Retrenching the Purse: Hashing Injective CLEAR

Codes,

Richard Banach
Czedlaw Jeske
School of Computer Science,
University of Manchester,
Manchester M13 9PL, UK
{banach, cj }@s. man. ac. uk

Abstract— The Mondex Electronic Purse is an outstanding
example of industrial scale formal refinement, and was the first
verification to achieve ITSEC level E6 certification. A formal
abstract model and a formal concrete model were developed,
and a formal refinement was hand-proved between them. Nev-
ertheless, certain requirements issues were set beyond the scope
of the formal development, or handled in an unnatural manner.
The retrenchment Tower Pattern is used to address one such
issue in detail: the use of a hash function rather than a total
injective function when clearing the highly constrained purse
logs. A retrenchment is constructed from the lowest level model
to a model using a hash, and is then lifted to create two
refinement developments, working at different levels of detail,
and connected via retrenchments. The tower development is
appropriately validated, vindicating the design used.

I. INTRODUCTION

The Mondex Electronic Purse [1], produced by the NatWest
Development Team in the mid 1990s, is a system of
Smartcard-based electronic purses, carrying currency for use in
every normal kind of transaction. Clearly, any electronic purse
is a security-critical application. For this reason, the developers
of Mondex (formerly a part of NatWest Bank), employed state
of the art methods to ensure the implementation was as robust
as possible in the face of the most inviting of attacks — ones
attempting to forge nonexistent money on the purses. When it
was created, the Mondex Purse achieved an ITSEC [2] rating
of E6 (nowadays equivalent to a Common Criteria EAL7
rating [3]). ITSEC E6 requires a formal abstract model, a
formal concrete model and a proof of correspondence between
them. In the case of Mondex this proof of correspondence was
a refinement, formally proved to be correct by hand.

The abstract model of the Mondex Purse system describes
a world of purses which exchange monetary value through
atomic transactions, and specifies the security properties de-
manded of this world: firstly, and above all, the impossibility
of creating nonexistent value; and secondly, the traceable
accounting of all value in the system, whether correctly
transacted or lost in transit.

The concrete design model describes a system of purses
which is distributed, transferring value via an insecure and
potentially lossy medium using a three-step protocol. Security
features are implemented locally on each purse. In the field

Michael Poppleton
School of Electronics and
Computer Science,
University of Southampton,
Southampton SO17 1BJ, UK
nT p@cs. soton. ac. uk

and Security Properties

Susan Stepney
Department of Computer Science,
University of York,

York YO10 5DD, UK
susan. st epney@s. york. ac. uk

the purses must be self-sufficient, defending the integrity of
their monetary contents in the face of the most pessimistic
assumptions regarding their environment that can still lead to
the maintenance of the security properties. Transactions that
appear not to be proceeding as required (from an individual
purse’s point of view) are aborted, and their details logged
locally. Central reconciliation of purses’ local logs can lead
to the retrieval of money genuinely lost in transit, while still
defending against fraudulent attempts to create nonexistent
value.

Since the purses regard their environment as hostile, every
atomic operation that they can perform, must in and of itself,
preserve the security invariants. Given this, and the intention
to use refinement as the means of achieving correctness, the
most straightforward way of assuring the robustness required,
is to have each concrete atomic operation be the refinement of
some abstract atomic operation; this was the strategy pursued
in Mondex.

The separation between the abstract and concrete levels in
Mondex is significant, in a logical as well as a functional
sense, and it is this separation that contributes in large part to
the validation obtainable from the formal proof. Nevertheless,
the necessity of having a refinement, taking into account that
refinement’s proof obligations can be quite demanding in how
abstract and concrete models are permitted to be related, meant
that a number of requirements issues, legitimately the concern
of the formal development, had to be passed over in silence
— i.e. set beyond the scope of the formal development, or
handled in an unnatural manner — since they would strictly
speaking have broken the validity of the refinement had they
been incorporated in the models that were used.

Retrenchment [4], [5] was introduced as a framework that
weakens and generalizes refinement, essentially in allowing
the main refinement operation proof obligation (PO) to be
weakened in the postcondition by a concession. Things that
come within the scope of retrenchment as a result, include the
impossibility of refining infinite to finite types, or the contin-
uous variables of real-world physical models (so commonly
occurring in the safety-critical applications for which rigorous
software techniques are utilised) to discrete ones. As well
as such originally envisaged applications [6], retrenchment

has also proved useful as a vehicle for the flexible layering
in of contrasting, even conflicting requirements in a formal
development [7].

If refinement offers strong guarantees of correctness, but
is limited as regards the ideal remit of its applicability, and
retrenchment forfeits correctness guarantees but is much more
widely applicable, then the most profitable strategy would be
to employ a judicious combination of the two. One way of
doing this is via the Tower Pattern, a systematic arrangement
of refinements and retrenchments, which allows refinement
developments incorporating different but incompatible levels
of real-world detail, to be related via suitable retrenchments.
In this paper we focus on one of the issues imperfectly covered
by refinement in the Mondex development — the logical
imperfection of the mechanism for clearing purses’ local logs
once their contents have been safely archived — and illustrate
how the Tower Pattern allows for a less unnatural treatment.

The rest of the paper is structured as follows. In section
Il we give an overview of the Mondex refinement devel-
opment, and identify the requirements issues that motivate
the application of retrenchment, the Mondex ‘retrenchment
opportunities’. Section Il introduces the Tower Pattern and
how it is applied to Mondex. The tower’s constituent notions
of refinement and retrenchment are also made precise. Section
IV focuses on the hash function for authorising the clearing of
purses’ logs, the reality that overrides the ideal design using
a total injective function assumed in [1]. A retrenchment is
built from the lowest level model to a new model featuring
the hash. Given these ingredients, Section V overviews how
the pieces thus far assembled can be used to complete the
building of the rest of the tower for this case study. Section
VI gives a validation of the lifted retrenchment, by arguing
about the intrinsic security properties of the purse and the
protection (both logical and physical) that use of the clear
operation enjoys. Section VII pursues this line to further reflect
on the Mondex protocol as a whole. Section VIII concludes.

Il. THE MONDEX PURSE: REFINEMENTS, RETRENCHMENT
OPPORTUNITIES

The Mondex purse formal development [1] consists of three
models: A(abstract), B(between), and C(concrete). The A
model is a highly abstract expression of atomic value transfer
between purses, allowing for an atomic notion of loss in
transit. The atomicity makes the security invariants, ‘No value
created’ and ‘All value accounted’ trivial to prove. It is
important to note that the A model is targetted purely at these
security properties, which defined the scope of the Mondex
formal verification. So it does not address all the many
other system requirements. Model B captures the elements
of the value transfer protocol, and is thus nonatomic. It is
also enhanced with extra structure and constraints needed to
achieve a backward refinement from model A; a backward
refinement was the strategy used in the Mondex development
to get from model A to model B. Model C is model B without
the extra structure and constraints. These can be established
by an induction on the length of the execution, leading to a

forward refinement between models B and C. It is thus shown
that model C is a refinement of model A.

Since [1] was aimed at the security properties alone, it is
no surprise that many important aspects of Mondex do not get
a proper treatment within [1]. Perhaps more surprising is that
even taking this into account, some requirements aspects, in
principle deserving to be included within the formal develop-
ment (since they potentially impact on the security properties if
mishandled), were nevertheless omitted or handled unnaturally
in the modelling, in order to establish the refinement. One
of the aims of our work on Mondex, is to show how such
rather brittle aspects of formal development via refinement,
can be mollified by making use of retrenchment. Not only does
this improve the overall quality of the formal development,
but it also provides excellent vindication for the retrenchment
technique itself, especially when it is used appropriately in
tandem with refinement. Here is a brief summary of the
Mondex ‘retrenchment opportunities’; in this paper we focus
in detail on the hash function issue; the other retrenchment
opportunities are treated elsewhere.

« Sequence Number: The integrity of the protocol depends
partly on the sequence number of the transaction in
progress. Sequence numbers occur in the B, C models
where they are naturals; in reality they are bounded
numbers, but large. See [8].

o Log Full: Transfers completing abnormally are aborted
and logged locally by purses. Of course, purses’ log
contents are vital. Logs occur in the B, C models where
they are unbounded; in reality they are finite, and small.
See [9].

« Hash Function: The concrete models implement the ab-
stract ‘lost value’ component in terms of an off-card
archive into which purses’ log contents are saved. A purse
needs to be assured that the data is safely in the archive
before it can clear it from its own, highly constrained, log
memory. Safe archival is signalled to the purse using a
‘clear’ code. The purse log contents are assumed to be in
total injective correspondence with the clear codes, as that
property is required in the proof of the maintenance of the
security properties. In reality of course a cryptographic
hash function is used, which is neither total, nor injective,
but is informally argued to be ‘sufficiently injective’.

« Balance Enquiry: Each purse has a balance enquiry
operation. If this is invoked in the middle of a B (or
C) model transaction, a discrepancy can occur between
the model A and model B balances since the model A
transaction is atomic and the model B one isn’t. This
is handled formally by a somewhat unnatural modelling
trick; so unnatural in fact, that in [1] balance enquiries
were completely omitted. See [10].

I1l. THE TOWER PATTERN, REFINEMENTS AND
RETRENCHMENTS

Mondex was developed via refinement [1], specifically the
version for the Z language. Retrenchment is a different but
compatible formal technique designed to address the kind of

difficulties pure refinement can struggle with. They interact
productively in the Tower Pattern [8], a grid-like arrange-
ment in which models are connected by refinements in the
vertical direction, and by retrenchments in the horizontal
one. Moreover, the specific requirements issue dealt with
via the retrenchment is largely decoupled from the overall
tower structure, underlining its generality and wide utility. The
theory permitting the building of the tower is taxing; see [11].

The tower is instantiated for Mondex in Fig. 1, where we
see the development of [1] down the left hand side, and
retrenchments connecting the A, B, C models to a more
detailed refinement development in models F, E, D in the right
hand side. Fig. 1 is built bottom up. So the first step is the C
to D retrenchment, and this is followed by a lifting of model
D to the level of abstraction of B, giving model E. The tower
is finally completed with model F. This last step turns out to
be easier to do in an ad hoc manner, and in fact, there is more
than one sensible option, as discussed at the end of Section
V.

id
A-bstract ——— = F-iltered
ref l { ref
ret
B-etween E-levated

ref l refiret o ref
_

C-oncrete ———» D-iscrete
ret
Fig. 1. The Tower Pattern applied to Mondex.

We now review the notions of refinement and retrenchment
we need. We just give the forward rules for both refinement
and retrenchment, since these are sufficient for the BCDE part
of the tower.

Let model B be given by the ADT
(B, BInit, {BOp, Blop, BOgp | Op € Ops}), and let model C
be given by the ADT (C, Clnit, {COp,Clop, COqp | Op €
Ops}). So schemas B, C give the abstract and concrete state
spaces respectively for the forward refinement from B to C,
and the corresponding per-operation 1/O spaces are given by
schemas Blop, BOgp and Clgp, COpp. We assume a retrieve
relation Rgc : [B; C] between the two state spaces, and
for each operation Op, input and output mapping relations
RIBC,Op : [B|op; C|op] and ROBC,Op : [BOop; COop].
Forward refinement is given by three proof obligations (POs),
initialization, applicability and correctness:

YV C' e Clnit = 3B’ @ BInit A R 1)
VB; B|op; C; C|op ® Rgc A RIBC,Op A pre BOp
= preCOp 2

VB; B|Op; C; C|op; CI; COop e Rgc A RIBC,Op A pre BOp A
COp = 3B'; BOop @ BOp A Rhe A ROgc,0p 3)

Note that (1)-(3) do not mention finalisation. We deal with the
issue of observation ‘on the fly’, in line with the tack taken
in retrenchment. Also, applicability turns out to be a trivial
matter in Mondex since all operations are always enabled by
having a ‘skip’ option.

The C to D development is a forward retrenchment. For
this, the abstract model is the C ADT, and the concrete
model is given by ADT (D,DInit, {(DOp, Dlop, DOgp) |
Op € Ops}). Similar notational conventions apply as be-
fore. The retrenchment is given by firstly a retrieve relation
Rep : [C; D] between the state spaces; and secondly by
the within, output and concedes relations on a per-operation
basis. The within relation is between the input-state spaces
Wep,op : [Clop; C; Dlop; DJ]. The output and concedes
relations are normally defined over both full input-state-output
frames with types Ocp,0p; Ccp,0p : [Clop; C; C'; COop;
Dlop; D; D' DOop], though in practice, we often omit such
parts of these signatures as are not needed. We call these three
relations the retrenchment data.

Two POs define a retrenchment between two models: ini-
tialisation as for refinement (1), and correctness which is
analogous to refinement correctness (3); note that applicability
issues are understood to be subsumed in (5) via the within
relation:

VD' e DInit = 3C’ e Clnit A Rgp 4
VC; C|op; D; D|op; DI; DOop L] RCD /\ WCD,Op /\ DOp

= 3 CI; COop o COp A ((é:D A OCD,Op) V CCD,Op)
®)

IV. THE HASH RETRENCHMENT

When a user has made one or more erroneous transactions
using the purse, he/she may want to recover the value lost. The
only way to do this, is to have the purse log contents centrally
archived and reconciled. If the archived log records of the two
purses participating in a failed transaction are consistent in the
appropriate way, then the bank has sufficient information to
ascertain that the money has been lost in flight. This provides
one motivation for the need to archive and clear purse logs;
another is the severely limited capacity of the logs themselves.
Given the size of smartcard nonvolatile memory and the size
of (production level) log entries, there is in reality only room
for about 5 entries in a purse log.

The archiving works in two stages. In the first, purses send
individual log entries to the archive (at the archive’s behest),
while still retaining them in the log. When this is finished,
in the second, the archive sends a CLEAR code to the purse
to signal that it is now safe to wipe the log. The proof of
correctness for the latter demands that there is an injective
function from all possible log contents to CLEAR codes, so
that the purse is in no doubt that the correct log contents have
been authorised for clearance. In reality, a hash is used, leading

1The actual relationship between purses’ log contents and the overall
system’s security properties is rather complex, and is beyond the scope of
this paper.

to a hypothetical security loophole. The object of this paper
is to examine this using retrenchment.

In principle, the clearing of an individual purse’s log is
a purse-specific operation. However the impact of doing it
imperfectly is system-wide, since it is the system-wide security
invariants that are at stake. Therefore our treatment will
examine first the clearing operation for an individual purse and
its promotion into a system-level operation (in both model C
and model D). Then we will relate the two system-level models
via retrenchment.

We turn our attention to the purse-specific clearing operation
of [1], ClearException-LogPurseEafromOkay; let us abbrevi-
ate this to CClearPurseOkay in this paper.?

The purse state schema is CConPurse, whose only com-
ponent to change in operation CClearPurseOkay is the log
CexLog. The remainder of the state, described by schema
CConPurseClear (which is just CConPurse but with CexLog
hidden), remains unchanged during the operation; this being
described using the = convention of Z.

CConPurseClear ==
CConPurse \ (CexLog)

Clearing the log is only permitted if the purse is in its idle state
CeaFrom, and if the correct message (a CexceptionLogClear
message) has been received. This should correctly name
the purse (Cname), and contain the correct CLEAR code
(Cimage CexLog). The purse outputs a message (L) which
is of-no-interest.

__CClearPurseOkay
ACConPurse
Cm?,Cm! : CMESSAGE

Cm? = CexceptionLogClear(Cname, Cimage CexLog)
ECConPurseClear

Cstatus = CeaFrom

CexLog # @

CexLog' = @

Cm!l= 1

In the D model the only difference is the use of Dimage rather
than Cimage. The former is a total injection, the latter a total
hash function.

Cimage : P, CpayDetails — CLEAR
Dimage : P, DpayDetails - CLEAR

Aside fom this difference, each D component ‘is as’
its C counterpart so that DClearPurseOkay ‘is as’
CClearPurseOkay. Note that since a hash function will

2We employ a convention of pre-capitalizing only the names of types
(schema and other): we augment this convention by prefixing a single
character A,B, ... to a name as required, to denote the model in question.
Thus CThing is a schema or other type in the C model, whereas Dthing
is a variable, usually a schema component, in the D model. To save space
we employ a further lexical schema convention by saying DSchema ‘is as’
CSchema, which indicates that the text of DSchema can be generated from
that of CSchema by replacing all Cthings by Dthings.

be many-one rather than one-one, more than one collection
of (supposedly) archived log entries can map to the same
CLEAR code. Thus the possibility arises that a CLEAR code
could be received that reflects the contents of an archive
that does not correctly contain the corresponding local log
contents.

__DClearPurseOkay
ADConPurse
Dm?,Dm! : DMESSAGE

Dm? = DexceptionLogClear(Dname, Dimage DexLog)
=DConPurseClear

Dstatus = DeaFrom

DexLog # &

DexLog' = @

Dm! = 1

An individual purse is embedded in the community of purses
using Z promotion [12], [13], [14], [15]. In this a collection of
identical components is aggregated via an indexing function.
In the Mondex case, this state information is supplemented by
specific world level state, namely the world level log contents
archive and the world level message ether. We show the details
just for the D world; the C world ‘is as’ the D world:

___DConWorld
DconAuthPurse : NAME »~ DConPurse
Dether : P DMESSAGE
Darchive : P DLogbook

V n : dom DconAuthPurse e
(DconAuthPurse n).Dname = n
Vv nld : Darchive e first nld € dom DconAuthPurse

As well as state information, we have a framing schema, which
allows the embedding of individual component operations into
the indexed world context. Specifically this: (a) singles out
which component will perform the local operation, via an
input index Dnm?; (b) stipulates that all other components
skip; (c) allows the selected component to perform a com-
pletely unrestricted state change on its local state, ready for
further restriction for individual operations. Using this framing
schema, the DClear function in the D world promotes the
purse-specific clear operation, or skips (via DIgnore).

__®DOp
ADConWorld; ADConPurse
Dm?,Dm! : DMESSAGE
Dnm? : NAME

Dm? € Dether
Dnm? € dom DconAuthPurse
#DConPurse = DconAuthPurse Dnm?
DconAuthPurse’ = DconAuthPurse &

{Dnm? — #DConPurse '}
Darchive’ = Darchive
Dether’ C Dether U {Dm!}

DClear == Dignore V
(3 ADConPurse « ®DOp A DClearPurseOkay)

The relationship between the C and D worlds is a retrench-
ment. We turn now to the details of the retrenchment data for
CClear and DClear (where CClear “is as’ DClear).

The retrieve relation asserts the equality of (most of the)
corresponding state values in the two models. (However, for
brevity, the syntactic details of this are hidden within the heavy
inverted commas — some such device as this is needed since
the component names in the two worlds differ in their initial
letter.)

__RES
CConWorld; DConWorld

dom CconAuthPurse = dom DconAuthPurse
(Vn € dom CconAuthPurse o

*“ CconAuthPurse n = DconAuthPurse n)
* Cether = Dether ”

The within relation asserts the equality of the two indexing
names in the two worlds, asserts that for the named purse,
the union of its log and the relevant part of the archive in the
two models agrees,® and makes explicit the contents of the
corresponding input messages:

—WCPS,CIear
CConWorld; DConWorld

Cm? : CMESSAGE; Dm? : DMESSAGE
Cnm?,Dnm? : NAME

Cnm? = Dnm?
({Cnm?} « Carchive) U

(CconAuthPurse Cnm?).CexLog =

({Pnm?} < Darchive) U
(DconAuthPurse Dnm?).DexLog

Cm? = CexceptionLogClear(Cnm?,

Cimage (CconAuthPurse Cnm?).CexLog)
Dm? = DexceptionLogClear(Dnm?,

Dimage (DconAuthPurse Dnm?).DexLog)

The output relation is relevant when things are working
properly. In that case, the log entries in the before state of
the logs, are correctly duplicated in the archives. One can
then deduce from the within relation, that clearing the log
will maintain the pursewise CDAIlIValueAccountedPurse Cnm?
property, which states that for purse Cnm?, no value has been
lost track of in either model during the clearing of the logs.

S3This of course allows the two archive components themselves to disagree
in a limited number of ways, opening up the possibility that the two clear
operations will reveal a genuine difference between them, since the non-
injectivity of Dimage means that the right code can be generated from the
wrong archive.

—O(P:%,CIear
ACConWorld; ADConWorld

Cm! : CMESSAGE; Dm! : DMESSAGE
Cnm?,Dnm? : NAME

(CconAuthPurse Cnm?).CexLog
C {Cnm?} « Carchive
(DconAuthPurse Dnm?).DexLog
C {Dnm?} <« Darchive
CDAlIValueAccountedPurse’ Cnm?
Cm! = Dm!

The interesting part lies with the concession. This is applicable
when it is not the case that in both models, the local logs’
contents are safely lodged in the respective archives. Although
the local states of the abstract and concrete purse remain
equal (since both of their logs are cleared), the fundamental
CDAlIValueAccountedPurse’ Cnm? security property, which
asserts that the whereabouts of all the money in the system
possessed by purse Cnm? (in either model) is known, has been
violated. Given the ramifications of the within relation, this is
a genuine possibility opened up by the non-injectivity of the
model D hash function. We defer further discussion to the
Validation section.

—ng,clear
ACConWorld; ADConWorld

Cm! : CMESSAGE; Dm! : DMESSAGE
Cnm?,Dnm? : NAME

CconAuthPurse Cnm? = DconAuthPurse Dnm?
—((CconAuthPurse Cnm?).CexLog
C {Cnm?} < Carchive A
(DconAuthPurse Dnm?).DexLog
C {Dnm?} <« Darchive)
—(CDAIlIValueAccountedPurse’ Cnm?)
Cm! = Dm!

V. THE REST OF THE TOWER

Thus far we have retrenched the lowest level C model of
the earlier development to the D model in which a hash was
used instead of a truly injective function to authorise clearing
of purses’ local logs. This is the bottom rung of the tower
described in Section I11. Now we sketch how the new D model
can be related to the other models in the Mondex development,
by indicating how models E and F are constructed.

First we lift model D to the level of abstraction of model B,
by using a generic construction for factoring retrenchments*
into a “‘maximally abstract’ retrenchment followed by a suit-
able refinement. The details for this are in [11], building
on earlier work in [16]. A system, typically called U, is
constructed out of the two original systems, and the required
level of abstraction is defined via a collection of construction-
specific properties. U captures this level by being refinable to

4In this case it is the retrenchment given by composing the B to C
refinement with the C to D retrenchment. See Fig. 1.

any system that also enjoys the properties, making it the most
abstract such system. Any system inter-refinable with U is just
as good as U, so we have the option of replacing U with a
more convenient system if we wish.

In our case, for the clear operation the construction yields:

__protoEClear
BClear; ADConWorld
Dm?,Dm! : DMESSAGE

(REB A\ WES, ciear) A ((RE5 A OB3, crear) V CEB cear)

PS ¢ic ac’ RPS \\/PS Gie ac? WPS PS
V_/here Rgp ‘Is as’ Rep, WBD,CIe_ar is as” Wep ciearr OBD,clear
‘is as” OF3 s and CES o ‘IS @8” CES eer» @Nd Where:

BClear == Blgnore V
(3 ABConPurse ¢ ®BOp A BClearPurseOkay)

This is as expected, except that it conceals the fact that
in BClear ®BOp, instead of containing ABConWorld (as
would be expected) actually has ABetweenWorld, where
BetweenWorld features additional structure and constraints
imposed on BConWorld in order to enable the A to B backward
refinement to discharge. Otherwise the constituents of BClear
‘are as’ their corresponding CClear ones.

We do not have the space to convince the reader that
the constraints in BetweenWorld do not materially affect our
discussion. They express the consistency between the crypto-
graphically protected messages in the ether and the purses’
internal states. Interested readers can refer to [1].

In fact the E model operation just given contains a large
amount of duplication of state and other information; the B
and D parts of the state say much the same thing in slightly
different ways, via the various equalities on state components
buried beneath the surface. Above, we noted that it is sufficient
to have a system which is inter-refinable with the U model
given by the generic construction, so it is worth examining
protoEClear to see if we can achieve some simplification. It
so happens that we can, though we do not have space to go
through the details. In point of fact we can replace protoEClear
with the simpler:

EClear ‘is as’ DClear
except that DetweenWorld (which now ‘is as’ BetweenWorld)
replaces occurences of DConWorld in DIgnore and ®DOp in
DClear. Thus DClear is at the right level of abstraction after
all, due above all, to the simplicity and minimalist nature of
the D construction.

All that remains of building the tower is to construct model
F. Here it is best to proceed in an ad hoc manner from model
A, rather than pursue the lifting construction blindly. Firstly,
note that funds lost track of through innapropriate clearance
of purse logs are still “lost’, though in a different manner.
One way forward is thus to try to subsume them under the
abstract ‘lost’ banner. In fact one can replace the relevant
equality between lost components in the A to B retrieve
relation by a suitable inequality, and one can thereby derive

a valid backward refinement from model A to model E. This
leads to one option for making model F, i.e. to make it simply
a copy of model A (as shown in Fig. 1).

A perhaps more honest approach though, is to distinguish
between ‘lost but traceable’ and ‘lost but untraceable’ at the
top level. This necessitates the introduction of a new abstract
state component to hold the lost but untraceable funds. Also
we would need a new abstract operation, corresponding to the
clear operations lower down, that would nondeterministically
choose between doing nothing, and transfering a portion of the
lost but traceable funds into the lost but untraceable category.
By this means, the equality between abstract and concrete
traceably lost funds, characteristic of the model A to model
B retrieve relation, could be maintained. So this leads to
another option for making model F, as a copy of model A but
including the enhancements just discussed. A straightforward
retrenchment now takes model A to model F.

V1. VALIDATION

In preceding sections we presented a selection of models for
the purse, displaying varying degrees of accuracy regarding
the clearing of a purse’s log (compared, that is, to the real
world). In this section, we discuss the adequacy of these
in the light of real world requirements and assumptions.
Given that retrenchment is such a flexible notion, permitting
almost arbitrary model evolution, it behoves us to validate the
way that retrenchment is used, to ensure that this flexibility
does not lead us adrift of, rather than towards, our ultimate
system objectives. Since the characteristics of the lowest level
retrenchment of the tower propagate to the higher levels, we
concentrate on the C to D retrenchment.

First we note that the purse does not contain any explicit
interlocks at purse state level, which attempt to ensure that
its log is cleared only when its contents are safely in the
archive — aside that is, from those implicit in the properties
of the clear code or hash function, which are correlated with
the purse log contents. Why is this? The point is that if
transactions are going wrong anyway, so that the log is in
use, and thus needs to be cleared, then any aspect of the
purse’s environment may be responsible. The purse may even
be imprisoned in a harness that feeds it misleading messages in
an attempt to fool it into creating nonexistent value. Any state
level interlock, since it must correlate with the archive state to
be at all useful, must be mediated by the potentially threaten-
ing environment; therefore it is fundamentally unreliable. In
order to provide useful backup, the log clear operation, should
thus rely on weaker assumptions about the environment than
the transaction protocol it supports, if this is at all possible.

What happens if the purse receives a false but credible
clear message? If the current log contents are not all in the
archive, then when they are erased, the ability to rescue the
funds pertaining to the failed transactions referred to in the
missing log entries is lost. Although the ‘All value accounted’
security property is compromised, the more important ‘No
value created’ one, is maintained via the genuinely diminished
total value described by the global state of the purse world.

So in reality, attackers stand to gain nothing financially by
forging a clear message. Then again, a given attacker either
might not know this, or might have some unusual motivation
(for example, to undermine the credibility of the banks under-
writing the Mondex system) for making his quarry lose funds
by turning the recoverably lost into the irrecoverably lost.

It is in the context of the above that we validate the C
to D retrenchment. The main objective is to estimate how
much greater the chance of inappropriately wiping the log
is, when a hash function is used compared to when a truly
injective one is used. We can do this under two broad classes
of assumptions: firstly, that any inappropriate clear message
received, arrived by chance; secondly, that any such message
is the result of malicious attack. A third possibility, that the
archive itself sends a clear message at an inappropriate time,
can be discounted: the archive is a critical system component,
and the security of the system as a whole can only be
established on the assumption that the critical components do
not deliberately misbehave.

In the first case (pure chance), all message bits can be
assumed to be random variables. In the second case (mali-
cious attack), only the hash value itself might be assumed
cryptographically protected, and the rest of the message could
be constructed by a knowledgeable attacker. Therefore in the
worst case, only the hash itself offers any protection against
inappropriate use, and thus to offer a useful level of protection,
one would assume that at least 256 bits of hash value would
be used. That many bits of hash would offer a good degree
of protection against an attack based on random trials, since
at one trial per millisecond, exhausting all the possibilities
would take many orders of magnitude longer than the age
of the universe. Obviously though, an attacker with some
inside knowledge of the hash algorithm could conceivably do
quite a bit better than chance, depending on the depth of his
knowledge. So, in reality, an even greater number of bits could
easily be used, for the sake of robustness, and as insurance
against future advances in cryptanalysis.

As well as the purely statistical argument just outlined,
a proper validation of the hash function approach ought to
take the physical context into account. Unless an attacker
has built a bespoke environment for the purse in order to
assault it (and the banks underwriting the Mondex system
might well consider it worthwhile to make the Mondex design
robust against such a possible if unlikely attack, if only
to protect their credibility, as indicated above), then clear
messages will usually be issued only in the surroundings of
the bank, when an honest reconciliation of failed transactions
is being attempted. Under such circumstances, not only is the
possibility of malicious attack much reduced, but the purse
will be connected to the archive by a highly reliable commu-
nications link, reducing to vanishingly small, the likelihood
of chance errors arising through transmission.®> This strongly
reinforces the argument that the design using a hash instead of
a genuinely injective clear function is adequately dependable,

5Given the figures already cited above, we omit any quantative estimates.

and the retrenchment that describes the passage from the ideal
design to the more realistic one is therefore vindicated.

VIl. FURTHER CONSIDERATIONS

The reasoning of the previous section prompts further re-
evaluation of the Mondex system as a whole. Consider the
other ‘retrenchment opportunities’ noted in Section 11, namely
the sequence number limit, the log size limit, and the balance
enquiry. Although the reader will largely have to take our
word for it due to lack of space, it is the case that in all of
these scenarios, the difficulties addressed could arise via the
‘natural’ running of the Mondex protocol as it was originally
intended to function. Thus one could conceive of hitting the
sequence number limit if enough transactions were to take
place; or (even more easily) that the log size limit would
be reached if enough failing transactions were to happen; or
that a transaction of the protocol which was long-lived due to
communication latency, could, if a balance enquiry operation
was called in the middle of it by an impatient recipient, yield
a balance that was out of step with what the abstract A model
would predict at such a moment.

The retrenchment opportunity opened up by the use of a
hash rather than an injective function is of a different nature,
since clearing the log in the intended way only takes place
when it is safe to do so. It is only if the capabilities of the
purse are exploited in a non-intended way that the problem
comes to light. Furthermore, to the extent that the problem
discussed is a real one, then there are repercussions to be
considered for the rest of the Mondex system as follows.

Suppose the probability that the protection offered by the
hash in the clear log case could be broken is indeed nonzero.
This would arise because the environment would be capable
of inventing the right message by some means. However
if the environment were capable of inventing that particular
message, then there is no reason to suppose that it could not
invent other cryptographically protected messages on which
the security of the Mondex system relies. Thus the problem
opened up by a putative weakness in the clear log case spreads
to the whole protocol since there is no reason to suppose
that significantly different protection mechanisms would be
implemented, within the restricted code area available on
a smartcard, for different parts of the Mondex system (the
true details of the Mondex system’s cryptographic protection
mechanisms are not in the public domain).

Consider the Mondex protocol, the essentials of which are
illustrated in Fig. 2 for the case of two purses. A successful
run of the protocol requires the successful exchange of three
messages, each of which is security critical. If the possibility
of breaking the cryptographic protection mechanisms is indeed
nonzero, then one would be able to break not only the integrity
of log clearing, and thence the ‘All value accounted’ security
property, but also the more fundamental ‘No value created’
security property, via a sequence of events as follows.

The scenario consists of one purse, the recipient, or ‘To’
purse, and a suitable harness in which to put it, and within
which its operations may be called. The harness takes over the

role that the “‘From’ purse in a genuine transaction would play,
except that it does so fraudulently. The harness firstly calls
the ‘StartTo’ operation in the To purse, quoting transaction
details for a fictitious transfer of funds to the To purse.
(Since the security of the Mondex system does not rely on
the secrecy of this information, a determined attacker could
in principle create it.) The To purse completes the call with
an encrypted ‘req’ (request) message, which is discarded by
the harness, and enters the ‘Bepv’ (expecting payment value)
state. The harness then sends a suitably encrypted “val’ (value)
message to the To purse, acting as if it were a genuine ‘From’
purse. The To purse accepts the message as input for the
“Val’ operation, during which it increments its balance by the
requisite amount (and it completes the transaction by sending
an ‘ack’ (acknowledgement) message). By this means, via
an unjustified increase in the To purse’s balance, nonexistent
money has been created.

The sequence of events just outlined shows us that the
security issues surrounding the integrity of the log clearing
mechanism are pertinent to the integrity of the whole Mondex
system. One can pursue this line of thought to analyse,
for example, the risk associated with random receipt of the
required faked messages by a To purse, rather as we did above
for the hash.

The assumptions in [1] on the communication medium
which transports the protocol messages of the Mondex system
are that the medium is unreliable (i.e. that messages can be
lost), but that the cryptographically protected messages cannot
be faked — without the latter nothing could be proved. But
obviously this last assumption cannot be absolutely true. Thus
a probabilistic risk anlysis as we have suggested, to support the
strength of the assumption and to supplement the pure logic of
the security proof, is in fact needed. (In the original Mondex
project, the cryptographic protection was assured by separate
‘strength of mechanism’ arguments, and was explicitly outside
the scope of the formal methods component of the ITSEC E6
development process.)

VI1Il. CONCLUSIONS

In the preceding sections, we introduced the Mondex de-
velopment and its ‘retrenchment opportunities’; and also the
Tower Pattern and supporting refinement and retrenchment
notions. The paper then focused on one of the retrenchment
opportunities, the hashing of log clear messages, and examined
its treatment via the tower in detail. What we got was a typical
Tower Pattern arrangement, namely two refinement develop-
ments, dealing with different (and from a refinement point of
view incompatible) levels of detail, connected via a collection
of retrenchments into a large commuting diagram. The latter
shows how the different stages of the two developments can be
related to one another, and the theory underpinning the tower
[11] can even help in the automatic construction of part of it.

Crucial to the utility of such a state of affairs is validation,
since retrenchment by itself is such an extremely permissive
technique. For this reason, a validation from the domain
perspective is vital in corroborating any formal development

From purse Topurse
SatFom | BeFrom BeaFrom SartTo
Bepr Bepv
reg |

Bepr
Rg -— ————————
Bepa ‘
va i
}
_________ By 4
BeaTo
ack
Bepa
Ak BeaFrom
Fig. 2. The Mondex Protocol.

done with its help, to ensure that the results of its use are
helping rather than hindering the attainment of overall system
objectives. By reasoning about the context of the log clear
operation, we were able to provide the needed validation, and
the arguments advanced were developed into further insights
about the integrity of the Mondex system as a whole. The
whole process was an excellent illustration of the ability of
retrenchment to bridge the gap between “academic’ or purely
logical reasoning about systems, and the often niggly details
that have to be considered during the business of engineering
a real product within its pragmatic context.

REFERENCES

[1] S. Stepney, D. Cooper, and J. Woodcock, “An electronic purse: Specifi-
cation, refinement and proof,” Oxford University Computing Laboratory,
Tech. Rep. PRG-126, 2000.

[2] D. of Trade and Industry, “Information Technology Security Evaluation
Criteria,” 1991, http://www.cesg.gov.uk/site/iacs/itsec/media/formal-
docs/ltsec.pdf.

[3] Common Criteria for Information Security Evaluation, I1SO 15408, v.
3.0 rev. 2, 2005.

[4] R. Banach and M. Poppleton, “Retrenchment: An engineering variation
on refinement,” in 2nd International B Conference, ser. LNCS, D. Bert,
Ed., vol. 1393. Montpellier, France: Springer, April 1998, pp. 129-147.

[5] —, “Sharp retrenchment, modulated refinement and simulation,” For-
mal Aspects of Computing, vol. 11, pp. 498-540, 1999.

[6] M. Poppleton and R. Banach, “Controlling control systems: An appli-
cation of evolving retrenchment,” in Second International Conference
of B and Z Users, ser. LNCS, D. Bert, J. Bowen, M. Henson, and
K. Robinson, Eds., vol. 2272. Grenoble, France: Springer, January
2002, pp. 42-61.

[7] R.Banach and M. Poppleton, “Retrenching partial requirements into sys-
tem definitions: A simple feature interaction case study,” Requirements
Engineering Journal, vol. 8, no. 2, 2003, 22pp.

[8] R. Banach, M. Poppleton, C. Jeske, and S. Stepney, “Retrenching
the purse: Finite sequence numbers and the tower pattern,” in Formal
Methods 2005, ser. LNCS, J. Fitzgerald, |. Hayes, and T. A., Eds., vol.
3582. Newcastle, UK: Springer, 2005, pp. 382-398.

[9] R. Banach, C. Jeske, M. Poppleton, and S. Stepney, “Retrenching the
purse: Finite exception logs, and validating the small,” in Workshop on
Software Engineering 2006, M. Hinchey, Ed. Loyola College, MD:
IEEE Computer Society Press, 2006.

[10]

[11]
[12]
[13]

[14]

[15]

[16]

[17]

R. Banach, M. Poppleton, C. Jeske, and S. Stepney, “Retrenching the
purse: The balance enquiry quandary, and generalised and (1,1) forward
refinements,” Fundamenta Informaticae, 2006, (to appear).

C. Jeske, “Algebraic integration of retrenchment and refinement,” Ph.D.
dissertation, University of Manchester, 2005.

J. Woodcock and J. Davies, Using Z: Specification, Refinement and
Proof. Prentice-Hall, 1996.

J. Derrick and E. Boiten, Refinement in Z and Object-Z, ser. FACIT.
Springer, 2001.

S. Stepney, F. Polack, and I. Toyn, “An outline pattern language for Z,”
in Third International Conference of B and Z Users, ser. LNCS, D. Bert,
J. Bowen, S. King, and M. Waldén, Eds., vol. 2651. Turku, Finland:
Springer, June 2000, pp. 2-19.

—, “Patterns to guide practical refactoring,” in Third International
Conference of B and Z Users, ser. LNCS, D. Bert, J. Bowen, S. King,
and M. Waldén, Eds., vol. 2651. Turku, Finland: Springer, June 2000,
pp. 20-39.

R. Banach, “Maximally abstract retrenchments,” in Proc. IEEE
ICFEM2000. York: IEEE Computer Society Press, August 2000, pp.
133-142.

D. Bert, J. Bowen, S. King, and M. Waldén, Eds., Proc. ZB2003: Formal
Specification and Development in Z and B, ser. LNCS, vol. 2651. Turku,
Finland: Springer, June 2000.

