Correspondence Matching with Modal Clusters

Marco Carcassoni and Edwin R. Hancock *

Abstract

The modal correspondence method of Shapiro and Brady aims to match point-sets by comparing the eigenvectors of a pairwise point proximity matrix. Although elegant by means of its matrix representation, the method is notoriously susceptible to differences in the relational structure of the point-sets under consideration. In this paper we demonstrate how the method can be rendered robust to structural differences by adopting a hierarchical approach. To do this we place the modal matching problem in a probabilistic setting in which the correspondences between pairwise clusters can be used to constrain the individual point correspondences. We demonstrate the utility of the method on a number of synthetic and real world point-pattern matching problems.

Keywords: Point pattern matching, spectral graph theory, robust statistics, hierarchy.

1 Introduction

The graph spectral analysis of proximity data has proved to be an alluring yet elusive method for the tasks of correspondence matching and object recognition in computer vision. Stated simply, the aim is to find the pattern of correspondence matches between two sets of objects using the eigenvectors of an adjacency matrix or an attribute proximity matrix. The problem has draws on spectral graph theory [3] and has been extensively studied for both the abstract problem of graph-matching [19, 16], and for point pattern matching [15, 14].

*Department of Computer Science, University of York, York Y01 5DD, UK. (marco, erh@cs.york.ac.uk)
For instance, Umeyama [19] has developed an eigendecomposition method for exact graph-matching. In related work Horaud and Sossa [17] have used spectral methods for the recognition of line-drawings using immanantal polynomials for the Laplacian matrix. There have also been a number of attempts to use spectral methods for point-set matching. Scott and Longuet-Higgins [14] align point-sets by performing singular value decomposition on a point association weight matrix. This method has recently been extended by Pilu [12] who includes neighbourhood intensity correlation information into the association weight calculation. To overcome problems with the Scott and Longuet-Higgins method for large rotation angles, Shapiro and Brady [15] have reported a correspondence method which relies on measuring the similarity the eigenvectors of a Gaussian point-proximity matrix. Provided that the point-sets are of the same size, then the correspondences delivered by the Shapiro and Brady method are relatively robust to random point jitter and to affine rotations and scaling. More recent work on the spectral analysis of point-sets includes that of Sclarof and Pentland [13] and Cootes et al [4] both of which aim to develop deformable models of shape.

One of the limitations with spectral methods is that they are particularly susceptible to the effect of size difference and structural error. In other words, spectral graph theory can furnish very efficient methods for characterising exact relational structures, but soon breaks down when there are spurious nodes and edges in the graphs under study. In recent work, Luo and Hancock [9] have attempted to overcome these problems for the graph-matching problem. They have shown how the Umeyama algorithm can be rendered robust to size differences and structural differences in the edge-sets by using the statistical apparatus of the EM algorithm. It is also worth noting, that the EM algorithm has been used by a number of other authors for both rigid and non-rigid point-set matching. For instance, Cross and Hancock [5] show how relational constraints may be embedded in the algorithm and exploited to improve the accuracy of alignment and hence reduce correspondence errors. Chui and Rangarajan [2] have used deterministic annealing to control the certainty of the correspondence probabilities. However, neither of these two pieces of work uses graph-spectral information. Finally, in a recent paper [1], we have taken some steps to improving the robustness of the Shapiro and Brady [15] method to point position movement, and have overcome the problems of structural
error by resorting to an explicit alignment process based on the EM algorithm.

In this paper we take this work one step further by focussing on how the correspondence process can be rendered robust to structural differences in the point-sets without the need for explicit alignment. We adopt a hierarchical approach to the correspondence problem. The method is based on the observation that the modes of the proximity matrix can be viewed as pairwise clusters. Rather than explicitly grouping the points prior to matching, here we aim to characterise the potential groupings in an implicit or probabilistic way and to exploit their arrangement to provide constraints on the pattern of correspondences. The hierarchy hence consists of two levels. At coarse detail, or high level, we perform modal analysis to find point cluster centre correspondences. At fine detail, or low level, we use the cluster centre correspondences to constrain the individual point correspondences. Hence our method is only applicable to point sets which have a reasonably well defined cluster structure. The probabilities used to model the correspondence process are chosen heuristically rather than being modelled from first principals using an error propagation analysis for the components of the eigenvectors. Although this represents a shortcoming, the empirical results obtained are encouraging.

2 Background

In this section we review the Shapiro and Brady method for the modal matching of point-sets, and detail the main conclusions of our own recent work aimed at improving the method through a better choice of proximity matrix weighting function and a more sophisticated means of comparing the modal co-efficients [1].

We are interested in finding the correspondences between two point-sets, a model point-set \(z \) and a data point-set \(w \). Each point in the image data set is represented by an position vector co-ordinates \(w_i = (x_i, y_i)^T \), where \(i \) is the point index. In the interests of brevity we will denote the entire set of image points by \(w = \{ w_i, \forall i \in D \} \), where \(D \) is the point set. The corresponding fiducial points constituting the model are similarly represented by \(z = \{ z_j, \forall j \in M \} \) where \(M \) denotes the index-set for the model feature-points \(z_j \).

In Shapiro and Brady's original work the weighting function was the Gaussian [15]. If \(i \)
and \(\hat{i} \) are two data points, then the corresponding element of the proximity matrix is given by

\[
H_D(i, \hat{i}) = \exp\left[-\frac{1}{2s^2} ||\hat{w}^{(n)}_i - \hat{w}^{(n)}_{\hat{i}}||^2 \right]
\]

(1)

where \(s \) is the width of kernel. However, in our recent paper we have shown that alternatives to this weighting function suggested by the robust statistics literature offer better performance. In robust statistics the weight (or influence function) \(H(\eta) \) may be obtained from a potential function (or error kernel) \(\rho(\eta) \) via the relationship \(H(\eta) = \frac{1}{\eta} \frac{d\rho(\eta)}{d\eta} \) where \(\eta \) is the error residual. There are many concrete examples for the weight and potential functions including Tukey’s biweight, Huber’s error kernel and Li’s adaptive penalty functions. However, one of the most effective and flexible alternatives is the weight function that results from Green’s potential function \(\rho(\eta) = \frac{2}{\eta} \log \cosh \left(\frac{\eta}{s} \right) \) \[7\]. The function was used to generate a Markov prior for the purposes of Bayesian reconstruction of tomographic images. The \(\log \cosh \) function was adopted by Green since it is flexible and can approximate both the Gaussian and the linear potential function for suitable choices of \(s \); it may also be approximated by a piecewise polynomial and is hence related to the Huber kernel. Moreover, the potential function gives a convex energy. The weighting function corresponding to Green’s potential is

\[
H_D(i, \hat{i}) = \frac{1}{||\hat{w}^{(n)}_i - \hat{w}^{(n)}_{\hat{i}}||} \tanh\left[\frac{\pi}{s} ||\hat{w}^{(n)}_i - \hat{w}^{(n)}_{\hat{i}}|| \right]
\]

(2)

The two weighting functions given in Equations (1) and (2) are compared in Figure 1. One of the conclusions of our recent study was that the \(\tanh \) function gives a significant in the fraction of correct correspondences when the point-set is subjected to Gaussian position error.

The second contribution in our recent study \[1\] was to suggest an improved means of using the eigenvectors of the proximity matrix to compute correspondences for point-sets that are subject to jitter but are free from structural error. Consider the proximity matrix \(H_D \) for the set of data-points. Suppose that \(\lambda_i^D \) is the \(i^{th} \) eigenvalue of the matrix \(H_D \) and that \(\phi_i^D \) is the corresponding eigenvector. The modal structure of the point-sets is found by solving the eigenvalue equation \(|H_D - \lambda I| = 0 \) and the associated eigenvector equation \(H_D \phi_i^D = \lambda_i^D \phi_i^D \).

Suppose that the suffix of the eigenvectors refers to the magnitude order of the eigenvalues,
i.e. $\lambda^P_1 \geq \lambda^P_2 \geq \lambda^P_3 \geq \ldots$ etc. We concatenate the eigenvectors in this order to construct a modal matrix $\Phi_D = (\phi^P_1 | \phi^P_2 | \phi^P_3 | \ldots)$. The column index of this matrix refers to the order of the eigenvalues while the row-index is the index of the original point-set. This modal decomposition is repeated for the model point-sets to give a model-point modal matrix $\Phi_M = \left(\phi^M_1 \phi^M_2 \ldots | \phi^M_{|\mathcal{M}|} \right)$. Since the two point-sets are potentially of different size, we truncate the modes of the larger point-set. This corresponds to removing the last $||\mathcal{D}|| - ||\mathcal{M}||$ rows and columns of the larger matrix. The resulting matrix has $o = \min\{|\mathcal{D}|, |\mathcal{M}|\}$ rows and columns.

Based on the co-efficients of the modal matrices Φ_M and Φ_D, we aim to find correspondences between points. To do this we compute the probability $\zeta_{i,j}$ that the node $i \in \mathcal{D}$ matches to the node $j \in \mathcal{M}$. The node i is placed in correspondence with node j if $j = \arg \max_j \{ \zeta_{i,j'} \}$. In the remainder of this section we discuss how the correspondence probabilities $\zeta_{i,j}$ may be computed from the co-efficients of the modal matrices Φ_D and Φ_M.

Shapiro and Brady [15] find correspondences that minimise the Euclidean distance between the rows of the model matrices Φ_M and Φ_D. The correspondence probabilities are assigned according to the binary rule

$$\zeta_{i,j} = \begin{cases} 1 & \text{if } j = \arg \min_{j'} \sum_{l=1}^o ||\Phi_D(i, l) - \Phi_M(j', l)||^2, \\ 0 & \text{otherwise.} \end{cases} \quad (3)$$

To render the computation of correspondences robust to outlier measurement error, we adopted an approach in which the probabilities are computed on a component by component basis over the eigenvectors so that large component differences contribute insignificantly. The
probability that node i is in correspondence with node j is

$$
\zeta_{i,j} = \frac{\sum_{l=1}^{p} \exp \left[-\mu \| \Phi_D(i, l) - \Phi_M(j, l) \|^2 \right]}{\sum_{j' \in M} \sum_{l=1}^{p} \exp \left[-\mu \| \Phi_D(i, l) - \Phi_M(j', l) \|^2 \right]}.
$$

(4)

3 Modal Clusters

These two refinements of the Shapiro and Brady method can render the correspondence process robust to significant movements in the point positions, but does no overcome problems associated with the different size of the point-sets. However, the correspondence probabilities proved useful for performing point-set alignment using the EM algorithm. The aim in this paper, on the other hand, is to render the modal correspondence process robust to differences in point-set size due to drop-out, occlusion or contamination. To achieve this goal we adopt a hierarchical approach. The idea is to use the eigenmodes of the proximity matrix to identify pairwise clusters. Correspondence probabilities computed from the cluster centre proximity matrices are used to constrain the individual point correspondences. Our clustering process is based on an analysis of the eigenmodes of the point proximity matrix. We use the co-efficients of the first S columns of the modal matrix Φ_D to define the clusters. The set of points belonging to the cluster indexed ω_d is

$$
C^{D}_{\omega_d} = \left\{ i \left| \frac{\left| \Phi_D(i, \omega_d) \right|}{\sum_{l=1}^{S} \left| \Phi_D(i, l) \right|} > T \right\}.
$$

(5)

where T is a cluster membership threshold which in practice is set to be 0.95. Although we do not have room to discuss the sensitivity of the method to the choice of this parameter, provided that it is set close to unity, the choice does not unduly affect the performance correspondence method. The number of clusters S may be chosen using the cumulative eigenvalue ration $R_S = \sum_{i=1}^{S} \lambda_i^2$. We choose S so that $R_S > 0.95$, i.e. the clusters capture 95% of the point-set position variance.

For the cluster associated with the eigenvalue λ_i, the position-vector for the cluster centre is

$$
\xi^{D}_{i} = \frac{\sum_{l=1}^{p} \left| \Phi^{(n)}_D(i, l) \right| \textbf{w}_i}{\sum_{l=1}^{p} \left| \Phi^{(n)}_D(i, l) \right|}.
$$

(6)
From the cluster centre positions associated with the S largest eigenvalues, i.e. the first S columns of Φ_D, we use the robust weighting kernel to compute an $S \times S$ cluster centre proximity matrix

$$G_D^{\{n\}}(l,l') = \frac{1}{\|c_l^{D\{n\}} - c_{l'}^{D\{n\}}\|} \tanh \left[\frac{\pi}{s} \|c_l^{D\{n\}} - c_{l'}^{D\{n\}}\| \right].$$

(7)

Our idea is to use the modes of the $S \times S$ cluster-centre proximity matrix G_D for the purposes of matching. Accordingly, we solve the equation $\text{det}(G_D - \Lambda^D I) = 0$ to locate the eigenvalues of the modal or cluster-centre proximity matrix. The eigenvectors ψ_l, $l = 1, ..., S$ of the cluster-centre proximity matrix are found by solving the equation $G_D \psi_l^D = \Lambda^D_l \psi_l^D$. As before, these eigenvectors can be used to construct a modal-matrix for the cluster centre positions. The matrix has the eigenvectors of G_D as columns, i.e. $\Psi_D = (\psi_1^D | \psi_2^D | ... | \psi_S^D)$. This procedure is repeated to construct a second $S \times S$ cluster-centre modal matrix Ψ_M for the set of model points \mathbf{z}. Since the principal modal-clusters are selected on the magnitude-order of the associated eigenvalues, there is no need to re-order them.

For the points belonging to each cluster, we also construct a within-cluster proximity matrix. To construct this matrix we will need to relabel the points using a cluster point index which runs from 1 to $|C_{\omega_d}|$. Accordingly we let $\delta_{i\omega_d}^D$ denote the point-index assigned to the node i in the cluster ω_d. The proximity matrix for the points belonging to this cluster is denoted by F_{ω_d} and the corresponding modal matrix is $\Theta_{\omega_d}^D$. The modal matrix for the cluster indexed ω_m in the model point-set is denoted by $\Theta_{\omega_m}^M$.

4 Matching

The aim in this paper is to explore whether the additional information provided by the modal clusters can be used to improve the robustness of the matching process to point addition and dropout. We would like to compute the probability $P(i \leftrightarrow j)$, that the data-point $i \in \mathcal{D}$ is in correspondence with the model data-point $j \in \mathcal{M}$. To do this we construct a mixture model over the set of possible correspondences between the set of S modal clusters extracted from the data point positions and the model point positions. Suppose that ω_d and ω_m respectively
represent labels assigned to the modal clusters of the data and model point-sets. Applying the Bayes formula, we can write

\[P(i \leftrightarrow j) = \sum_{\omega_d=1}^{S} \sum_{\omega_m=1}^{S} P(i \leftrightarrow j|\omega_d \leftrightarrow \omega_m) P(\omega_d \leftrightarrow \omega_m) \] (8)

where \(P(i \leftrightarrow j|\omega_d \leftrightarrow \omega_m) \) represents the cluster-conditional probability that the node \(i \) belonging to the data-graph cluster \(\omega_d \) is in correspondence with the node \(j \) that belongs to the model-graph cluster \(\omega_m \). The quantity \(P(\omega_d \leftrightarrow \omega_m) \) denotes the probability that the data point-set cluster indexed \(\omega_d \) is in correspondence with the model point-set cluster indexed \(\omega_m \).

4.1 Cluster conditional correspondence probabilities

To compute the cluster-conditional point correspondence probabilities we use the modal structure of the within-cluster proximity matrices. These correspondence probabilities are computed using the method outlined in Equation (4), since as we will see later, this proves to be the most effective of the alternatives. As a result, we write

\[P(i \leftrightarrow j|\omega_d \leftrightarrow \omega_m) = \frac{\sum_{l=1}^{O_{\omega_d,\omega_m}} \exp \left[-k_w \left| \Theta^{D}_{\omega_d} (\delta^{D}_{i\omega_d}, l) - \Theta^{M}_{\omega_m} (\delta^{M}_{j\omega_m}, l) \right| \right]^2}{\sum_{j' \in M} \sum_{l=1}^{O_{\omega_d,\omega_m}} \exp \left[-k_w \left| \Theta^{D}_{\omega_d} (\delta^{D}_{i\omega_d}, l') - \Theta^{M}_{\omega_m} (\delta^{M}_{j'\omega_m}, l') \right| \right]^2} \] (9)

where \(O_{\omega_d,\omega_m} = \min[|C_{\omega_m}|, |C_{\omega_d}|] \) is the size of the smaller cluster.

4.2 Cluster Correspondence Probabilities

We have investigated two methods for computing the cluster correspondence probabilities \(P(\omega_d \leftrightarrow \omega_m) \):

- **Modal eigenvalues:** The first method used to compute the cluster-centre correspondence probabilities relies on the similarity of the normalised eigenvalues of the cluster-centre modal matrix. The probabilities are computed in the following manner

\[P(\omega_d \leftrightarrow \omega_m) = \frac{\exp \left[-k_e \left\{ \frac{|\lambda^{D}_{\omega_d}|}{\sum_{\omega_d=1}^{S} |\lambda^{D}_{\omega_d}|} - \frac{|\lambda^{M}_{\omega_m}|}{\sum_{\omega_m=1}^{S} |\lambda^{M}_{\omega_m}|} \right\}^2 \right]}{\sum_{\omega_m=1}^{S} \exp \left[-k_e \left\{ \frac{|\lambda^{D}_{\omega_d}|}{\sum_{\omega_d=1}^{S} |\lambda^{D}_{\omega_d}|} - \frac{|\lambda^{M}_{\omega_m}|}{\sum_{\omega_m=1}^{S} |\lambda^{M}_{\omega_m}|} \right\}^2 \right]}. \] (10)
• **Modal co-efficients:** The cluster centre correspondence probabilities have also been computed by performing a robust comparison of the co-efficients of the modal matrices of the cluster-centre proximity matrix. This is simply an application of the method outlined in Equation (4) to the modal co-efficients of the between-cluster proximity matrix. We therefore set

\[
P(\omega_d \leftrightarrow \omega_m) = \frac{\sum_{L=1}^{S} \exp\left[-k_b ||\Psi_D(\omega_d, L)||^2\right]}{\sum_{m=1}^{S} \sum_{L=1}^{S} \exp\left[-k_b ||\Psi_D(\omega_d, L)||^2\right] - |\Psi_M(\omega_{m}, L)||^2}.
\]

(11)

Note that we no-longer have to truncate the number of modes of the larger point-set since we have chosen only the \(S \) principal clusters from both the model and data.

In the above equations \(k_m, k_b \) and \(k_c \) are exponential constants. Again, the choice of the value is not critical to the performance of the method, and setting all three constants to 0.1 gave good results in our experiments. There is clearly scope for developing a means of estimating these three parameters from the statistics of the interpoint distances and the inter-cluster distances.

5 **Experiments**

In this section we describe our experimental evaluation of the new modal correspondence method. We commence with a sensitivity study in which we compare the new correspondence method with that of Shapiro and Brady [15] and the EM alignment method outlined in our recent paper [1]. The Shapiro and Brady method is based purely on modal correspondence analysis, while the alignment method uses modal correspondence probabilities to weight the estimation of affine alignment parameters in a dual-step EM algorithm.

Our sensitivity study uses randomly generated point-sets. We ensure that the point-sets have a clump structure by sampling the point positions from six partially overlapping Gaussian distributions with controlled variance. We have then added both new points at random positions, and, random point-jitter to the synthetic data. The randomly inserted points have been sampled from a uniform distribution. The positional jitter has been generated by displacing the points from their original positions by Gaussian measurement errors. The dis-
placements have been randomly sampled from a circularly symmetric Gaussian distribution of zero mean and controlled standard deviation.

We commence by investigating the way in which the elements of the point proximity matrix are calculated. The aim is to determine which of the weighting functions returns correspondences which are the most robust to point-position jitter alone. Figure 2 shows the fraction of correct correspondences as a function of the standard deviation of the added Gaussian position errors. The standard deviation is recorded as a fraction of the average closest point distance. We compare the results obtained using the Gaussian weighting function (Equation 1) used by Shapiro and Brady, and the use of the tanh function given in Equation 2. The tanh weighting function significantly outperforms the Gaussian weighting function. The margin of improvement is about 20%.

In Figure 3 we show the effect of increasing the number of randomly added points. In this experiment, we commence with a point-set of size 100. The plot shows the fraction of points correctly matched as a function of the number of randomly added points. The long-dashed curve, i.e. the one which gives the consistently poorest performance, is the result of applying the Shapiro and Brady algorithm. Here the fraction of correct correspondences falls below 25% once the fraction of added clutter exceeds 2%. The results obtained with the EM alignment method described in [1] are shown as a line-dot curve. This method performs best of all when the level of clutter is less than 20%. The remaining two curves show the results obtained with the two variants of our hierarchical correspondence algorithm detailed in Section 4. In the case of the dotted curve the cluster correspondences are computed using only the modal co-efficients of the between-cluster proximity matrix as described in Equation (11). The solid curve shows the results obtained if the eigenvalues are also used as described in Equation (10). There is little to distinguish the two methods. Both perform rather more poorly than the dual-step EM algorithm when the level of clutter is less than 20%. However, for larger clutter levels, they provide significantly better performance. The additional use of the eigenvalues results in a slight improvement in performance.

Figure 4 investigates the effect of positional jitter. Here we plot the fraction of correct correspondence matches as a function of the standard deviation of the Gaussian position error.
added to the point-positions. We report the level of jitter using the ratio of the standard deviation of the Gaussian error distribution to the average closest inter-point distance. Here there is nothing to distinguish the behaviour of our hierarchical correspondence method from the dual-step alignment method. In each case the fraction of correct correspondences degrades slowly with increasing point-position jitter. However, even when the standard deviation of the position errors is 50% of the average minimum interpoint-distance then the fraction of correct correspondences is still greater than 50%. By contrast, the accuracy of the Shapiro and Brady method falls below 50% once the standard deviation of the positional error exceeds 10% of the minimum interpoint distance.

Our final set of experiments on synthetic data investigate the effect of diluting the cluster-structure of the point-sets. Here we have gradually moved the cluster-centres closer together and have investigated the effect on the fraction of correct correspondences when there is structural error present. The results are shown in Figure 5. Here we show the fraction of correct correspondences as a function of the overlap between the clusters. We have also included tests to show the performance of the algorithm when 20% of clutter noise is added to the overlapping clusters. The results are shown as groups of bars, as we move from left to right across the plot, the degree of cluster overlap increases. In each group of bars the leftmost (i.e. black) bar is the result obtained with the new method reported in this paper when the clusters are clutter-free, while the centre (light grey) bar is the result obtained when 20% of clutter is added. The right-most bar (i.e. mid-grey) is the result obtained with the Shapiro and Brady method when the point-sets contain no clutter. It is important to stress that as the clusters are moved together, larger “superclusters” may develop. The effects the value of S used in our analysis and could in principal be detected using the quantity R_s. The performance of the Shapiro and Brady method is poorer than the new method. Its sudden drop-off in performance is attributable to the effect of increased point-density as the clusters are overlapped. Obviously the performance of the new method degrades with the addition of clutter. However, increased proximity of the clusters does not appear to significantly degrade performance.

We now turn our attention to real world data. Based on the sensitivity study we confine
our attention to the case where 1: the proximity matrix defined in Equation (2), 2: the cluster centre calculation outlined in Section ?? and 3: the modal co-efficient probabilities described in Equation (10). In the majority of our experiments we are concerned with matching corner-features. We use the corner detector recently reported by Luo, Cross and Hancock[8] to extract point features. Our first experiments are performed with the CMU/VASC model-house sequence. The data-set consists of a series of views of a model house, collected as the viewing direction changes. We match the first image of the sequence to each of the subsequent nine frames. The example results for the second, fifth and eighth frames are shown in the top row of Figure 6. Here the lines between feature points represent correspondences. We have compared the number of correct correspondences with ground-truth obtained by hand labelling. Table 1 lists the fraction of correct correspondences. This varies between 100% for the closest pair of views to 76% for the most distant pair of views. We have compared the results obtained with our new method with those obtained using the Scott and Longuet-Higgins method. The correspondences are shown in the bottom row of Figure 6 and the results are summarised in Table 1. Comparing the results of the two methods, it is clear that the Scott and Longuet-Higgins method gives poorer results when the difference in viewing angle is large.

<table>
<thead>
<tr>
<th># image</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td># of points</td>
<td>30</td>
<td>32</td>
<td>32</td>
<td>30</td>
<td>30</td>
<td>32</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>correctly matched</td>
<td>-</td>
<td>30</td>
<td>29</td>
<td>30</td>
<td>28</td>
<td>28</td>
<td>29</td>
<td>27</td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>% matched</td>
<td>-</td>
<td>100%</td>
<td>97%</td>
<td>100%</td>
<td>94%</td>
<td>94%</td>
<td>97%</td>
<td>91%</td>
<td>83%</td>
<td>76%</td>
</tr>
<tr>
<td>correctly matched (SL-H)</td>
<td>-</td>
<td>30</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>28</td>
<td>25</td>
<td>21</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>% matched (SL-H)</td>
<td>-</td>
<td>100%</td>
<td>97%</td>
<td>97%</td>
<td>97%</td>
<td>94%</td>
<td>85%</td>
<td>73%</td>
<td>61%</td>
<td>55%</td>
</tr>
</tbody>
</table>

Table 1: Performance on the CMU/VASC house sequence. The house "0" is tested against the remaining nine.

We have repeated these experiments for a number of different images. The first of these involves images from a gesture sequence of a hand. The images used in this study are shown in Figures 7 and 8. To extract feature-points from this data, we commence by running the
Canny edge detector over the images to locate the boundary of the hand. From this edge
data, point features have been detected using the corner detector of Mokhtarian and Suomela [10]. The raw points returned by this method are distributed relatively uniformly along the outer edge of the hand and are hence not suitable for cluster analysis. We have therefore pruned the feature points using a curvature criterion. We have removed all points for which the curvature of the outline is smaller than a heuristically set threshold. Initially there are some 800 feature points, but after pruning this number is reduced to 271. The pruned feature-points are shown in blue in the figure. They are clustered around the finger-tips and the points at which the fingers join the hand. After applying the clustering method, the set of centres shown in red is obtained. There are ten clusters in both images. The yellow lines between the two images show the detected correspondences. The fraction of correct correspondences is 81.2%. Figure 9 shows the correspondences obtained with the Scott and Longuet-Higgins method. The results are poorer, and the fraction of correct correspondences is 70%.

Our third real world experiment involves a sequence of images obtained as a subject rotates and tilts his head. The feature points here are highly non-planar. In Figure 9 we show the correspondences obtained. These are again good, and there appear to be no systematic problems. Figure 10 shows the results delivered by the Scott and Longuet-Higgins method. From the pattern of correspondence lines, it is clear that the method does not perform well. A fourth example is shown in Figures 11 and 12 where we show the results obtained on an image pair from the roof-space of our lab. Here the correspondences are good despite the fact that there is no clear cluster-structure. The feature sets contain a different number of points and some of them appear in one image and not in the other.

6 Conclusions

In this paper we have investigated how the correspondence method of Shapiro and Brady [15] may be improved by using modal co-efficients of the point-proximity matrix to establish the whereabouts of significant point groupings. We exploit these groupings to develop a
hierarchical correspondence method. This is a two-step process. First, we use the spatial
arrangements of the centre-points of the most significant groups to compute a between-
cluster proximity matrix. The modal co-efficients of this between-cluster proximity matrix
are used to establish correspondence probabilities between groups of points. Second, for
each group of points we compute a within-cluster proximity matrix. The modal co-efficients
of these within-cluster proximity matrices are used to establish heuristic cluster-conditional
point correspondence probabilities. Using the Bayes rule we combine these two sets of
probabilities to compute individual point correspondence probabilities. We have shown that
while the Shapiro and Brady method fails once more than a few percent of clutter is added,
the new method degrades more gracefully.

Although we have concentrated on point pattern matching in this paper, some of the ideas
presented are of more generic usefulness. In particular, the idea of using modal or spectral
clusters to overcome problems of size difference, may prove useful for the problem of inexact
graph-matching [6, 20, 21, 11]. Hence, we may have a route to improving the robustness
of the Umeyama [19] algorithm. Moreover, the methodology reported in this paper may
prove useful in improving the robustness of SVD-based methods for motion analysis [18] and
stereopsis [12] to structural difference.

References

Figure 2: Effect of weighting function on correspondence error.

Figure 3: Experimental results: structural error.

Figure 4: Experimental results: position error.

Figure 5: Experimental results: cluster stability.
Figure 6: Correspondences between the first image and subsequent images in the CMU house sequence using our new method (top row) and with the Scott and Longuett-Higgins matching algorithm (bottom row).
Figure 7: Experimental results: real data experimentation

Figure 8: Experimental results: real data experimentation

Figure 9: Experimental results: real data experimentation

Figure 10: Experimental results: real data experimentation

Figure 11: Experimental results: real data experimentation

Figure 12: Experimental results: real data experimentation