Luis A. Fuente, Michael A. Lones, Alexander P. Turner, Leo S. Caves, Susan Stepney, Andy M. Tyrrell.
Adaptive Robotic Gait Control using Coupled Artificial Signalling Networks, Hopf Oscillators and Inverse Kinematics.

CEC 2013, Cancun, Mexico, June 2013, IEEE Press, 2013

Abstract:

A novel bio-inspired architecture comprising three layers is introduced for a six-legged robot in order to generate adaptive rhythmic locomotion patterns using environmental information. Taking inspiration from the intracellular signalling processes that decode environmental information, and considering the emergent behaviours that arise from the interaction of multiple signalling pathways, we develop a decentralised robot controller composed of a collection of artificial signalling networks. Crosstalk, a biological signalling mechanism, is used to couple such networks favouring their interaction. We also apply nonlinear oscillators to model gait generators, which induce symmetric and rhythmical locomotion movements. The trajectories are modulated by a coupled artificial signalling network, which yields adaptive and stable robotic locomotive patterns. Gait trajectories are converted into joint angles by means of inverse kinematics. The architecture is implemented in a simulated version of the real robot T-Hex. Our results demonstrate the ability of the architecture to generate adaptive and periodic gaits.

@inproceedings(SS-CEC13,
  author = "Luis A. Fuente and Michael A. Lones and Alexander P. Turner
            and Leo S. Caves and Susan Stepney and Andy M. Tyrrell",
  title = "Adaptive Robotic Gait Control using Coupled Artificial Signalling Networks,
        Hopf Oscillators and Inverse Kinematics",
  crossref = "CEC09"
)

@proceedings(CEC13,
  title = "CEC 2013, Cancun, Mexico, June 2013",
  booktitle = "CEC 2013, Cancun, Mexico, June 2013",
  publisher = "IEEE Press",
  year = 2013
)