1 c2

6 x2 y1 c1

7 x2 y3 c2

8 x1 y3 c1

9 x2 y4 c1

 10 x3 y1 c1

rules are kept for classification. Pruning takes place by
discarding any item that has a support value less than the
MinSupp, and a confidence value less than the MinConf
threshold. Another pruning of the rules occurs in the rule
evaluation which we will discuss in the next subsection.

4.1.3 Rules Evaluation. A rule r is said to be significant
if and only if it covers at least one training instance.
After a set of rules is generated and ranked, an
evaluation step takes place to test each rule in order to
remove redundant rules. If a rule correctly classifies at
least a single instance, then it will be marked as a
survivor, and a good candidate rule. In addition, all
instances correctly classified by it will be deleted from
the training data. In the case that a rule has not classified
any training instance, it will then be removed from the
rules set.

4.1.4 Recursive Learning. For given training instances
D, other associative classification algorithms like CBA
and CPAR derive a single label rules set, and form a
default class for the remaining unclassified instances in
D. On the other hand, the MMAC derives more than one
rules set, and merges them to form a multi-label
classifier. For D, the proposed method produces the first
rules set in which each rule is associated with the most
obvious class label. Once this rules set is generated, all
training instances associated with it will be discarded.
The remaining unclassified instances will then become
new training data, say /D , and the MMAC checks
whether there are still any more frequent items
remaining undiscovered in /D (rules derived from D
which may be associated with more than one class label).
If so, a new set of rules will be generated from /D , and
the remaining unclassified instances in /D will form
new training data, and so forth. The algorithm proceeds
with learning until no more frequent items could be
discovered. At that stage, any remaining unclassified
instance will form a default class.

This process results in learning from several subsets
of the original training data and generating few rules
sets. Consider for example the training data shown in
Table 2. Assume that the MinSupp and MinConf have
been set to 20% and 40%, respectively. At the first
iteration, MMAC
derives a set of rules
that covers the
instances that are not
underlined in Table 2,
which eventually will
be discarded at the end
of the iteration. The
remaining unclassified
instances which are
underlined will
represent the new
training data for

iteration two, in which two more rules will be learned
and produced to form the second rules set. When the
learning process is finished, a merging of the rules sets
which have been produced at iterations 1 and 2 will be
performed to obtain a global multi-label classifier. In
many cases, a rule will be presented in more than one
rules set and is associated with different class labels like
item <(A1, x1)> which has two representations in Table
2, one with class label “c1” in rules set 1, and one with
class label “c2” in rules set 2. A good question will be
how one can rank the class labels in a rule to represent
this item.

4.1.5 Ranking of Class Labels. Definition 9: A class
label l1 < l2, also known as l1, precedes l2 in a rule r if it
has a larger representation in the training data. Consider,
for example, an item < (A, a)(B, b)> which is associated
with three labels (“c1”, “c2”, “c3”). Assume that it has
100 representation in the training data in which it is
associated with labels “c1”, “c2” and “c3”, 50, 30, and
20 times. Moreover, assume that this item has passed
MinSupp and MinConf thresholds when associated with
“c1”, “c2” and “c3”. MMAC ranks these labels based on
their number of occurrences (“c1”<“c2”<“c3”), and a
rule will be presented for this instance in the following
form: 321),(),(cccbBaA ∨∨→∧ .

4.2 Classification

In classification, let R be the set of generated rules

and T the training data. The basic idea of the proposed
method is to choose a set of high confidence rules in R to
cover T. In classifying a test object, the first rule in the
set of rules that matches the test object condition
classifies it. This process ensures that only the highest
ranked rules classify test objects.

4.3 Comparison of MMAC and CBA

CBA and MMAC were applied on the training data

shown in Table 1 by using a MinSupp of 20% and
MinConf of 40% to illustrate the effectiveness of the
rules sets derived by both algorithms. Table 3a
represents the classifier generated by CBA, which
consists of two rules and covers 8 training instances,
which are (1, 2, 3, 4, 5, 6, 8, 10). The remaining two
instances form a default class rule that covers 20% of the
entire data.

Table 3b represents the classifier produced by
MMAC on the same training data, in which more rules
have been discovered, i.e. two more rules than the CBA
classifier. The rules extracted will be then ranked and
merged to form a multi-class label classifier in which
some of its rules are associated with a list of ranked class
labels. In this particular example, there is only one rule
derived by our proposed algorithm from Table 1 that has

 5

Table 3a. CBA classifier
RuleId Frequent

Item
Support Confidence Class

Label
1 x1 3/10 3/5 C1
3 y1 3/10 3/5 C1

default C2

Table 3b. MMAC classifier

RuleId Frequent
Item

Support Confidence Class
Label

1a x1 3/10 3/5 C1
1b x1 2/10 2/5 C2
2 x2 2/10 2/4 C2
3 y1 3/10 3/5 C1

default C1

multiple labels which is 21)1,1(ccxA ∨→ . The MMAC

classifier covers nine training instances, and the
remaining one forms the default class. Unlike the CBA
algorithm that was unable to produce rules with multiple
labels, our proposed method generates rules that can
predict multiple labels. Moreover, the default rule of
MMAC classifier covers only 10% of the training data,
and therefore it has less impact on the classification of
unseen data that may significantly affect the accuracy in
the classification, and could lead to deterioration in the
overall error rate.

Generally, the main differences between MMAC and
other associative algorithms are the following:
• MMAC presents not only a single class classifier but

also a multi-label one, in which each instance is
associated with its ranked list of classes.

• Other associative classification techniques often use
multiple passes to discover frequent items.
Alternatively, MMAC uses a new technique for
discovering the rules, which requires only one scan.

• MMAC introduces a detailed rule ranking technique
that minimises randomisation when a choice point
among two or more rules occurs in the rules ranking
process.

• The proposed method presents a recursive learning
phase that discovers more rules, and minimises the
role of the default class in classifying test objects.

• Other associative techniques discover frequent items
in one phase, and generate the rules in a separate
phase. The proposed method discovers and generates
rules in one phase.

4.4 Evaluation Measures

Since multi-label classification has been investigated

mostly in text categorisation, there is very little work
conducted on developing evaluation measures for its
classifiers. There are no standard evaluation techniques
applicable to the multi-label classification problems.
Moreover, the right measure is often problematic and
depends heavily on the features of the conducted
problem, such as those used in [3]. In this section, we

introduce three evaluation measures suitable for the
majority of binary, multi-class and multi-label
classification problems.

4.4.1 Top-label. This evaluation measure takes into
consideration only the top-ranked class label and ignores
any other labels associated with an instance. For
traditional classification task where there is only one
class label to assign to the test object, and given an
instance and its associated class label <d, y>, a classifier
H predicts a list of ranked class

labels
k

jjjj YYYY ,...,, 21= , if the predicted first

class label matches the true class label y of the instance,

i.e. yYj =1
 , then the classification is correct. The top-

label method estimates how many times the top-ranked
class label is the correct class label. So, for a set of
single-class instances I = < (x1, y1), (x2, y2),…,(xm, ym)>,

the top-label is ()∑
=

=
m

j
jj yYm

1

11 , where m represents the

number of instances.

4.4.2 Any-label. This evaluation technique measures
how many times any of the predicted labels of an
instance matches the actual class label in all cases of that
instance in the test data. If any of the predicted class
labels of an instance d matches the true class label y,

i.e. yY i
j = , then the classification is correct. For a set

of single-class instances I = < (x1, y1), (x2, y2),…,(xm,

ym)>, the any-label is ()∑
=

=
m

j
j

i
j yYm

1

1 , where m

represents the number of instances.

4.4.3 Label-weight. This technique enables each
predicted label for an instance to play a role in
classifying a test case based on its ranking, and therefore
it could be considered as a multi-label evaluation
measure. An instance may belong to several class labels,
each one associated with it by a number of occurrences
in the training data. Each class label can be assigned a
weight according to how many times that label has been
associated with the instance. Let rule rj be associated

with a list of ranked labels
k

jjjj YYYY ,...,, 21= ,

and denote wj
k as the set of weights for Yj

where∑
=

=
k

j

k
jw

1

1. A classifier H is defined as

YD → such that it assigns a weight of the correct class

label to an instance as
iWdH =)(, where deD, and

k
j

i WW ∈ . For a set of single-class instances I = < (x1,

y1), (x2, y2),…,(xn, yn)> , the label-weight

 6

Table 4. Classification accuracy of PART,
RIPPER, CBA and MMAC

Dataset PART RIPPER CBA MMAC

Tic-Tac 92.58 97.54 98.60 99.29
Contact-
lenses 83.33 75.00 66.67 79.69

Led7 73.56 69.34 72.39 73.20
Breast-
cancer 71.32 70.97 68.18 72.10

Weather 57.14 64.28 85.00 71.66

Heart-c 81.18 79.53 78.54 81.51

Heart-s 78.57 78.23 71.20 82.45

Lymph 76.35 77.70 74.43 82.20

Mushroom 99.81 99.90 98.92 99.78
primary-
tumor 39.52 36.28 36.49 43.92

Vote 87.81 87.35 87.39 89.21

CRX 84.92 84.92 86.75 86.47

Sick 93.90 93.84 93.88 93.78
Balance-

scale 77.28 71.68 74.58 86.10

Autos 61.64 56.09 35.79 67.47

Breast-w 93.84 95.42 94.68 97.26

Hypothyroid 92.28 92.28 92.29 92.23

zoo 91.08 85.14 83.18 96.15

kr-vs-kp 71.93 70.24 42.95 68.75

is ()∑
=

m

k
ii

i ydHw
m 1

),((*
1 δ , where

⎭
⎬
⎫

⎩
⎨
⎧

≠
=

=
yxif

yxif
yx

0

1
),(δ .

For example, if an item (A ,a) is associated with class
labels “c1”, “c2” and “c3”, 7, 5 and 3 times,
respectively, in the training data. Each class label will be
assigned a weight, i.e. 7/15, 5/15, and 3/15, respectively,
for labels “c1”, “c2” and “c3”. This technique assigns
the predicted class label weight to the case if the
predicted class label matches the case class label. For
instance if label “c2” of item (A, a) matches a case in the
test data that has “c2” as its class, then the case will be
considered a hit, and 5/15 will be assigned to the case.

5. Experimental Results

We investigated our approach against 19 different

datasets from [20] as well as a different datasets for
forecasting the behaviour of an optimisation heuristic
within a hyperheuristic framework [5, 16]. Stratified ten-
fold cross-validation was used to derive the classifiers
and error rates in the experiments. Cross-validation is a
standard evaluation measure for calculating error rate on
data in machine learning. Three popular classification
techniques a decision tree rule (PART), RIPPER and
CBA have been compared to MMAC in terms of
classification accuracy, in order to evaluate the
predictive power of the proposed method.

The choice of such learning methods is based on the
different strategies they use to generate the rules. Since
the chosen techniques are only suitable for traditional
classification problems where there is only one class
assigned to each training instance, we therefore used
classification accuracy derived by only the top-label
evaluation measure for fair comparison.

All experiments were conducted on a Pentium IV 1.6
GH PC. The experiments of PART and RIPPER were
conducted using the Weka software system [20]. Weka
stands for Waikato Environment for Knowledge
Analysis. It is an open java source code for the machine
teaching community that includes implementations of
different methods for several different data mining tasks
such as classification, clustering, association rule and
regression. CBA experiments were conducted using a
VC++ implementation version provided by [19]. Finally,
MMAC was implemented using Java.

We have evaluated 19 selected datasets from Weka
data collection [20], in which, a few of them (6) were
reduced by ignoring their integer and/or real attributes.
Several tests using ten-fold cross-validation have been
performed to ensure that the removal of any real/integer
attributes from some of the datasets does not
significantly affect the classification accuracy. To do so,
we only considered datasets where the error rate was not

more than 6% worse than the error rate obtained on the
same dataset before the removal of any real/integer
attributes. Thus, the ignored attributes do not impact on
the error rate too significantly.

Many studies have shown that the support threshold
plays a major role in the overall classification accuracy
of the set of rules produced by existing associative
classification techniques [9, 12]. Moreover, the support
value has a larger impact on the number of rules
produced in the classifier and the processing time and
storage needed during the algorithm rules discovery and
generation. From our experiments, we noticed that the
support rates that ranged between 2% to 5% usually
achieve the best balance between accuracy rates and the
size of the resulted classifiers. Moreover, the classifiers
derived when the support was set to 2% and 3%
achieved high accuracy, and most often better than that
of decision trees rule (PART), RIPPER and CBA. Thus,
the MinSupp was set to 3% in the experiments. The
confidence threshold, on the other hand, is less complex
and does not have a large effect on the behaviour of any
associative classification method as support value, and
thus it has been set to 30%.

Table 4 represents the classification rate of the
classifiers generated by PART, RIPPER, CBA and
MMAC against 19 benchmark problems from Weka data

 7

-3 5.00%

-2 5.00%

-15.00%

-5.00%

5.00%

15.00%

2 5.00%

3 5.00%

4 5.00%

55.00%

6 5.00%

75.00%

8 5.00%

9 5.00%

1 2 3 4 5 6 7 8 9

Nine Scheduling Runs

D
if

fe
re

n
ce

 in
 A

cc
u

ra
cy

 %

CB A To p-label A ll-label A ny-label

Figure 3a. Difference of accuracy between
MMAC evaluation measures and CBA
algorithm.

-35.00%

-25.00%

-15.00%

-5.00%

5.00%

15.00%

25.00%

35.00%

45.00%

55.00%

65.00%

75.00%

85.00%

95.00%

1 2 3 4 5 6 7 8 9

Nine Scheduling Runs

D
if

fe
re

n
ce

 in
 A

cc
u

ra
cy

 %

P A RT To p-label A ll-label A ny-label

Figure 3b. Difference of accuracy between
MMAC evaluation measures and PART
algorithm.

0
2

4
6
8

10
12
14
16

18
20
22

24
26

Run1 Run2 Run3 Run4 Run5 Run6 Run7 Run8 Run9

Ten Runs Scheduling Data

N
u

m
b

er
 o

f
R

u
le

s

To p Label P A RT CB A

Figure 4. Classifier sizes of MMAC (top-
label), PART and CBA algorithms against
the scheduling data.

collection. The accuracy of MMAC has been derived
using the top-label evaluation measure. Our algorithm
outperforms the rule learning methods in terms of
accuracy rate, and the won-loss-tied records of MMAC
against PART, RIPPER and CBA 13-6-0, 15-4-0 and 15-
4-0, respectively.

The evaluation measures of MMAC have been
compared on 9 solution runs produced by the Peckish
hyperheuristic [5] with regard to accuracy, and number
of rules produced. Figures 3a and 3b represent the
relative prediction accuracy that indicates the difference
of the classification accuracy of MMAC evaluation
measures with respect to those derived by CBA and
PART, respectively. In other words, how much better or
worse MMAC measures perform with respect to CBA
and PART learning methods. The relative prediction
accuracy numbers shown in Figures 3a and 3b are
conducted using the formula

PART

PARTMMAC

Accuracy

AccuracyAccuracy)(− and

CBA

CBAMMAC

Accuracy

AccuracyAccuracy)(− respectively. After

analysing the charts, we found out that there is
consistency between the top-label and label-weight
measures, since both of them consider only one class in
the prediction. The top-label takes into account the top-
ranked class, and the label-weight considers only the
weight for the predicted class that matches the test case.
Thus, both of these evaluation measures are applicable to
traditional single-class classification problems. On the
other hand, the any-label measure considers any class in
the set of the predicted classes as a hit whenever it
matches the predicted class regardless of its weight or
rank. Is should be noted that, the relative accuracy of
MMAC evaluation methods against dataset number 8 in
Figure 3a and 3b, is negative since CBA and PART
achieved a higher classification rate against this
particular dataset.

A comparison of the knowledge representation
produced by our method, PART and CBA has been
conducted to evaluate the effectiveness of the set of rules
derived. Figure 4 represents the classifiers generated
form the hyperheuristic datasets. Analysis of the rules
sets indicated that MMAC derives a few more rules than
PART and CBA for the majority of the datasets. In
particular, the proposed method produced more rules
than PART and CBA on 8 and 7 datasets, respectively. A
possible reason for extracting more rules is based on the
recursive learning phase that MMAC employs to
discover more hidden information that most of the
associative classification techniques discard, since they
only extract the highest confidence rule for each frequent
item that survives MinConf.

 8

6. Conclusions

A new approach for multi-class, and multi-label

classification has been proposed that has many
distinguishing features over traditional and associative
classification methods in that it (1) produces classifiers
that contain rules with multiple labels, (2) presents three
evaluation measures for evaluating accuracy rate, (3)
employs a new method of discovering the rules that
require only one scan over the training data, (4)
introduces a ranking technique which prunes redundant
rules, and ensures only high effective ones are used for
classification, and (5) integrates frequent items set
discovery and rules generation in one phase to conserve
less storage and runtime. Performance studies on 19
datasets from Weka data collection and 9 hyperheuristic
scheduling runs indicated that our proposed approach is
effective, consistent and has a higher classification rate
than the-state-of-the-art decision tree rule (PART), CBA
and RIPPER algorithms. In further work, we anticipate
extending the method to treat continuous data and
creating a hyperheuristic approach to learn “on the fly”
which low-level heuristic method is the most effective.

References

[1] R. Agrawal, T. Amielinski and A. Swami. Mining

association rule between sets of items in large databases.
In Proceeding of the 1993 ACM SIGMOD International
Conference on Management of Data, Washington, DC,
May 26-28 1993, pp. 207-216.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining
association rule. In Proceeding of the 20th International
Conference on Very Large Data Bases, 1994, pp. 487 –
499.

[3] M. Boutell, X. Shen, J. Luo and C. Brown. Multi-label
semantic scene classification. Technical report 813,
Department of Computer Science, University of Rochester,
Rochester , NY 14627 & Electronic Imaging Products R &
D, Eastern Kodak Company, September 2003.

[4] A. Clare and R.D. King. Knowledge discovery in multi-
label phenotype data. In L. De Raedt and A. Siebes,
editors, PKDD01, volume 2168 of Lecture Notes in
Artificial Intelligence, Springer - Verlag, 2001, pp. 42-53.

[5] P. Cowling and K. Chakhlevitch. Hyperheuristics for
Managing a Large Collection of Low Level Heuristics to
Schedule Personnel. In Proceeding of 2003 IEEE
conference on Evolutionary Computation, Canberra,
Australia, 8-12 Dec 2003.

[6] R. Duda, P. Hart, and D. Strok. Pattern classification.
Wiley, 2001.

[7] E. Frank and I. Witten. Generating accurate rule sets
without global optimisation. In Shavlik, J., ed., Machine
Learning: In Proceedings of the Fifteenth International
Conference, Madison, Wisconsin. Morgan Kaufmann
Publishers, San Francisco, CA, pp. 144-151.

 [8] J. Furnkranz. Separate-and-conquer rule learning.
Technical Report TR-96-25, Austrian Research Institute
for Artificial Intelligence, Vienna, 1996.

[9] W. Li, J. Han and J. Pei. CMAR: Accurate and efficient
classification based on multiple class association rule. In
ICDM’01, San Jose, CA, Nov. 2001, pp. 369-376.

[10] T. Joachims. Text categorisation with Support Vector
Machines: Learning with many relevant features. In
Proceeding Tenth European Conference on Machine
Learning, 1998, pp. 137-142.

[11] T. S. Lim, W. Y. Loh and Y. S. Shih. A comparison of
prediction accuracy, complexity and training time of thirty-
three old and new classification algorithms. Machine
Learning, 39, 2000.

[12] B. Liu, W. Hsu and Y. Ma. Integrating Classification and
association rule mining. In KDD ’98, New York, NY, Aug.
1998.

[13] J.R. Quinlan. C4.5: Programs for Machine Learning. San
Mateo, CA: Morgan Kaufmann, San Francisco, 1993.

[14] J.R. Quinlan. Generating production rules from decision
trees. In Proceeding of the 10th International Joint
Conferences on Artificial Intelligence, Morgan Kaufmann,
San Francisco, 1987, pp. 304-307.

[15] R. Schapire and Y. Singer, "BoosTexter: A boosting-based
system for text categorization," Machine Learning, vol. 39,
no. 2/3, 2000, pp. 135-168.

[16] F. Thabtah, P. Cowling and Y. Peng. Comparison of
Classification techniques for a personnel scheduling
problem. In Proceeding of the 2004 International Business
Information Management Conference, Amman, July 2004.

[17]Y. Yang. An evaluation of statistical approaches to text
categorisation. Technical Report CMU-CS-97-127,
Carnegie Mellon University, April 1997.

[18] X. Yin and J. Han. CPAR: Classification based on
predictive association rule. In SDM 2003, San Francisco,
CA, May 2003.

[19]CBA:http://www.comp.nus.edu.sg/~dm2/ p_download.html
[20] Weka: Data Mining Software in Java:

http://www.cs.waikato.ac.nz/ml/weka.
[21] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New

algorithms for fast discovery of association rules. In
Proceedings of the 3rd KDD Conference, Aug. 1997,
pp.283-286.

