Chapter 1

TERM GRAPH REWRITING

D. PLUMP

Universitat Bremen, Fachbereich Mathematik und Informatik
Postfach 83 04 40, 28334 Bremen, Germany

det@informatik.uni—bremen.de

Term graph rewriting is concerned with the representation of functional expressions
as graphs, and the evaluation of these expressions by rule-based graph transforma-
tion. Representing expressions as graphs allows to share common subexpressions,
improving the efficiency of term rewriting in space and time. Besides efficiency,
term graph rewriting differs from term rewriting in properties like termination and
confluence. This chapter surveys (acyclic) term graph rewriting, where emphasis is
given to the relations between term and term graph rewriting. We focus on sound-
ness of term graph rewriting with respect to term rewriting, on completeness for
proving validity of equations and for computing term normal forms, on termination

and confluence, and on term graph narrowing.

Contents

1.1 Introduction v i

1.2 Abstract Reduction Systems
1.3 Term Graphs.
1.4 Term Graph Rewriting
1.5 Completeness
1.6 Terminationcc00eueo..
1.7 Confluence
1.8 Term Graph Narrowing
1.9 Further Topicso
References o0

15
23
29
37
45
53
54

4 CHAPTER 1. TERM GRAPH REWRITING
1.1 Introduction

Term graph rewriting is concerned with the representation of functional expres-
sions as graphs, and the evaluation of these expressions by rule-based graph
transformation. Representing expressions as graphs is motivated by efficiency
considerations. Consider, for example, the following rewrite rules for defining
multiplication of natural numbers (where s denotes the successor function on
natural numbers):

- 0

- (xxy)+x

In applying the second rule to an expression of the form ¢ x s(u), the subex-
pression t has to be copied. This is conspicuous when expressions are drawn
as trees:

X
RN
‘ T ‘
_>
Copying t, however, is expensive in space and time if ¢ is a large expression.

Even worse, if ¢ is not yet evaluated, all the work necessary to evaluate it is
duplicated by the above rewrite step.
An obvious solution to this problem is, instead of copying ¢, to create two

pointers to the existing subexpression ¢. The above rewrite step looks then as
follows:

|
/

X

v

The resulting graph is called a term graph, and the unique occurrence of ¢
is said to be shared. Evaluating this occurrence will correspond to a parallel

1.2. ABSTRACT REDUCTION SYSTEMS)

evaluation of the two occurrences of ¢ in the expression (¢ x u) + ¢. Thus, shar-
ing subexpressions saves not only space but also time that otherwise would be
wasted in repeatedly evaluating equal subexpressions.

Rewriting term graphs rather than expressions, which come as strings or
trees, has several consequences besides efficiency issues. This is because certain
rewrite sequences are prevented when subexpressions are shared. For example,
it may be possible to apply two different rules, at the same position, to the two
occurrences of ¢ in (¢ x u) 4+ t. These two independent steps are impossible if ¢
is shared. As a result, term graph rewriting may fail to transform an expression
into an irreducible form. (This does not happen with the above rules, though.)
Moreover, we will see that term graph rewriting differs from conventional term
rewriting in properties like termination and confluence.

This chapter intends to be a survey of term graph rewriting, where the scope is
restricted to acyclic term graphs. Dealing with acyclic graphs allows to relate
term graph rewriting with the rich theory of term rewriting. (See the textbook
[11] for a comprehensive survey of term rewriting.) In fact, acyclic term graph
rewriting can be seen as a sound implementation of term rewriting, which more
accurately reflects the properties of real implementations. Application areas of
term and term graph rewriting include theorem proving, functional and logic
programming, software specification, and computer algebra.

Our presentation stresses the relations between term and term graph rewriting,.
We focus on soundness of term graph rewriting with respect to term rewrit-
ing, on completeness for proving validity of equations and for computing term
normal forms, on termination and confluence, and on term graph narrowing.
Some further topics are briefly mentioned in Section 1.9. To keep this survey
concise, proofs are given only occasionally.

Acknowledgements. The author wishes to thank Oliver Dressler, Annegret
Habel, Berthold Hoffmann, Jan Willem Klop and Jiirgen Miiller for providing
comments on a previous version of this chapter. The chapter was partly written
during the author’s stay at the University of Nijmegen in 1998. Support of this
visit by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

1.2 Abstract Reduction Systems

Rewriting systems (also called reduction or replacement systems) are means to
compute by a stepwise transformation of objects. These objects may be strings,
terms, formulas, graphs or any other entities from a given domain. The present
chapter is concerned with rewriting systems over the domains of terms and term

6 CHAPTER 1. TERM GRAPH REWRITING

graphs. Several concepts and properties of rewriting systems can be defined
and studied independently from specific domains, having the advantage that
abstract properties of relations can be separated from properties depending on
the structure of objects.

Abstract reduction systems are sets together with a binary relation repre-
senting elementary transformation steps. They were studied the first time by
Newman [81] and systematically applied in influential papers of Rosen [95] and
Huet [52]. In the following some basic notions and facts for abstract reduction
systems are collected. Further concepts and results can be found, for example,
in [9,11,16,28,52,56,67]. As the terminology in the literature is not completely
uniform, alternative terms are given in parentheses.

Definition 1.2.1 (Abstract reduction system)

An abstract reduction system (A,—) consists of a set A and a binary relation
— on A.

For the rest of this section, let (4, —) be an arbitrary abstract reduction sys-
tem. Given two elements a and b in A such that (a,b) € —, this is denoted by
a — b. The inverse relation of — is denoted by <, and the compositon of two
binary relations —; and —3 on A is written —1 o —.

Definition 1.2.2
(1) The identity on A is the relation -° = {(a,a) | a € A}.
(2) The reflexive closure of — is the relation —= = — U —0.
(3) For every n > 0, the n-fold composition of — is the relation
" =3 0" L
The transitive closure of — is the relation =1 = Upso =™

(4)
(5) The transitive-reflezive closure of — is the relation —* = -+ U 0.
(6) The symmetric closure of — is the relation <> = — U «.

(7)

The equivalence closure of — (or conwvertibility with respect to —), de-
noted by <*, is the transitive-reflexive closure of <.

Two elements a and b are convertible if a <* b, and they have a common reduct
if a =»* ¢ «* b for some ¢. An element a is a normal form if there is no b such
that @ — b, and it has a normal form if a —* b for some normal form b. In the
latter case b is a normal form of a.

1.2. ABSTRACT REDUCTION SYSTEMS 7

Definition 1.2.3 (Termination and confluence properties)
The relation — is
(1) terminating (or strongly normalizing or noetherian) if there does not
exist an infinite sequence of the form a; = as = az — ...,

(2) normalizing (or weakly normalizing) if each element in A has a normal
form,

(3) Church-Rosser if for all a and b with a <»* b there is some ¢ such that
a —* ¢ +* b (see Figure 1.1(a)),

(4) confluent if for all a, b and ¢ with b «+* a —* ¢ there is some d such
that b =* d «<* ¢ (see Figure 1.1(b)),

(5) locally confluent (or weakly confluent) if for all a, b and ¢ with b + a — ¢
there is some d such that b —* d <* ¢ (see Figure 1.1(c)),

(6) subcommutative if for all a, b and ¢ with b < a — ¢ there is some d such
that b == d <= ¢ (see Figure 1.1(d)),

(7) convergent if it is terminating and confluent.

The following lemma lists some relations between the properties introduced
above.

Lemma 1.2.4
(1) Termination implies normalization.
2

(2) The Church-Rosser property is equivalent to confluence.
(3) Subcommutativity implies confluence.
(4)
(5)

4
5

Confluence implies local confluence.

Confluence implies uniqueness of normal forms, that is, whenever a <>* b
for normal forms a and b, then a = b.

Proof

The implications (1) and (4) are obvious. As to (2), the Church-Rosser prop-
erty clearly implies confluence, and the converse is shown by induction on the
number of <»-steps constituting an equivalence a <»* b. Statement (3) is proved
by two inductions, the first showing that if — is subcommutative, then for all
a, b and ¢ with b < a —* ¢ there is some d such that b =* d «* ¢, while the
second induction shows that the latter property implies confluence. Finally, it
is easy to see that (5) follows from (2). o

Notice that by statement (5), in a confluent relation every element has at most
one normal form. The converses of the implications (1), (3), (4) and (5) do not

8 CHAPTER 1. TERM GRAPH REWRITING

° e ° °
% */ % %
o ’ R
[] []
(a) Church-Rosser property (b) confluence
[] [}
[] / \ L] [] / []
* x = =
N // N
[] []
(c) local confluence (d) subcommutativity

Figure 1.1: Confluence properties

hold. Figure 1.2 shows a well-known counterexample to the converse of (4),
viz. a locally confluent (and normalizing) relation that is not confluent. By the
following result, however, local confluence and confluence are equivalent in the
presence of termination. (See [52] for ashort proof of this fact.)

Lemma 1.2.5 (Newman’s Lemma [81])
A terminating relation is confluent if and only if it is locally confluent. O

VR

o ~—@© *o— 0

>

Figure 1.2: Local confluence without confluence

1.3. TERM GRAPHS 9
1.3 Term Graphs

Graphs that represent expressions can be defined in various ways. Here we
use acyclic hypergraphs where hyperedges are labelled with function symbols
and variables. Each node in such a term graph represents a well-formed ex-
pression, a term. We will see that for every term, the set of all its term graph
representations forms a complete lattice under a suitable partial order.

1.8.1 From Hypergraphs to Term Graphs

Let ¥ be a set of function symbols where each f € ¥ comes with a natural
number arity(f) > 0. Function symbols of arity 0 are called constants. Let
further X be an infinite set of wvariables such that X N ¥ =), and define
arity(xz) = 0 for each z € X.

A hypergraph over ¥ and X is a system G = (Vg, Eg, labg, attg) consisting
of two finite sets Vg and Eqg of nodes (or vertices) and hyperedges, a labelling
function labg: Eg — ¥ U X, and an attachment function attg: Eg = V§
assigning a string of nodes to a hyperedge e such that the length of attg(e)
is 1 4 arity(labg(e)). In the sequel, hypergraphs and hyperedges are simply
called graphs and edges.

Given an edge e with attg(e) = vg .. .v,, node v is the result node of e while
v1,---,U, are the argument nodes. The result node and the (possibly empty)
string vy ... v, are denoted by res(e) and arg(e), respectively.

A path is an alternating sequence (vo,%1,V1,%2,---,%n,Vs) (n > 0) of nodes
and positive integers such that for j = 1,...,n, there is an edge e such that
res(e) = v;_1 and v; is the i;h node in arg(e). We say that this is a path from
Vg t0 v,. A node v’ is reachable from a node v if there is a path from v to v'. A
graph is acyclic if it does not contain a path in which some node occurs twice.

Definition 1.3.1 (Term graph)

A graph G is a term graph if
(1) there is a node rootg from which each node is reachable,
(2) G is acyclic, and
(3) each node is the result node of a unique edge.

Figure 1.3 shows a term graph with binary function symbols + and X, a unary
function symbol s, a constant 0 and a variable y. In the representation on
the left, edges are depicted as boxes with inscribed labels, and bullets repre-
sent nodes. A line connects each edge with its result node, while arrows point

10 CHAPTER 1. TERM GRAPH REWRITING

to the argument nodes. The left-to-right order of the arrows leaving the box
corresponds to the order of the argument nodes.

On the right of Figure 1.3, the same term graph is depicted in an alternative,
more compact way. In the following both formats will be used to represent
term graphs graphically.

.
\
.
A
2
-

NN

Gt X

Figure 1.3: A term graph, depicted in two different ways

A term over X and X is a variable, a constant, or a string f(t1,...,t,) where
f is a function symbol of arity n > 1 and t4,...,t, are terms. The subterms
of a term t are t and, if t = f(¢1,...,tn), all subterms of ¢y,...,%,.

Definition 1.3.2 (Term representation)

A node v in a term graph G represents the term
termg(v) = labg(e) (termg (v1), ..., termg(vy)),

where e is the unique edge with res(e) = v, and where arg(e) = vy ...v,. It is
understood that if arg(e) is empty, this means termg(v) = labg(e). We denote
termg(rootg) also by term(G).

Note that the recursion in the above definition ends because term graphs are
acyclic. For example, if G is the term graph of Figure 1.3, then

term(G) = +(s(0), +(x(s(0), +(0,y)), x(s(0), +(0,¥))))-

1.3. TERM GRAPHS 11

Using infix notation for + and x, this term reads
s(0) + ((s(0) x (0 +¥)) + (s(0) x (0 +¥)))-

A graph morphism f: G — H between two graphs G and H consists of two
functions fyv: Vg — Vg and fg: Egq — Eg that preserve labels and attach-
ment to nodes, that is, laby o fg = labg and atty o fg = fy; o attg (where
o denotes function composition and f;: Vi, — Vi maps a string vg ... v, to
fv(vo) ... fv(vy)). The morphism f is injective (surjective) if fy and fg are.
If f is injective and surjective, then it is an isomorphism. In this case G and
H are isomorphic, which is denoted by G = H.

Usually one does not want to distinguish between isomorphic (term) graphs.
For example, it is more convenient to deal with the tree representation of a
term than with an infinite class of isomorphic trees, and it is easier to handle
confluence than “confluence up to isomorphism”. To achieve this technically,
one may work with isomorphism classes of term graphs, but then one loses
access to nodes and edges. We pursue an alternative solution and introduce
standard term graphs which serve as unique representatives of their isomor-
phism classes. The idea is to number the nodes of a term graph in a canonical
way, similar to the numbering of positions in terms (see for example [11]).

Given a node v in a term graph G, an access path of v [4] is a possibly
empty sequence of positive integers (i1,4s2,. .., i) such that there exists a path
(vo,%1,01,42,- - -, in,Vn) with vg = rootg and v, = v. We denote by Acc(v) the
set of all access paths of v.

Definition 1.3.3 (Standard term graph)
A term graph G is a standard term graph if

(1) v = Acc(v) for each node v, and

(2) e =res(e) for each edge e.

An example for the naming of nodes in a standard term graph is given in
Figure 1.4.

For every term graph we can construct an isomorphic standard term graph
by replacing each node v with Acc(v) and modifying the edge set and the
labelling and attachment functions correspondingly. Moreover, given a graph
morphism f: G — H between term graphs such that fy(rootg) = rootg,
we have Acc(v) C Acc(fv(v)) for each node v in G. This implies the following
property, showing that every isomorphism class of term graphs contains exactly
one standard term graph.

12 CHAPTER 1. TERM GRAPH REWRITING

Figure 1.4: A standard term graph

Lemma 1.3.4
For all standard term graphs G and H, G = H if and only if G = H. O

From now on we will tacitly assume that we are dealing with standard term
graphs only.

1.8.2 Collapsing, Copying and Bisimilarity

By the three conditions of Definition 1.3.1, a graph morphism f: G — H
between term graphs G and H is surjective if and only if fy (rootg) = rootgy.
In this case H can be seen as a “collapsed” or “compressed” version of G.

Definition 1.3.5 (Collapsing and copying)

Given two term graphs G and H, G collapses to H if there is a graph morphism
G — H mapping rootg to rooty. This is denoted by G > H or, if the morphism
is non-injective, by G > H. The latter kind of collapsing is said to be proper.
The inverse relation of collapsing is called copying and is denoted by <. Proper
copying, denoted by <, is the inverse relation of proper collapsing.

Two examples of collapsing and copying are given in Figure 1.5.

Lemma 1.3.6
For all term graphs G and H, G = H implies term(G) = term(H).

Proof

Let f: G — H be the graph morphism mapping rootg to rooty. We show
by induction that for each node v in G, termg(v) = termp(fv(v)). Consider
the unique edge e with res(e) = v and let arg(e) = vy ...v,. Suppose that
termg(v;) = termp (fv(v;)) for i = 1,...,n. Then

1.3. TERM GRAPHS 13

<o |-e<{oa|-e]
9]
(03]

Figure 1.5: Collapsing and copying

termg(v) = labg(e)(termg(vy),...,termg(vy,))
= labu(fe(e))(termp (fy(v1)), ..., termpy (fv(vn)))
= termpg(res(fe(e)))
= termpy(fv(res(e)))
= termpg(fv(v)). O

The induction principle just used allows to show that a property P holds for
all nodes of a term graph. This principle is called bottom-up induction and is
as follows:

For all edges e, show that P holds for res(e) if P holds for all nodes in arg(e).

In the following, we will frequently use term graphs with minimal or maximal
sharing.

Definition 1.3.7 (Tree and fully collapsed term graph)

A term graph G is a tree if there is no H with G < H, while G is fully collapsed
if there is no H with G = H.

For example, the middle graph in Figure 1.5 is fully collapsed. The following
characterization of trees and fully collapsed term graphs is easy to verify.

Lemma 1.3.8

(1) A term graph G is a tree if and only if there is a unique path from rootg
to each other node.

(2) A term graph G is fully collapsed if and only if for all nodes v and w,
termg(v) = termg (w) implies v = w. O

14 CHAPTER 1. TERM GRAPH REWRITING
The next lemma is proved in [91].

Lemma 1.3.9

For every term graph G, there is a unique tree AG and a unique fully collapsed
term graph VG such that

AG = G = VG, a

Hence, AG and VG are the normal forms of G with respect to < and »>. Note
that by Lemma 1.3.6, G, AG and VG represent the same term.

Definition 1.3.10 (Bisimilarity)

Two term graphs G and H are bisimilar, denoted by G ~ H, if term(G) =
term(H).

The three graphs in Figure 1.5, for instance, are bisimilar (although the two
outer graphs are related neither by collapsing nor by copying).

The notion of bisimilarity stems from the theory of concurrency (see for exam-
ple [80]) and was adopted for term graphs in [4]. Given a term graph G, call
the set [G] = {G' | G ~ G'} the bisimilarity class of G. This class is partially
ordered by >.

Theorem 1.3.11 ([4])
For every term graph G, ([G], *) is a complete lattice. o

Clearly, AG and VG are the greatest and the least element in [G], respectively.
Thus, bisimilarity can be characterized as follows.

Corollary 1.3.12
For all term graphs G and H, the following are equivalent:

(1) G~H.
(2) AG = AH.
(3) VG =VH. O

Given a term t, we write At and Vit for the unique tree and fully collapsed term
graph representing t, respectively. Hence AG = Aterm(G) and VG = Vterm(G)
for every term graph G.

1.4. TERM GRAPH REWRITING 15

1.8.8 Bibliographic Notes

Term graphs as defined above are a special case of so-called jungles which
were introduced in [42,50]. Jungles are defined by requiring only conditions
(2) and (3) of Definition 1.3.1, so they can have several roots and need not be
connected. Moreover, function symbols are equipped with a list of argument
sorts and a result sort, and sorts are represented as node labels. For results
about graph rewriting on jungles, we refer to [76,43,51,62,23,91].

In the literature there exists a variety of definitions of term graphs. Besides
hypergraphs, directed graphs, terms with labels, and recursion equations have
been used as underlying structures.

Acyclic graphs have been dealt with in [34,97,98,99], while [85,94,60,15,37,64,
32] also consider cyclic graphs.

By equipping function symbols with additional labels, sharing of different oc-
currences of a subterm in a term can be expressed through identical labels.
Such labelled terms correspond to acyclic term graphs and have been studied
in [77,75,83,84].

In [36,4,2,68], systems of recursion equations realize finite and infinite terms
with sharing.

As to the complexity of collapsing, arbitrary term graphs can be made fully
collapsed in time O(nlogn), where n is the size of term graphs. This bound re-
duces to O(n) for term graphs over finite sets of function symbols and variables.
See [30,47,38].

1.4 Term Graph Rewriting

In this section we define the transformation of term graphs by applications of
term rewrite rules, introducing the notion of term graph rewriting. A funda-
mental property of this computational model is its soundness with respect to
term rewriting. We also consider the addition of collapse and copy steps, and
rewriting modulo bisimilarity. Collapsing sometimes speeds up the evaluation
of term graphs considerably, which we show by an example.

1.4.1 Term Rewriting

We first recall some basic concepts of term rewriting systems. For a compre-
hensive introduction, the reader may consult the textbook [11] or one of the
surveys [54,10,28,67,86,57].

16 CHAPTER 1. TERM GRAPH REWRITING

Let Tx x be the set of all terms over ¥ and X. A substitution is a mapping
0: Ty x = Tx x such that o(c) = c for every constant ¢, and o (f(¢1,-..,t,)) =
flo(ty),...,o(t,)) for every composite term f(ty,...,t,).

A term rewrite rule is a pair {I,r) of terms, written ! — r, such that

(1) 1is not a variable, and
(2) all variables in r occur also in [.

Such a rule is left-linear (resp. right-linear) if no variable occurs more than
oncein! (resp. r). A term rewriting system (X, R) consists of a set X of function
symbols and a set R of term rewrite rules over Tx x. We will often identify
such a system with its rule set R, leaving ¥ implicit. A term rewriting system
is left-linear (resp. right-linear) if all its rules are.

Definition 1.4.1 (Term rewriting)

The rewrite relation —+ on Ty x induced by a term rewriting system R is
defined as follows: ¢ — w if there is a rule [— r in R and a substitution ¢ such
that

(1) o(l) is a subterm of ¢, and
(2) w is obtained from ¢ by replacing an occurrence of o(l) by o(r).

The following considerations aim at a fundamental result linking term rewriting
with logic. It will show that term rewriting is a complete method for proving
that an equation is a consequence of a given equational specification (having
the form of a term rewriting system).

An algebra A over X consists of a non-empty set D4, distinguished elements
c4 € D4 for all constants ¢ in X, and n-ary functions f4: D% — D4 for all func-
tion symbols f in ¥ with arity(f) =n > 1. An assignment (or valuation) is a
mapping v: X = D4, which is extended to a mapping v: Ty x = D4 by send-
ing constants ¢ to ¢4 and composite terms f(ty,...,t,) to fa(v(ty),--.,v(tn))-
An equation is a pair (I,r) of terms, written | & r, and is valid in an algebra A
if v(l) = v(r) for all assignments v: X — Dy4. In other words, [~ r stands for
the formula Vz; ...Vz, [= r in predicate logic with equality, where z1,...,z,
are the variables occurring in [and r. An equational specification is a set of
equations. A model of an equational specification E is an algebra A in which
all equations of E are valid. We write E |= t &~ v if an equation ¢t ~ u is a
consequence of E, that is, if it is valid in all models of E.

As every term rewriting system R is an equational specification (but not vice
versa), we can speak of the models of R and of validity in these models. The
following fundamental result is due to Birkhoff (see [11]).

1.4. TERM GRAPH REWRITING 17

Theorem 1.4.2 (Completeness of term rewriting)

For all terms t and wu,
R =t ~ u if and only if t & u. O

Thus, validity in the models of R coincides with convertibility by term rewrit-
ing. Although this is undecidable in general, the result provides a decision
procedure for equational validity in the case where R is finite and has a con-
fluent and terminating rewrite relation —. In this case it suffices to rewrite
t and u as long as possible, obtaining unique normal forms ¢| and u]. Then
t «* v if and only if t| = ul.

1.4.2 Term Graph Rewriting

In this subsection we define the application of term rewrite rules to term graphs.
Given arule I — r and a term graph G, first one has to find the left-hand side
l in G. Technically, this amounts to find a graph morphism into G starting
from a graph representation of [in which only repeated variables are shared.

Definition 1.4.3 (Ot and ¢t)

For every term t, let Ot be the term graph representing ¢ such that only vari-
ables are shared. That is, there is a graph morphism f: At — ¢t such that for
all distinct edges e; and ea,

fr(e1) = fu(e2) if and only if labgi(e1) = labe(e2) € X.

The graph resulting from ¢t after removing all edges labelled with variables is
denoted by ¢t.

For example, Figure 1.6 shows the graphs Af (x,x), O0f(x,x) and Qf(x,x).
Note that the latter graph is not a term graph according to Definition 1.3.1.
It may be regarded as a term graph with an “open node”. (In [15,91], such
graphs are also regarded as term graphs, and term graphs without open nodes
are said to be closed.)

For each node v in a term graph G, we denote by G|, the (standard) term
graph isomorphic to the subgraph of G consisting of all nodes reachable from
v and all edges having these nodes as result nodes.

Definition 1.4.4 (Instance and redex)

A term graph L is an instance of a term [if there is graph morphism Q! — L
sending roote; to rootr. Given a node v in a term graph G and a term rewrite
rule [— r, the pair (v, [= r) is a redez if G|, is an instance of [.

18 CHAPTER 1. TERM GRAPH REWRITING

Figure 1.6: The graphs Af(x,x), Of(x,x) and Of(x,x)

We will also call the subgraph G|, a redex if there is no ambiguity or if the
applied rule is irrelevant.

Definition 1.4.5 (Term graph rewriting)

Let G be a term graph containing a redex (v, I — r). Then there is a proper
rewrite step G =, H, where H is the term graph constructed as follows:

(1) G1 = G —{e} is the graph obtained from G by removing the unique edge
e satisfying res(e) = v.
(2) G is the graph obtained from the disjoint union G; + ¢r by

o identifying v with roote,,

e identifying the image of res(e;) with res(es), for each pair {e1,es) €
E¢1 X Eg, with labe;(e1) = labe,(e2) € X.

(3) H is the term graph obtained from G2 by removing all nodes and edges
not reachable from rootg (“garbage collection”).!

We denote such a rewrite step also by G =, H or simply by G = H.

Example 1.1

Figure 1.7 shows the three intermediate steps in the construction of
a term graph rewrite step. The term rewrite rule applied to G is
xX(y+2z)—= (xxy)+ (xxz). In G and H, shaded nodes and edges belong
to the occurrences of Ox x (y + z) and {(x x y) + (x X z), respectively. Note
that the variables y and z correspond to the same node, that is, the graph
morphism Qx X (y + z) — G identifies the nodes representing y and z. O

The term graph rewrite relation = is sound with respect to term rewriting in
the sense that every proper step G =, ;—, H corresponds to a sequence of

1More precisely, H is the unique standard term graph isomorphic to the term graph
constructed in this step.

1.4. TERM GRAPH REWRITING 19

Figure 1.7: The intermediate steps in the construction of a term graph rewrite step

applications (or a parallel application) of | — 7 to several occurrences of the
subterm termg(v) in term(G). This explains the possible gain in time efficiency
when passing from term rewriting to term graph rewriting.

Theorem 1.4.6 (Soundness [50])
For all term graphs G and H,

G = H implies term(G) = term(H).

More precisely, we have term(G) —™ term(H), where n is the number of paths
from rootg to v. O

A proof of this result can be found in [51,91].

Example 1.2

Consider the application of the rule 0 + x — x shown in Figure 1.8. (Note that
the graph Qx is a single node which is identified with the root of the redex and
with the result node of the edge labelled with s.) There are three paths from
the root of the left graph to the root of the redex, and the term graph rewrite
step corresponds to the threefold term rewrite step

((0 4 5(0)) x (0 +£(0))) + (0 + 5(0)) > (s(0) x 5(0)) + s(0). 0

20 CHAPTER 1. TERM GRAPH REWRITING

+ +
4> £>
i L)
+ =

Figure 1.8: An application of the rule 0 +x — x

1.4.8 Incorporating Collapsing and Copying

In the next section we will see that not all term rewriting derivations can
be simulated by =--derivations. This incompleteness can partly be overcome
by allowing proper collapse or copy steps besides applications of term rewrite
rules. Completeness with respect to term rewriting can be achieved by adding
both collapsing and copying to =, or by using rewriting modulo bisimilarity.
This topic will be discussed in the next section. In this subsection we define
the mentioned extensions, present an example in which collapsing speeds up
the evaluation of term graphs, and relate = to rewriting with collapsing.

Definition 1.4.7 (=coll, = copy and =)
The relations =>con, =copy and =p; on term graphs are defined as follows:

= coll = = U>,
=copy = =>UKX,
= bi = =U>-U<.

We refer to =, = co11, = copy a0d =1, as plain term graph rewriting, term graph
rewriting with collapsing, term graph rewriting with copying, and term graph
rewriting with collapsing and copying, respectively.

The relations =>col1, = copy and =1, are sound in the sense of Theorem 1.4.6
if we replace -+ by —*. For, by Lemma 1.3.6, collapse and copy steps do
not change the term represented by a term graph. Note also that =}, con-
tains bisimilarity since G ~ H implies G < AG > H (see Lemma 1.3.9 and
Corollary 1.3.12).

1.4. TERM GRAPH REWRITING 21

Example 1.3

In certain cases, collapsing can speed up evaluation processes drastically. A
prime example is the specification of the Fibonacci function:

£ib(0) — 0
£ib(s(0)) — s(0)
fib(s(s(x))) — fib(s(x))+ fib(x)

Using these three rules, evaluating a term of the form fib(s"(0)) by term
rewriting requires a number of rewrite steps exponential in n (see [1]). One
easily observes that the same number of steps is needed for plain term graph
rewriting. After replacing = by =cou, however, it is possible to evaluate
£ib(s"(0)) in a linear number of steps. The evaluation strategy can be de-
scribed as follows: (1) Collapse steps have priority over proper rewrite steps
and produce fully collapsed term graphs. (2) Out of two fib-redexes, the one
representing the greater number is reduced. See Figure 1.9 for an illustration
of this strategy. It is not difficult to verify that, for n > 2, this procedure eval-
uates £ib(s"(0)) in 2n + 1 steps (viz. n + 1 proper rewrite steps and n collapse
steps). O

The next section will show that apart from speeding up evaluation, collapsing
is necessary to cope with non-left-linear rewrite rules. If no such rules are
present, =0 can be simulated by = as follows.

Theorem 1.4.8
If R is left-linear, then for all term graphs G and H,

G :*?1H implies G = H' = H
co
for some term graph H'. 0

Theorem 1.4.8 is a corollary of a result in [46] showing that every =¢ou-
derivation can be transformed into a so-called minimally collapsing derivation.
We conclude this subsection by introducing rewriting modulo bisimilarity,
where collapsing and copying are “built in” in the sense that rewrite steps
transform bisimilarity classes rather than term graphs.

Definition 1.4.9 (Rewriting modulo bisimilarity)

The relation =. on bisimilarity classes is defined as follows: [G] =~ [H] if
there are term graphs G' and H' such that G ~ G' = H' ~ H. We refer to
=~ as term graph rewriting modulo bisimilarity.

22 CHAPTER 1. TERM GRAPH REWRITING

=
2
Q w
o .m
L2 <
Q / 2
=+ —+ A—N—>nN—n -+ N—O0
~— ~— 4y m..
kel
[
@
A 2
w
(=}
S
<%0}
o g
o-—n0 @
[=9
s o
o Z
f/ O
Q =
+ —+ ﬁ\vs\vs\vs s M—=O =
@
'
=]
.20
T =
Q
-
\ff/
Q
+ H—n—n—>n—>0n n—eo
—
Q
H——0—0N—0N—>n0 n—-O

1.5. COMPLETENESS 23

For example, in Figure 1.9 there exists a rewrite step between the bisimilarity
classes of the second and the fourth term graph.

Term graph rewriting modulo bisimilarity generalizes term rewriting in that
for all term graphs G and H, term(G) — term(H) implies [G] =~ [H], and
[G] =~ [H] implies term(G) —7 term(H).

1.4.4 Bibliographic Notes

Term graph rewriting was first studied in [97], where it was shown that non-
overlapping rules give rise to a subcommutative rewrite relation. The name
term graph rewriting was introduced in [15]. This paper focusses on normalizing
strategies and states the soundness of = for left-linear rules.

In [15,64], term graph rewrite rules are considered which operate on possibly
cyclic term graphs. The application of such a rule involves the redirection of all
edges pointing to the root of the left-hand side, to the root of the right-hand
side. (An alternative, “transitive” version of redirection is investigated in [14].)

The approach of [15,64] is extended in [37] by allowing to choose in a rewrite
step among several structure sharing schemes which perform a certain col-
lapsing or copying. Soundness with respect to a certain kind of infinite term
rewriting is shown for left-linear, left-finite, left-acyclic term graph rewrite
rules.

In [43,51], jungles (see subsection 1.3.3) are evaluated by rules conforming to
the double-pushout approach to graph rewriting [33,21]. The evaluation rules
are obtained by translating term rewrite rules, and their application corre-
sponds to the effect of steps (1) and (2) in Definition 1.4.5—so there is no
garbage collection. Collapse steps (called folding steps in [43,51,91]) are also
specified by suitable graph rewrite rules. The relation between jungle evalua-
tion and the present setting is discussed in [91].

Similar to jungle evaluation, in [23] rewrite steps on jungles are defined by two
pushouts. The difference is that one considers the category of jungles instead
of the category of hypergraphs. This implicitly enforces a kind of minimal
collapsing in evaluation steps with non-left-linear term rewrite rules.

A categorical treatment of garbage collection is given in [12]. In [19], a descrip-
tion of term graph rewriting by a 2-category is presented.

1.5 Completeness

In this section we consider the completeness of term graph rewriting for sim-
ulating arbitrary term rewrite derivations (Subsection 1.5.1) and for comput-

24 CHAPTER 1. TERM GRAPH REWRITING

ing term normal forms (Subsection 1.5.2). We will see that in general, =con
and =>¢opy are incomplete in these respects. Nevertheless, both relations are
complete—in the same sense as term rewriting is—for proving validity of equa-
tions, and can compute term normal forms over certain subclasses of term
rewriting systems.

1.5.1 Simulating Arbitrary Term Rewrite Derivations

From Theorem 1.4.6 we know that for every term graph rewrite deriva-
tion G =* H there is a corresponding term rewrite derivation term(G) —*
term(H). The next two examples will show that the converse does not hold,
even if we extend = t0 =¢on OF = copy-

Example 1.4

One obstacle to the completeness of plain term graph rewriting are non-
left-linear term rewrite rules. For instance, the rule eq(x,x) — true can-
not be applied to the tree Aeq(0,0) because there is no graph morphism
Qeq(x,x) — Aeq(0,0) (see Figure 1.10). Hence, Aeq(0,0) is not reducible
by = or =opy although the represented term is reducible. Figure 1.10 also
shows how to overcome the problem by collapsing: identifying the two occur-
rences of 0 enables a subsequent application of the rewrite rule. a

o\
oq oq
;{@}gé

Figure 1.10: Collapsing to enable a rule application

1.5. COMPLETENESS 25

f g g
e e G
a a b

Figure 1.11: Applications of the rules f(x) — g(x,x) and a — b

£ g g g
O R a/\b

Figure 1.12: A = ¢opy-derivation

Example 1.5

Even for left-linear systems, certain term rewrite derivations do not correspond
to derivations by = or =¢ou. Consider, for example, the rules f(x) — g(x,x)
and a — b. The derivation £(a) — g(a,a) = g(a,b) cannot be simulated by =
or = because the application of the first rule leads to a shared constant
a (see Figure 1.11). But this time we can simulate the given term rewrite
derivation by =>¢opy, as shown in Figure 1.12. O

The above examples show that in general both collapsing and copying are
needed to simulate term rewrite derivations. This is reflected by the following
lemma.

Lemma 1.5.1 (Simulation of term rewrite steps [90])
For every term rewrite step t — u there are term graphs T and U such that

At > T=U < Au.]

To illustrate Lemma 1.5.1, consider the rule f(x + x) — £(x) + £(x) which is
neither left-linear nor right-linear. It admits the following term rewrite step:

g(£(0 +0),0) — g(£(0) +£(0),0)

Figure 1.13 shows how to simulate this step by term graph rewriting. In general,
the subtree of At corresponding to the replaced subterm o (1) is compressed
as much as is necessary to apply the term rewrite rule. The resulting graph
contains only one path from the root to the redex, and hence the application
of the rule simulates a single term rewrite step.

Using Lemma 1.5.1, it is straightforward to show that every sequence of term
rewrite steps can be simulated if both collapsing and copying are present.

2 CHAPTER 1. TERM GRAPH REWRITING
g g g

/N /N /N /N

£ 0 + 0 + 0

= /N < /N
f f £ f
N/ Lo
0 0 o0

Y
4 th

\
~

Figure 1.13: Simulation of a term rewrite step

Theorem 1.5.2 (Completeness of =; and = [7,6])
For all term graphs G and H, the following are equivalent:

(1) term(G) —* term(H).
(2) G=4, H.
(3) [G] =X [H].

Proof

By the definitions of =,; and =-. it is clear that (2) implies (3), and (3)
implies (1) by soundness of =. So it remains to show that (1) implies (2). By
Lemma 1.5.1, for every term rewrite step ¢ — u there is a derivation At #f{i Au.
Hence, by induction on the length of derivations, term(G) —* term(H) implies
Aterm(G) =4; Aterm(H). Since G < Aterm(G) and Aterm(H) > H, it follows
G =y H. O

The equivalence of (1) and (3) remains valid if we replace —* and =* by —7+
and =71, respectively. In contrast, if G =p; H is a collapse or copy step, then
neither term(G) =7 term(H) nor [G] =} [H] will hold in general.
Combining the completeness of =; with the observation that < = <con =
S copy, We obtain the following corollary of Theorem 1.5.2.

Corollary 1.5.3 (Completeness of =, and =qpy)

For all term graphs G and H, the following are equivalent:
(1) term(G) +* term(H).
(2) Gei H.

3) Gl H O

copy **-

Thus, an equation ¢ & u is valid in the models of R if and only if there is a
sequence of < on1- respectively < copy-steps between two term graphs represent-

1.5. COMPLETENESS 27

ing t and u. In other words, term graph rewriting with collapsing or copying is
complete for proving equational validity in the same sense as term rewriting is
(cf. Theorem 1.4.2). Moreover, the decision procedure for equational validity
described below Theorem 1.4.2 can be replaced by a corresponding procedure
using =>coll OF =>copy- If; 58y, =con is convergent, one represents the terms of
an equation by term graphs and reduces these to normal forms by = ¢oy. The
equation is valid if and only if the resulting normal forms are equal.

Note that plain term graph rewriting lacks this kind of completeness: in Exam-
ple 1.4 there is no conversion Aeq(0,0) <* Atrue although eq(0,0) = true
is a valid equation, and in Example 1.5 there does not exist a conversion
Af(a) ©* Ag(a,b).

1.5.2 Graph-Reducibility

In the previous subsection we saw that =, =con and =¢opy are not able to
simulate arbitrary term rewrite derivations. We now relax the requirement and
consider only derivations ending in normal forms.

Definition 1.5.4 (Graph-reducibility)

A term rewriting system R is graph-reducible by a binary relation = on term
graphs if the following holds for every term graph G:

(1) For every normal form H of G with respect to =, term(H) is a normal
form of term(G) with respect to —.

(2) If term(G) has a normal form with respect to —, then G has a normal
form with respect to =.

The system R is strongly graph-reducible by = if it satisfies (1) and if for
every term graph G and every normal form ¢ of term(G), G has a normal form
representing t.

Condition (1) ensures soundness of = in the sense that every derivation end-
ing in a normal form computes a term normal form. Condition (2) expresses
completeness: a term graph has a normal form whenever its represented term
has.

From Example 1.4 we already know that non-left-linear systems are not graph-
reducible by = and =>¢op, in general: for R = {eq(x,x) — true}, the tree
Aeq(0,0) is a normal form with respect to = and =>¢ep, although eq(0,0) is
reducible by R.

On the other hand, we will see that the system {f(x) — g(x,%),a = b} of
Example 1.5 is graph-reducible by =, =con and =copy-

28 CHAPTER 1. TERM GRAPH REWRITING

Definition 1.5.5 (Non-overlapping and orthogonal systems)

A term s overlaps a term ¢ in a subterm w of ¢ if u is not a variable and if there
are substitutions ¢ and 7 such that o(s) = 7(u). A term rewriting system R
is non-overlapping if for all rules Iy — r1 and Iy — ry in R, 1 overlaps I in
a subterm u only if u = Iy and (I; = r1) = (I = r2). If R is non-overlapping
and additionally left-linear, then it is an orthogonal system.

Theorem 1.5.6 ([15])
Every orthogonal term rewriting system is graph-reducible by =-. a

In fact, orthogonal systems are strongly graph-reducible since it is well-known
that every term has at most one normal form with respect to —.

To see that left-linearity alone is not sufficient for graph-reducibility by
=, extend the system {f(x) — g(x,x),a — b} by the rules g(a,b) = c and
g(b,b) — £(a). Then one can easily check that Af(a) does not have a normal
form while £(a) reduces to the term normal form c.

The next two results establish graph-reducibility by =>con for classes of systems
that need neither be left-linear nor non-overlapping. Instead, graph-reducibility
holds when certain restricted forms of term rewriting derivations suffice to
normalize terms.

Define the parallel rewrite relation = on Ty x by modifying clause (2) of
Definition 1.4.1 as follows: “u is obtained from ¢ by replacing all occurrences
of a(I) by o(r).” Call a term rewriting system parallelly normalizing if for every
term having a normal form, there is a normal form u such that ¢ =* u. The
class of parallelly normalizing systems includes, for example, all orthogonal
and all terminating term rewriting systems.

Theorem 1.5.7 ([88])

Every parallelly normalizing term rewriting system is graph-reducible by =con.
O

A term rewrite step ¢ — u is an innermost step if all proper subterms of the
replaced subterm o(l) are normal forms. A term rewriting system is innermost
normalizing if every term can be rewritten to a normal form by a sequence of
innermost rewrite steps. The classes of innermost normalizing and parallelly
normalizing term rewriting systems are incomparable (see [70]).

Theorem 1.5.8 ([70])
Every innermost normalizing term rewriting system is graph-reducible by
=coll- O

1.6. TERMINATION 29

We conclude this subsection by considering graph-reducubility by =copy. The
result below follows from the fact that if all term rewrite rules are left-linear,
then for every term rewrite derivation ¢ —* u there is a term graph rewrite
derivation At =7, Au (see [6]).

Theorem 1.5.9

Every left-linear term rewriting system is strongly graph-reducible by =>copy-
O

1.5.8 Bibliographic Notes

Completeness of = o1 for proving equational validity was shown in [90]. Graph-
reducibility was first considered in [15], where the lifting of certain term rewrite
strategies to the setting of term graph rewriting is studied. A stronger notion
than graph-reducibility is adequacy, which is treated in [64]. The definition
of adequacy is tailored to orthogonal systems as it requires that every term
rewrite sequence can be extended to a sequence that corresponds to some term
graph rewrite sequence. In [64] it is shown that = is adequate for orthogonal
systems, and that orthogonal term graph rewriting with possibly cyclic graphs
is adequate for a certain kind of infinitary, orthogonal term rewriting.

1.6 Termination

For several reasons, termination is an important property of rewriting systems.
If a rewrite relation on term graphs is known to be terminating, every term
graph can be reduced to a normal form simply by performing arbitrary rewrite
steps as long as possible. Moreover, several properties that are generally un-
decidable become decidable in the presence of termination. For example, the
transitive closure :>::)11 and the question whether = o)) is confluent are decid-
able then (provided R is finite). If =¢on is both terminating and confluent, it
even gives rise to a decision procedure for equational validity in the models of
R (see the remark below Corollary 1.5.3).

1.6.1 The Relation to Term Rewriting

First we compare termination of term and term graph rewriting. We will see
that the class of terminating term rewriting systems is properly included in
the class of systems for which =, is terminating. By restricting attention

30 CHAPTER 1. TERM GRAPH REWRITING

to right-linear systems, however, termination of =, becomes equivalent to
termination of —. As a consequence, undecidability of termination carries over
from term rewriting to term graph rewriting.

The following theorem is a consequence of the soundness of = and the fact
that > and < are terminating relations.

Theorem 1.6.1
If — is terminating, then =, =¢o11, = copy and =~ are terminating as well. O

Note that this result does not hold for =, since if both collapsing and copying
are present, there may be an infinite sequence of alternating collapse and copy
steps. For =, the reverse of Theorem 1.6.1 also holds [6], while for =¢py one
has to require that R is left-linear (otherwise the system {f(x,x) — £(a,a)} is
a counterexample).

It is worth noting that by Theorem 1.6.1, the wide range of techniques for
proving termination of term rewriting (see for example [11,27]) can be used to
prove termination of term graph rewriting. However, the next example demon-
strates that term graph rewriting in form of = and =, terminates “more
often” than term rewriting.

Example 1.6
Consider the following two rules:

f(a,b,x) — 1£(x,%,%)
a — b

Term rewriting is not terminating as there is an infinite rewrite sequence:
f(a,b,a) = f(a,a,a) = f(a,b,a) = ...

In contrast, = and = are terminating. This can be proved by means of
the following function 7 from term graphs to natural numbers. For every term
graph G, define 7(G) = m + n + p, where m is the number of f-labelled
edges the first two argument nodes of which are distinct, n is the number of
a-labelled edges, and p is the number of nodes in G. It is not difficult to check
that for every step G =con H, we have 7(G) > 7(H). Thus, every sequence of
=con-steps (and hence every sequence of =--steps) must eventually terminate.

O

For the rest of this section, we concentrate on term graph rewriting with col-
lapsing. We just remark that by the proof of Theorem 1.4.8, if R is left-linear,
then = is terminating if and only if = ¢ is terminating.

1.6. TERMINATION 31

Theorem 1.6.2
If R is right-linear, then =>con is terminating if and only if — is terminating.

Proof

The “if”-direction is contained in Theorem 1.6.1. The “only if”-direction follows
from the proof of Lemma 1.5.1. There, the collapsing A t > T is chosen such
that the garbage collection phase of the rewrite step T' = U removes each
edge that has in T a shared argument node (meaning that this node is also an
argument node of some other edge or appears more than once in the argument
string). Moreover, by right-linearity, the inserted graph ¢r is a tree (where r
is the right-hand side of the applied rewrite rule). It follows U = Awu. Hence
every term rewrite sequence can be simulated by a sequence of = . -steps,
which implies the proposition. a

Corollary 1.6.3
The following problem is undecidable in general:

Instance: A finite term rewriting system R.
Question: Is =>¢on terminating?

Proof

It is known that it is undecidable in general whether a finite, right-linear term
rewriting system is terminating or not (see [53,11]). Hence, by Theorem 1.6.2,
termination of =.,1 cannot be decidable either.]

1.6.2 Combined Systems

Proving termination of term or term graph rewriting is a difficult task which is
unsolvable in general. A desirable method for handling a possibly large system
R is decomposing it into subsystems and proving termination separately for
these. To make this approach work, though, one needs criteria ensuring that
the union of two terminating systems is again terminating. That the latter
may fail can be seen by putting together the terminating systems {a — b} and
{b — a}, yielding a non-terminating system. Even worse, Toyama [100] showed
that the disjoint union of two terminating term rewriting systems need not be
terminating. He gave the following counterexample.

32 CHAPTER 1. TERM GRAPH REWRITING

Example 1.7
The two systems

'Ro{ £(0,1,x) — f£(x,x,x)

glx,y) — x
Rl{ gxy) = ¥

have disjoint function symbols and are both terminating. But their union ad-
mits the following infinite rewrite sequence:

£(g(0,1),8(0,1),8(0,1)) > £(0, 1,g(0, 1)) = £(g(0, 1), 8(0, 1), (0, 1)) = ...
o

Toyama’s observation stimulated several researchers to establish sufficient con-
ditions under which the disjoint union of term rewriting systems preserves
termination (see [41,82] and the references given there). The interesting fact,
now, is that such conditions are not needed in the case of term graph rewrit-
ing. For, termination of =, does behave modular with respect to disjoint
unions. To demonstrate this by Toyama’s example, let us try to simulate by
= the infinite term rewrite sequence shown above. Starting with the tree
Af(g(0,1),g(0,1),g(0,1)), one obtains the terminating derivations shown in
Figure 1.14.

f f f (f)
JINC L N 0 2 %
g & & A 018 = g
AT AT

/\ N
0

£
010101 1 01 “)
1

Figure 1.14: Two terminating derivations

The crucial point here is the application of the rule £(0,1,x) — £(x,%,%). In
term rewriting, this rule produces three copies of the subterm g(0,1) which
can be evaluated independently. In contrast, term graph rewriting yields a
shared occurrence of this subterm, preventing that £(0,1,x) — £(x,%,%) can
be applied again.

We will see that termination of =>.o); for a composed system Rg U Ry can be
guaranteed even when function symbols are shared between the left-hand sides
respectively right-hand sides of Ry and R;.

1.6. TERMINATION 33

Definition 1.6.4 (Crosswise disjointness)

Two term rewriting systems Rg and R, are crosswise disjoint if the function
symbols in the left-hand sides of the rules in R; do not occur in the right-hand
sides of the rules in Rq_;, for i = 0, 1.

For example, the following systems are crosswise disjoint:

£f(x) — glx,x)
RO{ a — E

f(f(x)) — g(x,b)
Rl{ h(a,x) — i(b,x)

In the following, we write =% for the relation =, over a term rewriting
system R.

Theorem 1.6.5 ([89])

Let Ry U Ry be the union of two crosswise disjoint term rewriting systems.
Then =>r,u~R, is terminating if and only if =%, and =g, are terminating. O

The main motivation for this result is to facilitate termination proofs. But we
can also use it to sharpen Corollary 1.6.3, obtaining a stronger undecidability
result for termination.

Corollary 1.6.6
The following problem is undecidable in general:

Instance: A finite term rewriting system R such that — is not terminating.
Question: Is = terminating?

Proof
If the above problem were decidable, we could decide termination of =% for
arbitrary finite systems R as follows. First construct the disjoint union R' =
R+ {f(a,b,x) = £(x,x%,x), a = b}. By Example 1.6 and Theorem 1.6.5, R’ is
a non-terminating term rewriting system, and =g is terminating if and only
if =g is terminating. Thus, if the above problem were decidable, we could
decide whether =5 is terminating or not. But this contradicts Corollary 1.6.3.
O

Coming back to the question when a composed system inherits termination
from its components, we now consider an alternative to crosswise disjointness.
The condition is based on partitioning the set of function symbols into defined
symbols and constructors, where the former are the leftmost symbols in the
left-hand sides of rules, and the latter are the remaining symbols.

34 CHAPTER 1. TERM GRAPH REWRITING

Definition 1.6.7 (Constructor-sharing)

Two term rewriting systems Ry and R, are constructor-sharing if the defined
symbols of R; do not occur in Ry_;, for i = 0, 1.

The proof of the following result was given in a framework based on terms with
labels, but can be adapted to the present setting.

Theorem 1.6.8 ([75])

Let Ro U Ry be the union of two constructor-sharing term rewriting systems.
Then =g,u R, is terminating if and only if =%, and =g, are terminating. O

An extended version of this result, also given in [75], additionally allows Rg
and R; to share defined symbols that do not occur in any right-hand side. In
this form the result generalizes Theorem 1.6.5.

Bibliographic Notes

Theorem 1.6.5 was established in the framework of jungle evaluation, a proof
for the present setting can be found in [91]. A short proof for the special case
that Ro and Ry have disjoint function symbols is given in [84] (in an approach
based on terms with labels).

A result even more general than Theorem 1.6.8 (and its extension) is pre-
sented in [72,73], but we refrain from stating it because of its technically
involved premise. In [73] one can also find a condition—more general then
disjointness—guaranteeing that normalization of =) is preserved by combi-
nations of systems.

1.6.8 A Recursive Path Order on Term Graphs

In the two previous subsections we have seen examples of non-terminating
term rewriting systems for which =) is terminating. This raises the question
for termination proof techniques covering such systems. In this subsection we
introduce a recursive path order on term graphs by analogy with the well-
known order on terms [26,27], and demonstrate its use for proving termination
of = con- Our exposition is based on [93], where a class of simplification orders
on term graphs is established by extending Kruskal’s Tree Theorem [74] from
trees to term graphs.

1.6. TERMINATION 35

Definition 1.6.9 (Top and immediate subgraphs)

Let G be a term graph and e be the unique edge such that attg(e) =
rootgus .. . vy for some nodes vy, ..., v,. Then the top of G, denoted by topg, is
the subgraph consisting of e and the nodes rootg,v1,. .., v,. The term graphs
Gloy,-- -G, are the immediate subgraphs of G. We denote by Subg the mul-
tiset {Glvys---,Glo, }-

Recall that a preorder is a reflexive and transitive relation, while a strict order
is irreflexive and transitive. A terminating strict order > is said to be well-
founded. The recursive path order on term graphs will be parameterized by a
preorder of tops, a so-called precedence.

Definition 1.6.10 (Precedence)

The set of all tops with function symbols from ¥ is denoted by Topss.2 A
precedence is a preorder J on Topsy.. The strict part and the equivalence part
of O are defined by 1= (d —C) and == (I NELC).

For example, Figure 1.15 shows a precedence over the function symbols of
Example 1.6. To define the recursive path order, we recall from [29] the lifting

SEERN

Figure 1.15: A precedence

of an order to a multiset order. Let > be a strict order on a set A. The
multiset extension >™ on the set of finite multisets over A is defined as
follows: M >™U! N if there are multisets X and Y such that (1) § # X C M,
(2) N=(M —-X)UY, and (3) for all y € Y there is some z € X with z > y.

In the following definition, 7Gx denotes the set of all variable-free term graphs
over X.

2Note that by our convention to deal with standard term graphs only, the tops in Topsy,
are pairwise non-isomorphic.

36 CHAPTER 1. TERM GRAPH REWRITING

Definition 1.6.11 (Recursive path order)

Let O be a precedence. The recursive path order >p, on TGy is defined in-
ductively as follows: G >ypo H if

(1) S >po H or S = H for some immediate subgraph S of G, or

(2) topg O topy and G >pe T for all immediate subgraphs T' of H, or

(3) topg = topy and Subg >4 Suby.
A more general variant of the recursive path order can be found in [93], where
the equality tops = topy in (3) is replaced by tops = topg. The equality
S = H in (1) is relaxed similarly.

Theorem 1.6.12

The recursive path order is well-founded whenever its underlying precedence
is well-founded. O

To derive from this result a proof technique for the termination of =, we
have to consider precedences containing the collapsing of tops.

Definition 1.6.13

A precedence 1 is collapse-compatible if whenever there is a graph morphism
t — u for some t,u € Topsy, then ¢t J u. If moreover J is well-founded, then
1 is a well-precedence.

The precedence of Figure 1.15, for example, is a well-precedence. Recall, for
the following theorem, that a term graph L is an instance of a term [if there
is a root preserving graph morphism ¢/ — L. A variable-free instance is called
a ground instance.

Theorem 1.6.14

Let >.po be induced by a well-precedence. Then = is terminating if
L =100t 1—r R implies L >,,, R, for every rule | — r in R and every ground
instance L of 1. O

Using the precedence of Figure 1.15, we can convince ourselves that both
rewrite rules of Example 1.6 satisfy the condition of Theorem 1.6.14. Thus,
we obtain an alternative proof for the termination of =.o; over that system.
We now give a further example for the use of the recursive path order.

1.7. CONFLUENCE 37

Example 1.8
Consider the following rewrite system:

—true A false — ———true
-—X — XAX
—-true — false

Again, term rewriting is not terminating, which can be seen as follows:
—true A false — ———true — —true A -true — —trueA false — ...

However, termination of =, can easily be checked by means of Theo-
rem 1.6.14, using the well-precedence of Figure 1.16. a

EE N

Figure 1.16: A well-precedence for Example 1.8

1.7 Confluence

An important consequence of the completeness of =, for equational proofs
(Corollary 1.5.3) is that if =con is convergent, validity of equations can be
decided by a =>con-based reduction procedure. In this section we take a look
at the relation between =, and — with respect to confluence, which is just
opposite to the relation with respect to termination: confluence of =1 strictly
implies confluence of —. With respect to convergence, however, there is the
same relation as in the case of termination. That is, =¢op is convergent for more
systems than —. Besides these issues, we address decidability and modularity
of confluence, confluence of plain term graph rewriting, and confluence modulo
bisimilarity.

38 CHAPTER 1. TERM GRAPH REWRITING

1.7.1 The Relation to Term Rewriting

We start with two counterexamples from [90] to demonstrate that confluence
of term rewriting implies neither confluence of = nor confluence of =.

Example 1.9
Suppose that R is given as follows:>
£f(x) — gx,x)
a — b
g(a,b) — ¢
g(b,b) — f(a)

Using structural induction on terms, it can be shown that every term has a
unique normal form. So term rewriting is normalizing and confluent. But Figure
1.17 shows that = is neither normalizing nor confluent. The same applies to
=coll, as the collapse step Ag(b,b) = Vg(b,b) does not essentially change the
situation. The problem here is that the sharing created by the rule £(x) —
g(x,x) prevents the rewrite step g(a,a) — g(a,b), which is necessary to reduce
g(a,a) to c. o

Figure 1.17: Non-confluence of = and =41

Example 1.10

In the case of =¢on, confluence is not even guaranteed over an orthogonal
one-rule system. Consider the rule

a— f(a)

and suppose that ¥ contain a binary function symbol g. Figure 1.18 shows
two =>con-derivations starting from Ag(a,a), where the resulting graphs do

31t is interesting to note that the same system was independently invented as a coun-
terexample to completeness of (term-based) basic narrowing [78].

1.7. CONFLUENCE 39

not have a common reduct. (The graphs derivable on the left represent the
terms g(£™(a), £"(a)), n > 1, while the graphs derivable on the right represent

g(f"(a),f"*1(a)),n 2 0.) O
‘g) g g g\ 8\
f«tna><a/\a:,a/f> “I

Figure 1.18: Non-confluence of =411

As mentioned above, confluence behaves opposite to termination in that it
carries over from =, to —. This fact has a straightforward proof by the
completeness of =, for term convertibility.

Theorem 1.7.1 ([90])
If =01 is confluent, then — is confluent as well.

Proof

Let =con be confluent and consider terms s, ¢ and u such that s «<* ¢t —* w.
Choose any term graphs S and U such that term(S) = s and term(U) = u.
Since s <+* u, Corollary 1.5.3 gives S &7, U. Hence, by confluence, there is

some term graph W such that S =}, W <, U (note that confluence is
equivalent to the Church-Rosser property, see Lemma 1.2.4). By soundness of

= coll, this implies s —* term (W) <* u. Thus — is confluent. O

This result holds analogously for local confluence [91]. Note also that in Ex-
ample 1.9, = and =), are not even locally confluent.

Despite the fact that confluence does not carry over from term to term graph
rewriting, normal forms with respect to =¢on are unique if and only if term
normal forms are unique. In other words, the possible non-confluence of =,
over a confluent term rewriting system has no impact on the uniqueness of
normal forms. To prove this, we need the following lemma.

Lemma 1.7.2

A term graph G is a normal form with respect to =-¢on if and only if G is fully
collapsed and term(G) is a normal form with respect to —. O

40 CHAPTER 1. TERM GRAPH REWRITING

Recall that an abstract reduction system (A, —) has unigue normal forms if
whenever a <+* b for normal forms a and b, then a = .

Theorem 1.7.3 ([91])

The relation = .o has unique normal forms if and only if — has unique normal
forms.

Proof

Let = ¢on have unique normal forms. Consider term normal forms ¢ and u such
that ¢t <+* u. Then Vt &7, Vu by completeness of =¢o1. By Lemma 1.7.2,
Vt and Vu are normal forms with respect to =con. Hence, by uniqueness of
normal forms, Vt = Vu. With Corollary 1.3.12 follows ¢ = u.

Conversely, suppose that — has unique normal forms. Let G and H be term
graph normal forms such that G &7, H. Then term(G) +* term(H) by
soundness of =11, and both terms are normal forms by Lemma, 1.7.2. Thus,
uniqueness of normal forms gives term(G) = term(H). Hence G = Vterm(G) =
vterm(H) = H by the uniqueness of fully collapsed term graphs (Lemma

1.3.9). O

As a consequence of this result, confluence carries over from term rewriting to
=con if the latter is normalizing. In particular, =>.o is convergent whenever
term rewriting is convergent.

Corollary 1.7.4

(1) Suppose that =¢on is normalizing. Then =>¢on is confluent if and only if
— is confluent.

(2) If — is convergent, then =¢o is convergent as well.

Proof

(1) The “only if’-direction is contained in Theorem 1.7.1. Conversely, let =¢on
be normalizing and — be confluent. The latter implies that — has unique
normal forms (see Lemma 1.2.4). Hence, by Theorem 1.7.3, =¢on has unique
normal forms as well. But it is easy to verify that a normalizing relation with
unique normal forms is confluent.

(2) By Theorem 1.6.1, termination of — implies termination of =¢.;. In par-
ticular, = o1 is normalizing then. Hence, by (1), confluence carries over from
— 10 = coll- O

The next example shows that the converse of the second part of Corollary 1.7.4
does not hold. That is, the class of term rewriting systems over which =¢. is
convergent strictly contains the class of convergent term rewriting systems.

1.7. CONFLUENCE 41

Example 1.11
Consider the following system:

f(x) — gx,x)
a — b
gla,b) — £(a)

Again it can be shown that every term has a unique normal form, implying
that term rewriting is confluent. But — is not terminating, as there is the
following infinite rewrite sequence:

f(a) — g(a,a) = g(a,b) — f(a) —> ...

Using the recursive path order induced by the well-precedence of Figure 1.19,
it is not difficult to see that Theorem 1.6.14 ensures termination of = o). Then
Corollary 1.7.4(1) guarantees that =>¢on is confluent, and hence convergent. O

N Lo
o o . 4
Figure 1.19: A well-precedence for Example 1.11

1.7.2 Decidability and Combined Systems

Analogously to the situation for term rewriting [69], termination of =¢on im-
plies that confluence can be decided by an analysis of so-called critical pairs.
We state the decidability of confluence without entering into the technicalities
of critical pairs for term graph rewriting, which can be found in [91,92].

Theorem 1.7.5 ([91])
There is an algorithm that solves the following problem:

Instance: A finite term rewriting system R such that =con is terminating.
Question: Is =¢o confluent? a

Note that by the combination of this result with Corollary 1.7.4(1), if =¢on is
terminating, then confluence of term rewriting is decidable as well.

Next we consider confluence of =1 over combined systems. In contrast to con-
fluence of term rewriting [101], confluence of =>con is not a modular property.

42 CHAPTER 1. TERM GRAPH REWRITING

In fact, confluence may be destroyed just by extending the set ¥ of function
symbols. This can be seen from Example 1.10, where =) is confluent when
Y ={a,f}. After adding a binary symbol g, confluence breaks down.

We will see, however, that convergence of =y is preserved by the union of
two crosswise disjoint systems if their left-hand sides do not mutually overlap.

Definition 1.7.6 (Non-interfering systems)

Two term rewriting system Ry and Ry are non-interfering if no left-hand side
of R; overlaps a left-hand side of Ry_;, for ¢ =0, 1.

Asin Subsection 1.6.2, we write =% for the relation =, over a term rewriting
system R.

Theorem 1.7.7 ([90])

Let Ro U Ry be the union of two crosswise disjoint and non-interfering term
rewriting systems. If =, and =>, are convergent, then =g,y R, iS conver-
gent as well. a

Recently, this result was extended by relaxing crosswise disjointness [73]. The
preservation of convergence contrasts with the situation for term rewriting,
where even disjoint unions need not preserve this property. The following coun-
terexample was given in [31].

Example 1.12
Consider the following two systems with disjoint function symbols:
£(0,1,x) — £(x,%,%)

f(x,y,2) — 2
Ro 0 — 2
1 - 2

R { gx,y,y) — x
1
glx,x,y) = vy

It can be shown that term rewriting is convergent for both systems. But the
union Ry U Ry is not terminating:

f(g(0,1,1),g(0,1,1),g(0,1,1)) — £(0,g(0,1,1),g(0,1,1))
—? £(0,g(2,2,1),g(0,1,1))
- £(0,1,g(0,1,1))
- £(g(0,1,1),8(0,1,1),8(0,1,1))
_)

1.7. CONFLUENCE 43

Theorem 1.7.7 shows that = ur, is convergent, since =5, and =g, are con-
vergent by Corollary 1.7.4(2). In particular, every exhaustive rewrite sequence
starting from Af(g(0,1,1),g(0,1,1),g(0,1,1)) ends in the unique normal form
A2.]

1.7.8 Plain Term Graph Rewriting and Confluence Modulo Bisimilarity

So far we have concentrated on confluence of term graph rewriting with col-
lapsing. This subsection presents some confluence results for plain term graph
rewriting and for the relations =; and = ... (For the first two theorems, the
reader may wish to look up Definition 1.5.5 which introduces orthogonal sys-
tems.)

Theorem 1.7.8 ([97])
If R is orthogonal, then = is subcommutative. O

This result was proved in a technical framework which slightly differs from the
present one. The proof actually shows that = is subcommutative for the larger
class of non-overlapping term rewriting systems. Beyond non-overlapping sys-
tems, however, there is virtually no significant class of systems for which = is
confluent. By the next example, = need not be confluent even for left-linear,
convergent term rewriting systems.

Example 1.13
The left-linear system

f(x) - g(xx)
f(a) - glaa)

is clearly convergent under term rewriting, but Figure 1.20 shows that plain

term graph rewriting is not confluent. o
g £ g
<=1 = /\
a a a a

Figure 1.20: Non-confluence of =

This example suggests to consider a version of confluence where joining deriva-
tions need not end in the same graph but only in bisimilar graphs.

44 CHAPTER 1. TERM GRAPH REWRITING

Definition 1.7.9 (Confluence modulo bisimilarity)

A Dbinary relation = on term graphs is confluent modulo bisimilarity if when-
ever Gy € G ~ H =* Hi, there are term graphs G and Hs such that
G1=3*G:~ Hy € Hy.

For plain term graph rewriting, confluence modulo bisimilarity and confluence
are incomparable [7]. But both properties hold for orthogonal systems.

Theorem 1.7.10 ([7])
If R is orthogonal, then = is confluent modulo bisimilarity. O

It is worth mentioning that “orthogonal” cannot be generalized to “non-
overlapping”. To ensure that = is confluent modulo bisimilarity for a confluent,
non-orthogonal term rewriting system, = has to be normalizing.

Theorem 1.7.11 ([7])

If R is left-linear, — confluent and = normalizing, then = is confluent modulo
bisimilarity. a

Here normalization of = cannot be relaxed to normalization of —, as is wit-
nessed by Example 1.9, and left-linearity cannot be dropped either. Moreover,
the result can be strengthened in that = is even Church-Rosser modulo bisim-
ilarity, see [6].

The last result in this section shows that =; and = . are confluent exactly
for all confluent term rewriting systems.

Theorem 1.7.12 ([7,6])
The following are equivalent:

(1) =i is confluent.
(2) =~ is confluent.
(3) — is confluent. O

We finally mention that for =¢on, = copy and =>pi, confluence modulo bisimi-
larity is equivalent to confluence. More generally, this applies to every relation
on term graphs the transitive closure of which contains > or < (see [6]).

1.8. TERM GRAPH NARROWING 45
1.8 Term Graph Narrowing

Narrowing combines term rewriting with unification in order to solve equations:
given an equation s = t, the goal is to generate a substitution ¢ such that
R E o(s) = o(t). Narrowing originates from the area of theorem proving
and is used as an operational principle for combining functional and logic
programming. See [48] for a survey of the latter application.

In this section we study term graph narrowing, a graph-based form of narrowing
which combines term graph rewriting with term unification. As in the case of
rewriting, the motivation for sharing (and collapsing) common subexpressions
is to improve the efficiency of computations in time and space.

Narrowing is said to be complete if for every solution of an equation, it can
generate a solution that is at least as general. While conventional narrowing
is complete whenever term rewriting is normalizing and confluent, for term
graph narrowing one has to require that =>¢o; is normalizing and confluent.
In Subsection 1.8.2 we discuss the completeness of two restricted forms of
term graph narrowing, called minimally collapsing and mazximally collapsing
narrowing. Our presentation is based on [44,46].

1.8.1 Term Graph Narrowing

We will need substitutions replacing variables in term graphs by term graphs.
A pair x/G consisting of a variable z and a term graph G is a substitution pair.
It is applied to an z-labelled edge e in a term graph H by removing e, adding
(disjointly) G, and identifying res(e) with rootg.

Definition 1.8.1 (Term graph substitution)

A term graph substitution is a finite set « = {z1/G1,...,2,/Gn} of substi-
tution pairs such that z1,...,z, are pairwise distinct and z; # term(G;) for
i =1,...,n. Given a term graph H, applying z1/G1, ...,z /G, simultane-
ously to all edges labelled with z1,...,z, yields the term graph Ha.

The domain of a is the set Dom(a) = {z1,...,2,}, and its composition with
a term graph substitution 3 is defined by

af ={z/GB | z/G € a and z # term(GB)} U{y/H € B | y ¢ Dom(a)}

to satisfy H(af) = (Ha)f for every term graph H.

A term graph substitution « induces the term substitution at®™: Ty x —
Ty x mapping z; to term(G;), for i = 1,...,n, and each other variable to

46 CHAPTER 1. TERM GRAPH REWRITING

itself. Given a term substitution ¢ and a term ¢, we will write to in place
of o(t). We may represent ¢ by the set {z1/t1,...,2/tn} if zjo = t; for
1=1,...,n and xo = z for each other variable z.

A wvariant of a term rewrite rule [— r is a rule of the form ¢ — ro, where
o is an injective substitution mapping variables to variables. A set of terms
{t1,...,tn} is unifiable if there is a substitution o such that t;joc =tyo =--- =
t,o. In this case o can be chosen as a most general unifier, meaning that for
every substitution 7 with ¢;7 = to7 = --- = t,,7 there exists a substitution p
such that 7 = p o o (see for example [11]).

Definition 1.8.2 (Term graph narrowing)

Let G and H be term graphs, U a set of non-variable nodes in G, [— r a variant
of a rule in R, and « a term graph substitution. There is a narrowing step
G ~U, 157, o H if o™ is a most general unifier of {termg(u) | v € U} U {I},
and

Gar-G' = H

v,l—>r
for some collapsing ¢: Ga — G’ such that U = {7 | ¢(v) = v}.

We denote such a step also by G ~, H. A term graph narrowing derivation
is sequence of the form G = G1 ~qo, G2 ~qa, -.. »q,_, Gn = H. It may be
denoted by G ~* H, where @ = oz ..., ifn>2anda=0ifn=1.

From now on we assume that R contains the rule x =7 x — true, where the
binary symbol =7 and the constant true do not occur in any other rule. A goal
is a term of the form s =’ ¢ such that s and ¢ do not contain =’ and true.

A solution of this goal is a substitution o satisfying so <>* to (equivalently:
R = so & to).

Example 1.14
Let R consist of the following rules:

0+x — x
s(x)+y — s(x+y)
Oxx — 0
s(x) xy = (xxy)+y
X="X — true

Suppose that we want to solve the goal (z x z) + (z x z) =7 s(z). Figure 1.21
shows a term graph narrowing derivation starting from the fully collapsed term

1.8. TERM GRAPH NARROWING 47

graph representing this goal. The table below the derivation gives the applied
rewrite rules and the involved term substitutions. In each step, the set U of
Definition 1.8.2 is a singleton. Note that steps (c), (d) and (e) are nothing
but =-steps, and that step (f) consists of a collapse step followed by a =-step.
The derivation computes the term substitution {x/0, x'/s(0), y/s(0), z/s(0)}.
Restricting this substitution to the variables of the goal yields the solution
{z/s(0)}. Solving the same goal by term-based narrowing requires nine steps,
demonstrating that term graph narrowing can speed up the computation of
solutions. O

Given substitutions o and 7, and V' C X, we write 0 =g 7 [V] if zo +* 27 for
each z € V, and o < 7 [V] if there is a substitution p such that op =% 7 [V].
The set of variables occurring in a term graph G is denoted by Var(G), that
is, Var(G) = labg(Eg) N X.

Theorem 1.8.3 (Soundness and completeness of narrowing)

Let G be a term graph such that term(G) is a goal s =" t.

(1) If G ~ Atrue, then o'*™ is a solution of s =" t.

(2) If =con is normalizing and confluent, then for every solution o of s =" t
there exists a narrowing derivation G ~j Atrue such that prerm <
o [Var(G)]. O

In the sequel, we will refer to the conclusion of statement (2) as completeness
of term graph narrowing.

Example 1.15

This example shows that term graph narrowing is not complete in general
for a confluent and normalizing term rewriting system, although term-based
narrowing is complete for such systems [79]. As a counterexample we can use
the system of Example 1.9:

fx) — gxx)
a — b
g(a,b) — ¢
g(b,b) — f£(a)

After adding the rule x = x — true, term rewriting remains normalizing and
confluent. Since f(a) is reducible to c, the empty substitution is a solution of

/\ /\ /\ /\ / \ / \
+ s + s + S + S 5
ﬁ) ~> f) ~ ﬁ) ~)/ ~> l \/ ~~ true
% (@ (b) 7 (c) S @ X e) (f)
g / \ /\ K\
z X 0 s
& |
T 0
step | rewrite rule substitution
(a) | s(x)xy—= (xxy)+y | {y/s(x), z/s(x)}
(b) |Oxx' >0 {x/0, x'/s(0)}
() |0+x—x {x/s(0)}
(d) | s(x)+y—sx+y) {x/0, y/s(0)}
() |0+x—x {x/s(0)}
(f) | x="x— true {x/s(s(0))}

Figure 1.21: A term graph narrowing derivation

8¥

ONILITYMHAY HdVYD WHAL T H4LdVHO

1.8. TERM GRAPH NARROWING 49

the goal £(a) =" ¢ . But Figure 1.22 demonstrates that term graph narrowing—
which for a variable-free goal is just a combination of collapsing and rewriting—
cannot solve the goal f(a) =’ c. Note that in this example, =, is neither
normalizing nor confluent (see Figure 1.17 for the absense of confluence). 0O

Figure 1.22: Incompleteness of term graph narrowing

1.8.2 Minimally and Maximally Collapsing Narrowing

In this subsection we consider the completeness of two restricted forms of term
graph narrowing where all steps contain a minimal or maximal collapsing,
respectively.

Definition 1.8.4 (Minimal collapsing)

A collapsing G > M is minimal with respect to a redex (v, [= r) in M if for
each term graph M' with G = M' = M and each preimage v' of v in M’, the
pair (v', | — r) is not a redex.

In particular, if G equals M, then G > M is minimal since no M' with G =
M' = M exists. A proper collapsing G = M is minimal only if I — r is not
left-linear and cannot be applied at any preimage of v in G.

Definition 1.8.5 (Minimally collapsing narrowing)

A term graph narrowing derivation is minimally collapsing if for each narrowing
step G = Ga = G' =1, H, the collapsing Ga > G’ is minimal with respect
to the redex (v, | — r).

30 CHAPTER 1. TERM GRAPH REWRITING

For example, the derivation of Figure 1.21 is minimally collapsing. Note that
in a minimally collapsing step G ~y, ;—r, o H, the set U must be a singleton.
It turns out that Theorem 1.8.3 can be strengthened by replacing unrestricted
term graph narrowing with minimally collapsing narrowing.

Theorem 1.8.6 (Completeness of minimally collapsing narrowing)

Minimally collapsing narrowing is complete whenever = ¢o1 is normalizing and
confluent. 0

We now turn to maximally collapsing narrowing, that is, we consider narrow-
ing derivations in which all involved collapse steps yield fully collapsed term
graphs.

Definition 1.8.7 (Maximally collapsing narrowing)

A term graph narrowing derivation is mazimally collapsing if for each narrow-
ing step G — Ga = G' =, H, the term graph G’ is fully collapsed.

Example 1.16
Consider the rules

exp(0) — s(0)
exp(s(x)) — exp(x)+ exp(x)

specifying the function exp: n — 2" on natural numbers. Figure 1.23 demon-
strates that maximally collapsing narrowing can solve a goal of the form

exp(x) =" s(0) +--- +5(0)
—_————
2"-times

in n+ 2 steps if the goal is suitably represented. (Substitutions are represented
only by those parts affecting the variables in the graphs.) In contrast, both
tree-based narrowing and minimally collapsing narrowing need a number of
steps exponential in n to solve such a goal. a

While minimally collapsing narrowing is complete when term graph rewriting
is normalizing and confluent, the following counterexample shows that this is
not the case for maximally collapsing narrowing,.

n-times ¢

—
™~
~

DN
e
™~
~

ONIMOYYVN HIVID WYHAL 8T

Figure 1.23: A maximally collapsing narrowing derivation

16

52 CHAPTER 1. TERM GRAPH REWRITING

Example 1.17
Consider the following term rewriting system:

g(xy) — gaa)
a — b

g(a,b) — b

x="x — true

Here =con is normalizing and confluent, which can be shown by induction on
the size of term graphs. But the tree Ag(a,a) cannot be reduced to its normal
form Ab if proper rewrite steps are preceded by maximal collapse steps, as
shown in Figure 1.24. It follows that maximally collapsing narrowing cannot
solve the goal g(a,a) =’ b, although g(a,a) and b are clearly equivalent. 0O

g g g g
AN I AN
v 7 v 7

g g

0 0

b b

Figure 1.24: Incompleteness of maximally collapsing narrowing

Completeness of maximally collapsing narrowing can be ensured, however, by
strengthening normalization to termination.

Theorem 1.8.8 (Completeness of maximally collapsing narrowing)
Maximally collapsing narrowing is complete whenever = o1 is convergent. O

Note that as a corollary of this result, maximally collapsing narrowing is com-
plete for all convergent term rewriting systems.

1.8.3 Bibliographic Notes

The present definition of term graph narrowing was introduced in [44]. It ex-
tends the definition in [46] in that the latter corresponds to the special case
where all nodes in the set U represent the same term. The paper [44] also

1.9. FURTHER TOPICS 53

studies basic term graph narrowing, an analogue to basic term-based narrow-
ing [55]. Roughly speaking, this strategy forbids narrowing steps at nodes that
have been created by the substitutions of previous steps. It turns out that min-
imally collapsing basic narrowing is complete if = o1 is innermost normalizing
and confluent, and that Theorem 1.8.8 holds for maximally collapsing basic
narrowing as well.

Basic narrowing on term graphs is also addressed in [71], but the kind of nar-
rowing used there (going back to [45]) does not provide for a collapsing between
the application of the unifier and the rewrite step. As a consequence, narrow-
ing is incomplete for a non-left-linear system like {f(x,x) — a} (consider, for
example, the goal £(x,y) =" a).

Narrowing on jungles, using conditional rewrite rules, is considered in [25].
Narrowing steps are based on jungle pushouts, leading to a kind of minimally
collapsing narrowing. The results in [25] aim at showing the correctness of a
concrete implementation of conditional narrowing. In [32], narrowing on possi-
bly cyclic term graphs is studied, and an optimal strategy is given for the class
of constructor-based orthogonal term rewriting systems.

1.9 Further Topics

We briefly mention some topics in term graph rewriting that have not been
discussed in the preceding sections.

Optimality of reduction strategies—in the sense of finding a normal form in a
minimal number of steps—is investigated in [97,98,99,77]. Essential for these
considerations is the subcommutativity of plain term graph rewriting over or-
thogonal systems.

There are a few papers describing implementations of term graph rewriting.
So-called concurrent term rewriting is addressed in [40,66], while [61,39,13] deal
with the term graph rewrite language Dactl. A report on an implementation
which enforces full collapsing can be found in [59]. For a system dealing with
term graphs with bound variables see [58].

Aspects of term graph rewriting relevant for the design, implementation and
analysis of functional programming languages are discussed in [87,3,2]. See
also the next chapter and the references given there. In [49] the technique of
memoization, which keeps computed values for later use, is realized by term
graph rewriting.

In [22,24,23] it is shown how to simulate logic programming by term graph
rewriting.

54 CHAPTER 1. TERM GRAPH REWRITING

While this survey is restricted to acyclic term graphs and finitary term rewrit-
ing, one may also consider cyclic graphs and infinitary term rewriting. The
interested reader may consult [36,37,64,65,18,20].

Further issues that have been considered are term graph rewriting over condi-
tional term rewriting systems [83], the relation between term graph rewriting
and event structures [63,17], and the term-generating power of context-free
“jungle grammars” [35].

The area of graph reduction for the lambda calculus is related to term graph
rewriting, but is beyond the scope of this survey. For information about this
topic, we refer to [8,5] and the references given there.

References

1. Harold Abelson and Gerald Jay Sussman. Structure and Interpretation
of Computer Programs. The MIT Press, 1985.

2. Zena M. Ariola. Relating graph and term rewriting via Béhm mod-
els. Applicable Algebra in Engineering, Communication and Computing,
7:401-426, 1996.

3. Zena M. Ariola and Arvind. Properties of a first-order functional lan-
guage with sharing. Theoretical Computer Science, 146:69-108, 1995.

4. Zena M. Ariola and Jan Willem Klop. Equational term graph rewriting,.
Fundamenta Informaticae, 26:207-240, 1996.

5. Zena M. Ariola and Jan Willem Klop. Lambda calculus with explicit
recursion. Information and Computation, 139:154-233, 1997.

6. Zena M. Ariola, Jan Willem Klop, and Detlef Plump. Bisimilarity in
term graph rewriting. Information and Computation. To appear.

7. Zena M. Ariola, Jan Willem Klop, and Detlef Plump. Confluent rewriting
of bisimilar term graphs. In Proc. Fourth Workshop on Erpressiveness
in Concurrency, volume 7 of Electronic Notes in Theoretical Computer
Science. Elsevier, 1997.

8. Andrea Asperti and Cosimo Laneve. Interaction systems I: The theory
of optimal reductions. Mathematical Structures in Computer Science,
4:457-504, 1994.

9. Jirgen Avenhaus. Reduktionssysteme. Springer-Verlag, 1995.

10. Jiirgen Avenhaus and Klaus Madlener. Term rewriting and equational
reasoning. In R.B. Banerij, editor, Formal Techniques in Artificial Intel-
ligence: a Sourcebook, pages 1-43. Elsevier, 1990.

11. Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cam-
bridge University Press, 1998.

REFERENCES 95

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Richard Banach. Term graph rewriting and garbage collection using
opfibrations. Theoretical Computer Science, 131:29-94, 1994.

Richard Banach. Fundamental issues and the design of MONSTR. Jour-
nal of Universal Computer Science, 2:164-216, 1996.

Richard Banach. Transitive term graph rewriting. Information Process-
ing Letters, 60:109-114, 1996.

Hendrik Barendregt, Marko van Eekelen, John Glauert, Richard Ken-
naway, Rinus Plasmeijer, and Ronan Sleep. Term graph rewriting. In
Proc. Parallel Architectures and Languages FEurope, volume 259 of Lec-
ture Notes in Computer Science, pages 141-158. Springer-Verlag, 1987.
Ronald V. Book and Friedrich Otto. String-Rewriting Systems. Texts
and Monographs in Computer Science. Springer-Verlag, 1993.

David Clark and Richard Kennaway. FEvent structures and non-
orthogonal term graph rewriting. Mathematical Structures in Computer
Science, 6(6):545-578, 1996.

Andrea Corradini and Frank Drewes. (Cyclic) term graph rewriting is
adequate for rational parallel term rewriting. Technical Report TR-97-
14, Universita di Pisa, Dipartimento di Informatica, 1997.

Andrea Corradini and Fabio Gadducci. A 2-categorical presentation of
term graph rewriting. In Proc. Category Theory and Computer Science,
volume 1290 of Lecture Notes in Computer Science. Springer-Verlag,
1997.

Andrea Corradini and Fabio Gadducci. Rational term rewriting. In Proc.
Foundations of Software Science and Computation Structures, volume
1378 of Lecture Notes in Computer Science, pages 156-171. Springer-
Verlag, 1998.

Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig,
Reiko Heckel, and Michael Lowe. Algebraic approaches to graph trans-
formation — Part I: Basic concepts and double pushout approach. In
G. Rozenberg, editor, Handbook of Graph Grammars and Computing by
Graph Transformation, volume I, chapter 3, pages 163—245. World Sci-
entific, 1997.

Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig, and
Michael Léwe. Graph grammars and logic programming. In Proc. Graph
Grammars and Their Application to Computer Science, volume 532 of
Lecture Notes in Computer Science, pages 221-237. Springer-Verlag,
1991.

Andrea Corradini and Francesca Rossi. Hyperedge replacement jungle
rewriting for term rewriting systems and logic programming. Theoretical
Computer Science, 109:7-48, 1993.

96

24

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

CHAPTER 1. TERM GRAPH REWRITING

. Andrea Corradini, Francesca Rossi, and Francesco Parisi-Presicce. Logic
programming as hypergraph rewriting. In Proc. CAAP ’91, volume 493
of Lecture Notes in Computer Science, pages 275—295. Springer-Verlag,
1991.

Andrea Corradini and Dietmar Wolz. Jungle rewriting: an abstract de-
scription of a lazy narrowing machine. In Proc. Graph Transformations
in Computer Science, volume 776 of Lecture Notes in Computer Science,
pages 119-137. Springer-Verlag, 1994.

Nachum Dershowitz. Orderings for term rewriting systems. Theoretical
Computer Science, 17:279-301, 1982.

Nachum Dershowitz. Termination of rewriting. Journal of Symbolic
Computation, 3:69-116, 1987.

Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In
Jan van Leeuwen, editor, Handbook of Theoretical Computer Science,
volume B, chapter 6, pages 244-320. Elsevier, 1990.

Nachum Dershowitz and Zohar Manna. Proving termination with mul-
tiset orderings. Communications of the ACM, 22(8):465-476, 1979.
Peter J. Downey, Ravi Sethi, and Robert E. Tarjan. Variations on the
common subexpression problem. Journal of the ACM, 27(4):758-771,
1980.

Klaus Drosten. Termersetzungssysteme. Informatik-Fachberichte 210.
Springer-Verlag, 1989.

Rachid Echahed and Jean-Christophe Janodet. Admissible graph rewrit-
ing and narrowing. In Proc. Joint International Conference and Sympo-
sium on Logic Programming, pages 325-342. MIT Press, 1998.

Hartmut Ehrig. Introduction to the algebraic theory of graph grammars.
In Proc. Graph-Grammars and Their Application to Computer Science
and Biology, volume 73 of Lecture Notes in Computer Science, pages
1-69. Springer-Verlag, 1979.

Hartmut Ehrig and Barry K. Rosen. Commutativity of independent
transformations on complex objects. Research Report RC 6251, IBM
T.J. Watson Research Center, Yorktown Heights, 1976.

Joost Engelfriet and Linda Heyker. Context-free hypergraph grammars
have the same term-generating power as attribute grammars. Acta In-
formatica, 29:161-210, 1992.

William M. Farmer, John D. Ramsdell, and Ronald J. Watro. A correct-
ness proof for combinator reduction with cycles. ACM Transactions on
Programming Languages and Systems, 12:123-134, 1990.

William M. Farmer and Ronald J. Watro. Redex capturing in term graph
rewriting. International Journal of Foundations of Computer Science,

REFERENCES 57

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

1(4):369-386, 1990.

Philippe Flajolet, Paolo Sipala, and Jean-Marc Steyaert. Analytic vari-
ations on the common subexpression problem. In Proc. Automata, Lan-
guages, and Programming, volume 443 of Lecture Notes in Computer
Science, pages 220-234. Springer-Verlag, 1990.

John Glauert, Richard Kennaway, and Ronan Sleep. Dactl: An experi-
mental graph rewriting language. In Proc. Graph Grammars and Their
Application to Computer Science, volume 532 of Lecture Notes in Com-
puter Science, pages 378-395. Springer-Verlag, 1991.

Joseph Goguen, Claude Kirchner, and José Meseguer. Concurrent term
rewriting as a model of computation. In Proc. Graph Reduction, volume
279 of Lecture Notes in Computer Science, pages 53-93. Springer-Verlag,
1987.

Bernhard Gramlich. Generalized sufficient conditions for modular termi-
nation of rewriting. Applicable Algebra in Engineering, Communication
and Computing, 5:131-158, 1994.

Annegret Habel, Hans-Jorg Kreowski, and Detlef Plump. Jungle evalu-
ation. In Proc. Recent Trends in Data Type Specification, volume 332 of
Lecture Notes in Computer Science, pages 92-112. Springer-Verlag, 1988.
Annegret Habel, Hans-J6rg Kreowski, and Detlef Plump. Jungle evalu-
ation. Fundamenta Informaticae, 15(1):37-60, 1991.

Annegret Habel and Detlef Plump. Complete strategies for term graph
narrowing. In Recent Developments in Algebraic Development Tech-
niques, Selected Papers, Lecture Notes in Computer Science. Springer-
Verlag. To appear.

Annegret Habel and Detlef Plump. Unification, rewriting, and narrowing
on term graphs. In Proc. Joint COMPUGRAPH/SEMAGRAPH Workshop
on Graph Rewriting and Computation (SEGRAGRA ’95), volume 2 of
Electronic Notes in Theoretical Computer Science. Elsevier, 1995.
Annegret Habel and Detlef Plump. Term graph narrowing. Mathematical
Structures in Computer Science, 6:649-676, 1996.

Gaétan Hains. The compaction of acyclic terms. In Proc. Parallel Archi-
tectures and Languages Europe, volume 366 of Lecture Notes in Computer
Science, pages 288-303. Springer-Verlag, 1989.

Michael Hanus. The integration of functions into logic programming:
From theory to practice. The Journal of Logic Programming, 19 &
20:583-628, 1994.

Berthold Hoffmann. Term rewriting with sharing and memoization. In
Proc. Algebraic and Logic Programming, volume 632 of Lecture Notes in
Computer Science, pages 128-142. Springer-Verlag, 1992.

98

50

o1.

92.

53.

54.

95.

56.

57.

58.

59.

60.

61.

62.

63.

CHAPTER 1. TERM GRAPH REWRITING

. Berthold Hoffmann and Detlef Plump. Jungle evaluation for efficient
term rewriting. In Proc. Algebraic and Logic Programming. Mathemati-
cal Research 49, pages 191-203, Berlin, 1988. Akademie-Verlag. Also in
Springer Lecture Notes in Computer Science 343, 191-203, 1989.
Berthold Hoffmann and Detlef Plump. Implementing term rewriting
by jungle evaluation. RAIRO Theoretical Informatics and Applications,
25(5):445-472, 1991.

Gérard Huet. Confluent reductions: Abstract properties and applications
to term rewriting systems. Journal of the ACM, 27(4):797-821, 1980.
Gérard Huet and Dallas Lankford. On the uniform halting problem for
term rewriting systems. Report no. 283, INRIA Rocquencourt, 1978.
Gérard Huet and Derek C. Oppen. Equations and rewrite rules, a survey.
In Ronald V. Book, editor, Formal Language Theory: Perspectives and
Open Problems, pages 349—405. Academic Press, 1980.

Jean-Marie Hullot. Canonical forms and unification. In Proc. 5th In-
ternational Conference on Automated Deduction, volume 87 of Lecture
Notes in Computer Science, pages 318-334. Springer-Verlag, 1980.
Matthias Jantzen. Confluent String Rewriting, volume 14 of EATCS
Momnographs. Springer-Verlag, 1988.

Matthias Jantzen. Basics of term rewriting. In Grzegorz Rozenberg
and Arto Salomaa, editors, Handbook of Formal Languages, volume 3,
chapter 5, pages 269-337. Springer-Verlag, 1997.

Wolfram Kahl. Internally typed second-order term graphs. In Proc.
Graph-Theoretic Concepts in Computer Science, volume 1517 of Lecture
Notes in Computer Science, pages 149-163. Springer-Verlag, 1998.
Stefan Kahrs. Unlimp: Uniqueness as a leitmotiv for implementation.
In Proc. Programming Language Implementation and Logic Program-
ming, volume 631 of Lecture Notes in Computer Science, pages 115-129.
Springer-Verlag, 1992.

Richard Kennaway. On “On graph rewritings”. Theoretical Computer
Science, 52:37-58, 1987. Corrigendum: Theoretical Computer Science,
61:317-320, 1988.

Richard Kennaway. Implementing term rewrite languages in Dactl. The-
oretical Computer Science, 72:225-249, 1990.

Richard Kennaway. Graph rewriting in some categories of partial mor-
phisms. In Proc. Graph Grammars and Their Application to Computer
Science, volume 532 of Lecture Notes in Computer Science, pages 490—
504. Springer-Verlag, 1991.

Richard Kennaway, Jan Willem Klop, Ronan Sleep, and Fer-Jan de Vries.
Event structures and orthogonal term graph rewriting. In Term Graph

REFERENCES 59

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

5.

Rewriting: Theory and Practice, chapter 11, pages 141-169. John Wiley,
1993.

Richard Kennaway, Jan Willem Klop, Ronan Sleep, and Fer-Jan de Vries.
On the adequacy of graph rewriting for simulating term rewriting. ACM
Transactions on Programming Languages and Systems, 16(3):493-523,
1994.

Richard Kennaway, Jan Willem Klop, Ronan Sleep, and Fer-Jan de Vries.
Transfinite reductions in orthogonal term rewriting systems. Information
and Computation, 119:18-38, 1995.

Claude Kirchner and Patrick Viry. Implementing parallel rewriting. In
Proc. Programming Language Implementation and Logic Programming,
volume 456 of Lecture Notes in Computer Science, pages 1-15. Springer-
Verlag, 1990.

Jan Willem Klop. Term rewriting systems. In S. Abramsky, Dov M.
Gabbay, and T.S.E. Maibaum, editors, Handbook of Logic in Computer
Science, volume 2, pages 1-116. Oxford University Press, 1992.

Jan Willem Klop. Term graph rewriting. In Proc. Higher-Order Algebra,
Logic, and Term Rewriting, volume 1074 of Lecture Notes in Computer
Science, pages 1-16. Springer-Verlag, 1996.

Donald E. Knuth and Peter B. Bendix. Simple word problems in uni-
versal algebras. In J. Leech, editor, Computational Problems in Abstract
Algebras, pages 263—-297. Pergamon Press, 1970.

Madala R.K. Krishna Rao. Graph reducibility of term rewriting sys-
tems. In Proc. Mathematical Foundations of Computer Science 1995, vol-
ume 969 of Lecture Notes in Computer Science, pages 371-381. Springer-
Verlag, 1995.

Madala R.K. Krishna Rao. Completeness results for basic narrowing in
non-copying implementations. In Proc. Joint International Conference
and Symposium on Logic Programming, pages 393—407. MIT Press, 1996.
Madala R.K. Krishna Rao. Modularity of termination in term graph
rewriting. In Proc. Rewriting Techniques and Applications, volume 1103
of Lecture Notes in Computer Science, pages 230-244. Springer-Verlag,
1996.

Madala R.K. Krishna Rao. Modular aspects of term graph rewriting.
Theoretical Computer Science, 208(1-2):59-86, 1998.

Joseph B. Kruskal. Well-quasi-ordering, the Tree Theorem, and Vaz-
sonyi’s conjecture. Transactions of the American Mathematical Society,
95:210-225, 1960.

Masahito Kurihara and Azuma Ohuchi. Modularity in noncopying term
rewriting. Theoretical Computer Science, 152(1):139-169, 1995.

60

76

e

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

CHAPTER 1. TERM GRAPH REWRITING

Michael Léwe. Implementing algebraic specifications by graph trans-
formation systems. Journal on Information Processing and Cybernetics
(EIK), 26(11/12):615-641, 1990.

Luc Maranget. Optimal derivations in weak lambda calculi and in or-
thogonal term rewriting systems. In Proc. Annual ACM Symposium on
Principles of Programming Languages, pages 255-269. ACM Press, 1991.
Aart Middeldorp and Erik Hamoen. Counterexamples to completeness
results for basic narrowing (extended abstract). In Proc. Algebraic and
Logic Programming, pages 244-258. Springer Lecture Notes in Computer
Science 632, 1992.

Aart Middeldorp and Erik Hamoen. Completeness results for basic nar-
rowing. Applicable Algebra in Engineering, Communication and Com-
puting, 5:213-253, 1994.

Robin Milner. Communication and Concurrency. Prentice Hall Interna-
tional, 1989.

M.H.A. Newman. On theories with a combinatorial definition of “equiv-
alence”. Annals of Mathematics, 43(2):223-243, 1942.

Enno Ohlebusch. On the modularity of termination of term rewriting
systems. Theoretical Computer Science, 136:333-360, 1994.

Enno Ohlebusch. Conditional term graph rewriting. In Proc. Algebraic
and Logic Programming, volume 1298 of Lecture Notes in Computer Sci-
ence, pages 144-158. Springer-Verlag, 1997.

Enno Ohlebusch. Modularity of termination for disjoint term graph
rewrite systems: A simple proof. EATCS Bulletin, 66:171-177, 1998.
Peter Padawitz. Graph grammars and operational semantics. Theoretical
Computer Science, 19:117-141, 1982.

David A. Plaisted. Equational reasoning and term rewriting systems. In
Dov M. Gabbay, C.J. Hogger, and J.A. Robinson, editors, Handbook of
Logic in Artificial Intelligence and Logic Programming, volume 1, pages
273-364. Clarendon Press, 1993.

Rinus Plasmeijer and Marko van Eekelen. Functional Programming and
Parallel Graph Rewriting. Addison-Wesley, 1993.

Detlef Plump. Graph-reducible term rewriting systems. In Proc. Graph
Grammars and Their Application to Computer Science, volume 532 of
Lecture Notes in Computer Science, pages 622—636. Springer-Verlag,
1991.

Detlef Plump. Implementing term rewriting by graph reduction: Termi-
nation of combined systems. In Proc. Conditional and Typed Rewriting
Systems, volume 516 of Lecture Notes in Computer Science, pages 307—
317. Springer-Verlag, 1991.

REFERENCES 61

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

Detlef Plump. Collapsed tree rewriting: Completeness, confluence, and
modularity. In Proc. Conditional Term Rewriting Systems, volume 656
of Lecture Notes in Computer Science, pages 97-112. Springer-Verlag,
1993.

Detlef Plump. Evaluation of functional expressions by hypergraph rewrit-
ing. Dissertation, Universitdt Bremen, Fachbereich Mathematik und In-
formatik, 1993.

Detlef Plump. Critical pairs in term graph rewriting. In Proc. Mathe-
matical Foundations of Computer Science 1994, volume 841 of Lecture
Notes in Computer Science, pages 556—566. Springer-Verlag, 1994.
Detlef Plump. Simplification orders for term graph rewriting. In Proc.
Mathematical Foundations of Computer Science 1997, volume 1295 of
Lecture Notes in Computer Science, pages 458-467. Springer-Verlag,
1997.

Jean-Claude Raoult. On graph rewritings. Theoretical Computer Science,
32:1-24, 1984.

Barry K. Rosen. Tree-manipulating systems and Church-Rosser theo-
rems. Journal of the ACM, 20(1):160-187, 1973.

Ronan Sleep, Rinus Plasmeijer, and Marko van Eekelen, editors. Term
Graph Rewriting: Theory and Practice. John Wiley, 1993.

John Staples. Computation on graph-like expressions. Theoretical Com-
puter Science, 10:171-185, 1980.

John Staples. Optimal evaluations of graph-like expressions. Theoretical
Computer Science, 10:297-316, 1980.

John Staples. Speeding up subtree replacement systems. Theoretical
Computer Science, 11:39-47, 1980.

Yoshihito Toyama. Counterexamples to termination for the direct sum
of term rewriting systems. Information Processing Letters, 25:141-143,
1987.

Yoshihito Toyama. On the Church-Rosser property for the direct sum of
term rewriting systems. Journal of the ACM, 34(1):128-143, 1987.

