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Abstract

The Unifying Theories of Programming (UTP) of Hoare and He is a predic-
ative framework of relations suitable for the rigorous study of different pro-
gramming paradigms. It promotes the reuse of results through the linking of
theories. Particular aspects of programs can also be studied in isolation.

In the UTP, the theory of designs provides not only a model for terminat-
ing programs (where pre and postcondition pairs can be specified), but also
a basis for characterising state-rich concurrent and reactive programs. These
are programs whose interactions with the environment cannot simply be de-
scribed by relations between inputs and outputs. In this context, process
calculi such as Communicating Sequential Processes (CSP) and Circus have
been given semantics in the UTP through the theory of reactive designs.

Angelic nondeterminism is a useful specification construct that allows
for a high degree of abstraction. It has traditionally been studied within
the refinement calculus. Previous work has proposed a theory of angelic
nondeterminism in the UTP through a predicative model of binary multire-
lations. Such models, however, can only model terminating programs. In this
report we propose a new UTP theory of designs with angelic nondeterminism
with the long-term aim of developing a model for process calculi.
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Chapter 1

Introduction

In this chapter we present the motivation and objectives of this work. The
motivation is presented in Section 1.1, while the objectives are discussed
in Section 1.2. In Section 1.3 we discuss the overall approach followed in this
work and how our model relates to existing theories. Finally the structure
of this report is outlined in Section 1.4

1.1 Motivation
The UTP of Hoare and He [1] provides a relational framework suitable for
the study of different programming paradigms. Relations are characterised
by their alphabet and a predicate that restricts the possible values of the
variables in the alphabet. The alphabet consists of program variables and
auxiliary variables that capture additional information, such as time. A
collection of UTP theories exist for a variety of programming paradigms
and techniques such as concurrency [1], logic programming [1], high-order
programming [1], object-orientation [2], pointers [3], time [4–6] and others.
The UTP distinguishes itself in the ability to promote unification of results
through the linking of theories, while allowing concepts to be studied in
isolation.

The theory of designs is the definitive treatment of total correctness for se-
quential programs in the UTP. It considers an alphabet containing program
variables as well as auxiliary variables that capture the start and termin-
ation of programs. Designs can be understood as encoding the traditional
pre and postcondition pairs. In order to characterise reactive programs, the
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relationship between initial and final states is not sufficient. Instead, in-
termediate information also needs to be recorded [7]. This is captured in
the UTP through the theory of reactive programs that includes additional
observational variables for this purpose.

The combination of the theory of designs and the theory of reactive pro-
cesses characterises theories for process calculi such as CSP [8] and Circus [9,
10]. Every predicate of the theory of CSP can be specified as a reactive
design [1]. These are designs whose preconditions depend on observations
of the final or later values of the variables, and whose termination is not
necessarily guaranteed. This corresponds to designs that do not necessarily
satisfy the healthiness condition H3 [1], a necessary condition to establish
the link with the theory of CSP [1].

Angelic nondeterminism is a useful abstraction in the context of formal
specifications. It has traditionally been studied in the refinement calcu-
lus [11–13] through the monotonic predicate transformers. There it is defined
precisely as the dual of demonic nondeterminism. Its characterisation in a
relational setting, such as that of the UTP, however, is more challenging and
has required the use of multirelational models [14].

Multirelations are relations that relate initial states to sets of final states.
In [15] Rewitzky presents the foundational work on multirelations that al-
lows both forms of nondeterminism to be expressed in the same relational
model. The set of final states can either be interpreted as encoding angelic
or demonic choices. If the sets of final states encode angelic choices, then
the relation between an initial state and sets of final states encodes demonic
choices, or vice-versa. The model of up-closed binary multirelations is the
most important as it has a lattice-theoretic structure [15].

In [14], Cavalcanti et al. propose a UTP theory based on multirelations
that can encode angelic nondeterminism. Although the model in [14] does
not make use of the observational variables of the original theory of designs,
it captures termination. Its focus on sequential programs makes it not ap-
plicable to reactive programs.

Morris and Tyrrel [16–19], and Hesselink [20] have pursued the modelling
of both types of nondeterminism at the expression or term level. Their focus
is on functional languages. Tyrrell et al. [21] have attempted an axiomatiz-
ation for an algebra resembling CSP where external choice is referred to as
“angelic choice”, however this is different from standard CSP semantics [8].

In summary, despite the different attempts at modelling angelic non-
determinism, to the best of our knowledge, no suitable model has been de-
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veloped for process calculi. The model that we propose in this work presents
a first step towards addressing this problem.

1.2 Objectives
In light of our discussion, in this work we propose a new UTP theory of
designs that is capable of expressing both demonic and angelic nondetermin-
ism. In order to exploit existing theories, it is our aim to develop a theory
that uses the auxiliary variables of the original theory of designs. Further-
more, as a prerequisite for modelling reactive programs, such a theory needs
to encompass designs whose preconditions refer to the value of final states.

In addition, it is essential that we can validate the model we propose with
respect to the existing theories. Following the spirit of the UTP, we explore
the relationship with both the theory of binary multirelations [15] and that
of [14] by establishing links with them.

In our account we define the basic operators of the new theory and prove
expected properties based on results from the literature. Since we provide
a new model where preconditions may refer to the final set of states, not
all results are immediately obvious. This is the case, for instance, for the
sequential composition operator.

1.3 Overview of theories
As an aid to the development of our theory, we develop an extended model
of binary multirelations. This isomorphic model provides insights into the
definition of certain aspects of the theory, such as the sequential composition
operator, whose definition is not trivial.

Below we provide an overview of the relationship between the theory pro-
posed and an extended binary multirelational model. Their respective rela-
tionship with each of the established models of [14] and [15] is also discussed.
The overall relationship between the theories is illustrated in Figure 1.1.
Each theory is named after its characterising healthiness condition and the
respective isomorphisms are established by pairs of functions. The definition
of these is established in Chapters 3 to 5, while a full account of the existing
theories can be found in [14, 15].

In the UTP, the theory of designs is characterised by the healthiness
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Figure 1.1: Link between the theories.

conditions H1 and H2 [1]. The theory that we propose is, in addition,
characterised by the healthiness condition A. It is based on that of [14],
whose only healthiness condition is specified by the function PBMH.

Since the precondition of reactive designs may impose requirements on
final states, this is also allowed in our theory. As a result, it becomes possible
for designs to specify sets of final states available for angelic choice, even when
termination is not guaranteed. This means that designs in our theory do not
necessarily satisfy the healthiness condition H3 of designs.

In order to motivate the development of the new model, we develop an
isomorphic model that can describe A-healthy designs as an extended version
of binary multirelations. The difference with respect to the original model of
binary multirelations [15] is that we can distinguish sets of final states that
terminate from those that may not terminate. This binary multirelational
model is characterised by the healthiness conditions BMH0-BMH2. Its
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subset that corresponds to the original binary multirelations is characterised,
in addition, by the healthiness condition BMH3.

Finally, in this report we establish that both models that we propose are
isomorphic through the pair of functions d2bmb and bmb2d. In the following
section we focus on subsets of interest of both models and their relationship
with the existing theories.

Cavalcanti et al. [14] establish that their UTP model is isomorphic to
the model of up-closed binary multirelations, whose healthiness condition
we denote as BMH. This relationship is established by a pair of functions,
p2bm and bm2p [14], respectively, which we include as part of Figure 1.1.

The functions d2pbmh and pbmh2d establish that the model of A-healthy
designs that also satisfy the healthiness condition H3 is isomorphic to that
of [14]. Finally, the pair of functions bmb2bm and bmb2bm establish that
the subset of the extended binary multirelational model that also satisfies
BMH3 is isomorphic to the original model of binary multirelations [15].

This concludes our overview on how the theory that we propose relates
to both the extended binary multirelational model and the existing theories.

1.4 Outline
In Chapter 2 the UTP is introduced based on the full account in [1]. The
general notions of UTP theories are presented, followed by the theory of
designs. We also briefly explain how theories can be related in the UTP.

Chapter 3 introduces the original theory of binary multirelations [15].
This includes the healthiness conditions, the refinement ordering and the
main operators of the theory.

In Chapter 4 we introduce an extended model of binary multirelations
that can cater for sets of final states that may not terminate. The healthi-
ness conditions are defined and the main operators presented. In addition,
we study the subset that is isomorphic to the original theory of binary mul-
tirelations.

Chapter 5 describes the new UTP theory of designs with angelic non-
determinism. It introduces the healthiness conditions and defines the main
operators. Likewise, we also study the subset that is isomorphic with the
model of [14].

Finally, in Chapter 6 we present the conclusions of this work, including
indications for future work.
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Chapter 2

UTP

In this chapter we introduce the underlying mathematical theory [1] used in
the definition of the theories of interest: the UTP. We begin by characterising
the components of UTP theories in Section 2.1. We then focus our attention
on the theory of designs in Section 2.2. Finally, we explain how theories can
be linked in Section 2.3. A full account on the UTP and the theory of designs
can be found in [1, 22].

2.1 Theories
The UTP of Hoare and He [1] is a relational mathematically rigorous ap-
proach to characterising and reasoning about programs based on the prin-
ciple of observation. The UTP promotes unification while allowing differ-
ent aspects of programs to be considered in isolation. In [1] a collection
of theories are presented that target multiple aspects of different program-
ming paradigms, such as functionality, concurrency, logic programming and
high-order programming. Recent publications have added to the strength of
the UTP by proposing new theories capable of handling angelic nondetermin-
ism [23], object-orientation [2], pointers [3], time [4–6] and others.

A UTP theory is characterised by three main components: an alphabet,
a set of healthiness conditions and a set of operators. In Section 2.1.1 we
introduce the notion of an alphabet. In Section 2.1.2 we discuss how the
healthiness conditions characterise a theory. Finally, in Section 2.1.3 the
core notion of refinement in the UTP is explained followed by the operators
of theories in Section 2.1.4.
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2.1.1 Alphabets
The alphabet of a UTP theory consists of a set of variables that can take val-
ues corresponding to observations made of a program behaviour. These can
be either program variables, or alternatively, auxiliary variables that capture
information like termination, execution time, and so on. Similar to the con-
ventions of Z, in the UTP initial states are characterised by a set of undashed
variables (for example, the set: {ok, v}), while final or subsequent states are
characterised by a set of dashed variables (for example, the corresponding
set: {ok ′, v ′}).

A UTP relation consists of an alphabet and a logical predicate over the
variables in its alphabet that describes the relationship between initial and
after states. For example, in the case of a program whose only purpose is
incrementing the initial value of x we could describe it using the relation:
x ′ = x + 1. This relation concisely describes all pairs of values (x , x ′) that
satisfy the given predicate. Thus relations characterise the possible observa-
tions of a program.

The alphabet of a relation is split into two disjoint subsets: the set of
undashed variables characterises the input values while the set of dashed
variables characterises the after values. For a relation R these are specified
by inα(R) and outα(R), for the input and output alphabets, respectively.

A relation is homogeneous if and only if the input and output alphabets
are exactly the same, except for the fact that variables are undashed and
dashed in either set, respectively. This is formally captured by the following
definition, where (inα(R))′ is the set of variables obtained by dashing every
variable contained in the set inα(R).

Definition 1 (Homogeneous relation) A relation R is homogeneous if
and only if (inα(R))′ = outα(R).

When defining a theory it is also necessary to restrict the set of predicates
that are valid in a given theory. This is addressed by defining healthiness
conditions.

2.1.2 Healthiness conditions
In the UTP, the set of predicates valid in a certain theory is defined by
what are known as healthiness conditions. These are normally specified by
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idempotent monotonic functions whose fixed points are the valid predicates
of the theory. These properties ensure that correctness is preserved through
refinement.

For instance, in the context of theories concerning time, it is often possible
to make observations of a system in discrete-time units using a variable t. It is
expected that any plausible theory describing such a system must guarantee
that time is increasingly monotonic, thus this can be enforced by defining
the healthiness condition HC .

Example 1

HC (P) =̂ P ∧ t ≤ t ′

This healthiness condition is defined in terms of conjunction, so it is called a
conjunctive healthiness condition [3]. A general result on conjunctive health-
iness conditions [3] enables us to establish that HC is idempotent and mono-
tonic with respect to the refinement ordering. An observation in this theory
is valid if and only if it is a fixed point of HC .

2.1.3 Refinement
The theory of relations forms a complete lattice [1], where the ordering is
given by (reverse) universal implication. The top of the lattice is false and
the bottom is true. This ordering corresponds to the notion of refinement. Its
definition is presented below, where the square brackets stand for universal
quantification over all the variables in the alphabet [1].

Definition 2 (Refinement)

P v Q =̂ [Q ⇒ P]

Refinement can be understood as preserving the notion of correctness in the
sense that, if a predicate Q refines P, then all possible behaviours exhibited
by Q are permitted by P. This notion is paramount for the UTP framework
and it is the same across the different theories. The relation true imposes no
restriction and permits the observation of any value for all variables in the
alphabet, while false permits none.
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2.1.4 Operators
A UTP theory comprises a number of operators that characterise how the
theory may be used algebraically to specify more complex behaviours. In the
theory of relations there are a number of core operators that correspond to
typical constructs found in programming languages, such as assignment (:=),
conditional (A C c B B), and sequential composition ( ; ). In what follows
we present some of the most important operators of the theory of relations.

Sequential composition

In UTP theories whose relations are homogeneous, sequential composition is
defined in a consistent way through the notion of substitution as shown in
the following definition.

Definition 3 (Sequential composition)

P ; Q =̂ ∃ v0 • P[v0/v ′] ∧ Q[v0/v]

The intuition here is that the sequential composition of two relations P and
Q involves some intermediate, unobservable state, whose vector of variables
is represented by v0. This vector is substituted in place for the final values
of P, as represented by v ′, as well as substituted for the initial values of Q,
as represented by v. It is finally hidden by the existential quantifier.

Skip

An important construct in the relational theory is the program IIR, otherwise
also known as Skip, whose definition is presented below.

Definition 4 (Skip)

IIR =̂ (v ′ = v)

This is a program that always terminates successfully and upon termination
guarantees that all variables maintain their initial values. The most interest-
ing property of IIR is that it is the left-unit for sequential composition [1].
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Demonic choice

Due to the lattice-theoretic approach of the UTP, demonic choice (u) cor-
responds to the greatest lower bound of the refinement ordering. This means
that its definition is simply disjunction.

Definition 5 (Demonic choice)

P uQ =̂ P ∨ Q

Unfortunately the least upper bound, which is conjunction, does not cor-
respond to the notion of angelic choice. As mentioned previously, it is not
possible to represent both choices directly within the relational model, unless
a binary multirelational model is used [14].

Recursion

Recursion is defined in the UTP as the weakest fixed point. Since we have
a complete lattice it is possible to find a complete lattice of fixed points due
to a result by Tarski [1, 24]. In the following definition F is a monotonic
function and

d
is the greatest lower bound.

Definition 6 (Recursion)

µX • F(X) =̂
d
{X | [F(X) v X ]}

A non-terminating recursion, such as (µY • Y ), is equated with the bot-
tom of the lattice, true [1]. Intuitively this means that it does not terminate,
but if we sequentially compose this recursion with another program, then it
becomes possible to recover from the non-terminating recursion as shown in
the following example [22].

Example 2

(µY • Y ) ; x ′ = 0 {Definition of recursion}

=
l
{X | [(µY • Y )(X) v X ]} ; x ′ = 0 {Function application}

=
l
{X | [X v X ]} ; x ′ = 0 {Reflexivity of v}

=
l
{X | true} ; x ′ = 0 {Property of u}
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= true ; x ′ = 0 {Definition of sequential composition}
= ∃ v0 • true ∧ x ′ = 0 {Propositional calculus}
= x ′ = 0

This issue motivated the definition of the theory of designs that we present
in the following section.

2.2 Designs
As already mentioned, when considering theories of total correctness for reas-
oning about programs, the theory of relations is not appropriate due to the
fact that it is possible to recover from non-terminating programs success-
fully [1, 22]. In other words, the bottom of the lattice, true, is not necessarily
a left-zero of sequential composition as would be needed. As a result, Hoare
and He [1] have introduced the theory of designs, which addresses this issue.

2.2.1 Alphabet
The theory of designs is defined by considering the addition of two auxiliary
variables to the alphabet: ok and ok ′.

ok, ok ′ : {true, false}

Their purpose is to track whether a program has been started, in which case
ok is true, and whether a program has successfully terminated, in which case
ok ′ is true.

In the following section we present the healthiness conditions that define
the theory of designs. Finally we discuss how designs can be refined.

2.2.2 Healthiness conditions
Any valid predicate of this theory has to obey two basic principles: that
no guarantees can be made by a program before it has started, and, that
no program may require non-termination. These two principles are formally
characterised by the healthiness conditions H1, and H2, respectively [1]. We
include their definitions [1] below.
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Definition 7 (H1)

H1(P) =̂ ok ⇒ P

The definition of H1 states that any guarantees made by P can only be
established once it has started. Otherwise, any observation is permitted and
it behaves like the bottom of the lattice, which is the same as the one for
relations: true.

Definition 8 (H2)

H2(P) =̂ ¬ P[false/ok ′]⇒ (P[true/ok ′] ∧ ok ′)

The definition of H2 states that if it is possible for a program P not to
terminate, that is with ok ′ being false, then it must also be possible for
it to terminate, that is with ok ′ being true. The definition presented here
is equivalent to that originally presented by Hoare and He [1], but instead
considers H2 in isolation. In Appendix A we prove that it is equivalent.

A predicate that is both H1 and H2 satisfies the following property of
designs.

Law 2.2.1 (H1 ◦ H2)

H1 ◦ H2(P) = (ok ∧ ¬ P[false/ok ′])⇒ (P[true/ok ′] ∧ ok ′)

Here the design is split into two parts: a precondition and a postcondition.
It is defined using the notation of Hoare and He [1] as shown in the following
definition.

Definition 9 (Design)

(P ` Q) =̂ (ok ∧ P)⇒ (ok ′ ∧ Q)

In fact, a design is more commonly written using the following notation,
where we use the shorthand notation Pa = P[a/ok ′], with t = true and
f = false, as introduced by Woodcock and Cavalcanti [22].

Law 2.2.2 (Design) A predicate P is a design if and only if it can be
written in the following form

H1 ◦ H2(P) = (¬ P f ` P t)
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It is worth noting that the functions H1 and H2 (and indeed all of the
healthiness conditions of designs) are idempotent and monotonic with respect
to refinement [1]. Furthermore none of the proofs establishing these results
rely on the property of homogeneity. Therefore it is possible to define a
non-homogeneous theory of designs.

Hoare and He [1] identified another two healthiness conditions of interest
which we discuss further below. The third healthiness condition H3 requires
IID, the Skip of designs, to be a right-unit for sequential composition [1].

Definition 10 (IID)

IID =̂ (true ` v ′ = v)

Skip is a program that always terminates successfully and does not change
the program variables.

Definition 11 (H3)

H3(P) =̂ P ; IID

From this definition it may not be immediately obvious how designs are
further restricted by H3. In fact, it requires the precondition not to have any
dashed variables (as confirmed by Theorem 2.2.1). In order to understand
the intuition behind it we consider an example of a design that is not H3-
healthy.

Example 3

(x ′ 6= 2 ` true) {Definition of designs}
= (ok ∧ x ′ 6= 2)⇒ ok ′ {Propositional calculus}
= ok ⇒ (x ′ = 2 ∨ ok ′)

In this case we have a program that upon having started can either terminate
and any final values are permitted, or can assign the value 2 to the variable
x and termination is then not required. In the context of a theory of total
correctness for sequential programs this is a behaviour that would not nor-
mally be expected. However it is worth noting that in the context of reactive
processes non H3-designs are important, since there are some requirements
imposed on programs even when they diverge [7, 14].
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The healthiness condition H3 can also be interpreted as guaranteeing
that if a program may not terminate, then it has arbitrary behaviour. Thus
a predicate that is H3-healthy is also necessarily H2-healthy [14].

If we expand the definition of H3 by applying the definition of sequential
definition for designs we obtain the following result [1, 22].

Theorem 2.2.1 (P-sequence-IID)

(¬ P f ` P t) = (¬ P f ` P t) ; IID ⇔ ¬ P f = ∃ v ′ • ¬ P f

This theorem shows that the value of any dashed variables in ¬ P f must be
irrelevant. Therefore any design that is H3-healthy can only have a condi-
tion as its precondition, that is, a predicate that only mentions undashed
variables, and thus can only impose restrictions on previous programs.

Finally the last healthiness condition of interest is H4 that restricts
designs to feasible programs. It is defined by the following algebraic equa-
tion [1] that requires that true be a right-zero.

Definition 12 (H4)

P ; true = true

The intuition here is that this prevents the top of the lattice, Miracle,
itself a trivial refinement of any program, from being allowed. In order to
understand the reason for this, consider the definition of Miracle.

Definition 13 (Miracle)

Miracle =̂ (true ` false) {Property of designs}
= ok ⇒ false {Propositional calculus}
= ¬ ok

Miracle represents a program that could never be started (¬ ok). Further-
more, if it could, and indeed its precondition makes no restriction, it would
establish the impossible: false. Any conceivable implementable program
must not behave in this way. However, Miracle is an important construct
in refinement calculi [14, 22].

For completeness we also provide the definition of the bottom of the
lattice of designs, which is called Abort. There are in fact two possible ways
of expressing it as a design.
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Definition 14 (Abort)

Abort =̂ (false ` true) {Property of designs}
= (false ∧ ok)⇒ ok ′ {Propositional calculus}
= (false ∧ ok)⇒ (false ∧ ok ′) {Property of designs}
= (false ` false)

Abort provides no guarantees at all: it may fail to terminate, and if it
does terminate there are no guarantees on the final values. Indeed it is not
required to guarantee anything at all since its precondition is false.

2.2.3 Operators
In the following theorems we introduce the meet and join of the lattice of
designs as presented in [22]. Like in the lattice of relations, the greatest lower
bound corresponds to demonic choice.

Theorem 2.2.2 (Greatest lower bound)
d

i(Pi ` Qi) = (
∧

i Pi) ` (
∨

i Qi)

Theorem 2.2.3 (Least upper bound)⊔
i(Pi ` Qi) = (

∨
i Pi) ` (

∨
i Pi ⇒ Qi)

Sequential composition

The definition of sequential composition for designs can be deduced from
Definition 3. Here we present the result as proved in [1, 22].

Theorem 2.2.4 (Sequential composition of designs)

(P0 ` P1) ; (Q0 ` Q1) = (¬ (¬ P0 ; true) ∧ ¬ (P1 ; ¬ Q0) ` P1 ; Q1)

This definition can be interpreted as establishing P1 followed by Q1 provided
that P0 holds and P1 satisfies Q0. As pointed out in [22] if P0 is a condition
then the definition can be further simplified.
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2.2.4 Refinement
As in other UTP theories, the refinement ordering in the theory of designs is
the same: universal (reverse) implication. This can be used to establish the
following result [22].

Theorem 2.2.5 (Refinement)

(P0 ` P1) v (Q0 ` Q1) = [P0 ∧ Q1 ⇒ P1] ∧ [P0 ⇒ Q0]

Theorem 2.2.5 confirms the intuition about refinement as found in other cal-
culi: preconditions can be weakened while postconditions can be strengthened.

This section concludes our overview of the theory of designs. In the
following section we focus on how theories can be related and combined.

2.3 Linking theories
The UTP provides a very powerful framework that allows relationships to be
established between different theories. This means that results in different
theories can be re-used. We elaborate on some of principles behind the linking
of theories in the following sections. A full account is available in [1].

Following the convention of Hoare and He [1] we assume the existence of
a pair of functions L and R that map one theory into another: L maps the
(potentially) more expressive theory into the (potentially) weaker theory and
R vice-versa.

2.3.1 Subset theories
The simplest form of relationship that can be established is that between
subset theories [1]. Consider the case where a theory T is a subset of S ,
then it is possible to find a function R : T 7→ S which is simply the iden-
tity [1]. Defining L : S 7→ T for the reverse direction may be slightly more
complicated as the subset theory is normally less expressive.

Hoare and He [1] pinpoint the most important properties of such a func-
tion L : S 7→ T : weakening or strengthening, idempotence and ideally
monotonicity. As highlighted in [1] monotonicity is not always necessarily
observed. We reproduce the respective definitions below.
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Definition 15 (Weakening)

∀X ∈ S • L(X) v X

Definition 16 (Strengthening)

∀X ∈ S • X v L(X)

We follow Hoare and He’s convention and refer to a function that is both
weakening and idempotent as a link and, if it is also monotonic we refer to
it as a retract.

2.3.2 Bijective links
When two theories have equal expressive power, the pair of linking functions
between them can be proved to form a bijection. In other words, each func-
tion undoes exactly the other and thus as expected the following identities
hold.

Definition 17 (Bijection) A function L is a bijection if and only if
R = L−1, where the inverse function of L, L−1 exists, and the following
identities hold for all P.

L ◦ R(P) = P ∧ R ◦ L(P) = P

A bijection constitutes the strongest form of relationship between theories.
It can apply even when the alphabets are different or when theories are
presented in different styles [1]. Indeed this is often what is sought: proving
that two theories have exactly the same expressive power, yet their shape
may suit different contexts better.

2.3.3 Galois connections
Often, though, and as seen previously in subset theories, a theory is more
expressive than its counterpart. Therefore the linking function is not a bijec-
tion as there has to be some weakening or strengthening in either direction.
A pair of functions describing this relationship constitutes what is known as
a Galois connection. Here we reproduce the definition of [1] and provide a
pictorial illustration in Figure 2.1.
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Figure 2.1: Galois connection between two lattices, S and T .

Definition 18 (Galois connection) Let S and T be lattices, and let
L : S 7→ T and R : T 7→ S, the pair (L, R) is a Galois connection if and
only if for all X ∈ S and Y ∈ T:

R(Y ) v X ⇔ Y v L(X)

As pointed out earlier, a bijection presents a stronger relationship than a
Galois connection. However, it is not the case that every bijection is a Galois
connection [1]. Hoare and He [1] give the example of negation whose inverse
is precisely itself, however negation is not monotonic.
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2.4 Final considerations
The UTP framework provides a way of rigorously formalising programs in a
relational setting. A UTP theory consists of an alphabet, a set of of health-
iness conditions and a set of operators, whose syntax forms the signature
of the theory [1]. The most general theory in the UTP is that of relations.
Unfortunately it is not sufficient on its own to appropriately define theories
of total correctness for programs.

The theory of designs provides a compromise, where by extending the
alphabet with additional observational variables, termination can be char-
acterised appropriately. The set of valid predicates is defined by a set of
healthiness conditions: H1 and H2 characterise designs, and equally de-
termine a unique syntactic form. The other healthiness conditions, while
optional, are also important from the point of view of refinement of sequen-
tial programs. However in the context of theories such as those for reactive
processes it is essential that we can consider designs that are not necessarily
H3-healthy.

Finally we have briefly considered how UTP theories can be related. This
is achieved by linking functions that can map predicates from one theory
into another. When considering theories that have equal expressive power
the linking function is a bijection. However, often theories have different
expressive power, therefore there must be some weakening or strengthening.
In this case the pair of linking functions forms a Galois connection. In ad-
dition, it is also possible to establish relationships with sub theories. The
importance of these linking functions is that results can be borrowed from
other theories and then re-used in different contexts. This forms part of the
toolkit that is in the essence of the UTP: unification.
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Chapter 3

Binary multirelations

In this chapter the theory of binary multirelations [15] is presented. In Sec-
tion 3.1 the theory is introduced and formally defined. The signle healthiness
condition of the theory is explored in Section 3.2 along with its characterisa-
tion as a fixed point. Section 3.3 describes the refinement ordering and its
extreme points. Finally, the operators are presented in Section 3.4.

3.1 Introduction
A binary multirelation, an element of a type named BM here, is a relation
between an initial program state and a set of final states, where a State is
the type of records with a component for each program variable.

Definition 19

BM == State ↔ P State

For instance, the program that assigns the number 1 to the only program
variable x when started from any initial state is defined as follows.

Example 4

(x := 1)BM =̂ {s : State, ss : P State | (x 7→ 1) ∈ ss}

Following [14], the notation (x 7→ 1) denotes a record whose only component
is x and its respective value is 1.
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The binary multirelational model is richer than the relational model in
that it relates each initial state to a set of final states. This set can be in-
terpreted as either encoding angelic or demonic choices, depending on which
model is chosen [14, 15]. In our discussion we choose to present a model where
the set of final states encodes angelic choices. This deliberate choice is jus-
tified in [14, 25] as maintaining the refinement order of the isomorphic UTP
model introduced in [14]. Since it is our goal to study an extended version
of binary multirelations and its relationship with an equivalent UTP model,
it is desirable also in our context that the refinement order is maintained.

Demonic choices are encoded by the different ways in which the set of
final states can be chosen. For example, the program that angelically assigns
the value 1 or 2 to the only program variable x is specified by the following
relation, where tBM is the angelic choice operator for binary multirelations.

Example 5

(x := 1)BM tBM (x := 2)BM

=

{s : State, ss : P State | (x 7→ 1) ∈ ss ∧ (x 7→ 2) ∈ ss}

This definition allows any superset of the set {(x 7→ 1), (x 7→ 2)} to be
chosen. The choice of values 1 and 2 for the program variable x are available
in every set of final states ss, and so are available in every demonic choice.

3.2 Healthiness conditions
In general, not all relations of type BM are valid. The subset of interest is
that of upward-closed binary multirelations [15, 26]. The following healthi-
ness condition [14] characterises it.

Definition 20 (BMH)

BMH
=̂

∀ s : State; ss0, ss1 : P State • ((s, ss0) ∈ B ∧ ss0 ⊆ ss1)⇒ (s, ss1) ∈ B

If a particular initial state s is related to a set of final states ss0, then it is also
related to any superset of ss0. This means that if it is possible to terminate
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in some final state that is in ss0, then the addition of any other final states
to that same set does not change the final states available for angelic choice,
which correspond to those in the distributed intersection of all sets of final
states available for demonic choice.

The set of binary multirelations of interest can alternatively be charac-
terised by the fixed points of the following function.

Definition 21 (bmhupclosed)

bmhupclosed(B)

=̂

{s : State, ss : P State | ∃ ss0 : P State • (s, ss0) ∈ B ∧ ss0 ⊆ ss}

This equivalence is established by the following Law 3.2.1.

Law 3.2.1 (bmhupclosed-BMH)

BMH⇔ bmhupclosed(B) = B

Proof.

BMH {Definition of BMH}
⇔ ∀ s : State; ss0, ss1 : P State • ((s, ss0) ∈ B ∧ ss0 ⊆ ss1)⇒ (s, ss1) ∈ B

{Predicate calculus: quantifier scope}

⇔
(
∀ s : State; ss1 : P State •
(∃ ss0 : P State • (s, ss0) ∈ B ∧ ss0 ⊆ ss1)⇒ (s, ss1) ∈ B

)
{Property of sets: subset inclusion}

⇔ {s : State, ss : P State | ∃ ss0 : P State • (s, ss0) ∈ B ∧ ss0 ⊆ ss} ⊆ B
{Property of sets: subset inclusion}

⇔ {s : State, ss : P State | ∃ ss0 : P State • (s, ss0) ∈ B ∧ ss0 ⊆ ss} ∪ B = B
{Property of sets: set union}

⇔

 s : State, ss : P State

∣∣∣∣∣∣
(∃ ss0 : P State • (s, ss0) ∈ B ∧ ss0 ⊆ ss)
∨
(s, ss) ∈ B

 = B

{Predicate calculus: instantiation of existential quantifier for ss0 = ss}
⇔ {s : State, ss : P State | ∃ ss0 : P State • (s, ss0) ∈ B ∧ ss0 ⊆ ss} = B

{Definition of bmhupclosed}
⇔ bmhupclosed(B)
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The set of fixed points can be used interchangeably with the healthiness
condition as it characterises exactly the upward-closed binary multirelations.

3.3 Refinement ordering
The refinement order for healthy binary multirelations B0 and B1, as presen-
ted in [14] is reproduced below.

Definition 22 (vBM)

B0 vBM B1 =̂ B0 ⊇ B1

It is defined as subset inclusion, similarly to the refinement order for set-
based relations [14]. This partial order over BM forms a lattice. It allows an
increase in the degree of angelic nondeterminism and a decrease in demonic
nondeterminism. This aspect is discussed further in Section 3.4.

In what follows we define the extreme points of the lattice as given by the
subset ordering. These correspond respectively to the notions of a miraculous
program, as defined by >BM , and abort, as defined by ⊥BM .

Definition 23 (Miracle)

>BM =̂ ∅

Definition 24 (Abort)

⊥BM =̂ State × P State

The top of the lattice >BM is defined as the empty set while the bottom ⊥BM
is defined as the universal relation. The consequence is that a miraculous
program cannot be executed, while abort exhibits arbitrary behaviour for
every possible initial state. This allows us to establish the following law.

Law 3.3.1 (Refinement)

⊥BM vBM B vBM >BM

Proof. Follows from the subset ordering.
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Having presented the refinement ordering and its extreme points, in the fol-
lowing section we introduce the operators of the theory, including interesting
properties regarding refinement.

3.4 Operators
In this section we present the main operators of the theory of binary mul-
tirelations [15] and discuss their properties.

3.4.1 Assignment
The assignment operator is defined as follows.

Definition 25

(x := e)BM =̂ {s : State, ss : P State | s ⊕ (x 7→ e) ∈ ss}

It relates every initial state s to every possible set of final states ss, such that
ss includes a state where s is overridden with a record where x has the value
of the expression e.

3.4.2 Angelic choice
The angelic choice operator is defined as intersection.

Definition 26 (tBM)

B0 tBM B1 =̂ B0 ∩ B1

This operator corresponds to the least upper bound of the lattice. It cap-
tures the intuition that the final states available to the angel must be in the
intersection of all choices available for demonic choice. Consequently, the
operator observes the following law with respect to refinement.

Law 3.4.1

B0 vBM (B0 tBM B1)
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Proof.

B0 vBM (B0 tBM B1) {Definition of vBM and tBM }
= B0 ⊇ (B0 ∩ B1) {Property of sets}
= true

As expected, this allows the degree of angelic nondeterminism to be increased.
We observe that the proofs shown follow from the original model of [15]. Here
we simply prove them as they provide auxiliary results for our discussion.

3.4.3 Demonic choice
The demonic choice operator is precisely defined as the dual of the angelic
choice operator by considering set union.

Definition 27 (uBM)

B0 uBM B1 =̂ B0 ∪ B1

The sets of final states available for demonic choice correspond to those in
either B0 or B1. It corresponds to the greatest lower bound of the lattice.
Therefore it observes the following law with respect to the refinement order.

Law 3.4.2

(B0 uBM B1) vBM B0

Proof.

(B0 uBM B1) vBM B0 {Definition of vBM and tBM }
= (B0 ∪ B1) ⊇ B0 {Property of sets}
= true

For an example, we consider the demonic choice over two assignments.
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Example 6

(x := 1)BM uBM (x := 2)BM

=

{s : State, ss : P State | s ⊕ (x 7→ 1) ∈ ss ∨ s ⊕ (x 7→ 2) ∈ ss}

In this case, all initial states s are related to every set of final states ss that
contains either a component where x is mapped to 1 or 2, or both. This
means that it is impossible for the angel to enforce a particular choice, as the
intersection of all sets of final states for a particular initial state, is empty.

The angelic and demonic choice operators distribute over one another.

Law 3.4.3

B0 uBM (B1 tBM B2) = (B0 uBM B1) tBM (B0 uBM B2)

Proof. Follows from the definition of uBM , tBM and property of sets.

This property follows from the distributive properties of set union and set
intersection. This property is equally applicable in the theory of predicate
transformers and the UTP model of [14].

3.4.4 Sequential composition
Sequential composition for binary multirelations [14, 15] is defined below.

Definition 28 ( ; BM)

B0 ; BM B1

=̂{
s : State, ss1 : P State
| ∃ ss0 : P State • (s, ss0) ∈ B0 ∧ ss0 ⊆ {s : State | (s, ss1) ∈ B1}

}
It is defined by considering every initial state s in B0 and set of final states
ss1, such that there is some intermediate set of states ss0 that is related from
s in B0, and ss0 is a subset of the set of initial states in B1 that achieve
ss1. As noted in [14] for healthy binary multirelations this definition can be
simplified as shown in the following law.
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Law 3.4.4 ( ; BM -healthy-BM) Provided B0 is BMH-healthy.

B0 ; BM B1 = {s : State, ss : P State | (s, {s : State | (s, ss) ∈ B1}) ∈ B0}

Proof.

B0 ; BM B1 {Definition of ; BM }

=

{
s : State, ss1 : P State
| ∃ ss0 : P State • (s, ss0) ∈ B0 ∧ ss0 ⊆ {s : State | (s, ss1) ∈ B1}

}
{Assumption: B0 is BMH-healthy}

= {s : State, ss1 : P State | (s, {s : State | (s, ss1) ∈ B1}) ∈ B0}

This definition is used as the basis for the definition of sequential composition
in the isomorphic UTP model of [14]. This is also the basis for our inter-
pretation of the definition of sequential composition in the extended binary
mutlirelational model that we present in Chapter 4.

3.5 Final considerations
In this chapter we have introduced the theory of binary multirelations. This
model allows the specification of programs that have both angelic and de-
monic nondeterminism in a relational setting. It is known to be isomorphic
to the predicate transformers model [14, 15].

In addition, the model is also isomorphic to the UTP model of [14], a
theory of designs with angelic nondeterminism. However, these models can
only consider final states that are necessarily terminating. This corresponds
to designs with angelic nondeterminism that observe H3.

The binary multirelational theory presented, along with the isomorphic
predicative UTP model of [14] provide the basis for developing an extended
multirelational theory in the following Chapter 4.
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Chapter 4

Binary multirelational model

In this chapter we introduce an extended binary multirelational model that
can model sets of final states that are not necessarily terminating. This
is achieved by extending the original model of [15], presented in the pre-
vious chapter, using an extra symbol that denotes the possibility for non-
termination.

The following Section 4.1 introduces the model and formally defines the
binary multirelations of interest. In Section 4.2 the healthiness conditions
are defined. Their characterisation as fixed points is presented in Section 4.3.
In Section 4.4 the refinement order is defined. The operators of the theory
are explored in Section 4.5. Finally, Section 4.6 formalizes the relationship
between this model and that of [15].

4.1 Introduction
Similar to the original model of binary multirelations, a relation in this model
associates to each initial program state a set of final states. The notion of
final state, however, is different, as formalised by the following type BM⊥.

Definition 29

State⊥ == (State ∪ {⊥})
BM⊥ == State ↔ P State⊥

Each initial state is related to a set of final states of type State⊥, a final state
that may include the symbol ⊥. This symbol indicates that for a particular
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set of final states, the program may or may not terminate. If a set of final
states does not contain ⊥ then the program must terminate.

For example, consider the program that assigns the value 1 to the variable
x but may or may not terminate. This is specified by the following relation,
where :=BM⊥ is the assignment operator that does not require termination.

Example 7

(x :=BM⊥ 1) = {s : State, ss : P State⊥ | s ⊕ (x 7→ 1) ∈ ss}

Every initial state s is associated with a set of final states ss where the state
obtained from s by overriding the value of the component x with 1 is included.
Since ss is of type State⊥, all sets of final states in ss include those with and
without ⊥.

It is also possible to specify a program that must terminate for certain
sets of final states but not necessarily for others as shown in the following
example, where uBM⊥ is the demonic choice operator of the theory.

Example 8

(x :=BM 1) uBM⊥ (x :=BM⊥ 2)

={
s : State, ss : P State⊥
| (s ⊕ (x 7→ 1) ∈ ss ∧ ⊥ /∈ ss) ∨ (s ⊕ (x 7→ 2) ∈ ss)

}
Since BM is in fact a subset of BM⊥, it is possible to use some of the existing
operators, such as the terminating assignment operator :=BM . In this case,
there is a demonic choice between the terminating assignment of 1 to x , and
the assignment of 2 to x that does not require termination.

Similar to the original theory of binary multirelations, the set of final
states encodes the choices available to the angel. The demonic choices are
encoded by the different ways in which the set of final states can be chosen.

4.2 Healthiness conditions
In this section the healthiness conditions of the theory are introduced as
predicates. Their characterisation as fixed points is developed in Section 4.3.
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4.2.1 BMH0
The first healthiness condition of interest is BMH0. It enforces the upward
closure of the original theory of binary multirelations [15] for sets of final
states that are necessarily terminating, but in addition enforces a similar
property for sets of final states that are not required to terminate.

Definition 30 (BMH0)

∀ s : State, ss0, ss1 : P State⊥ •
((s, ss0) ∈ B ∧ ss0 ⊆ ss1 ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss1))⇒ (s, ss1) ∈ B

It states that for every initial state s, and for every set of final states ss0 in a
relation B, any superset ss1 of that final set of states is also associated with
s such that ⊥ is in ss0 if and only if it is in ss1. That is, BMH0 requires
the upward closure for sets of final states that terminate, and for those that
that may or may not terminate, but separately.

The definition of BMH0 can actually be split into two conjunctions as
shown in the following Law 4.2.1. BMH is the healthiness condition of the
original theory and is defined in the previous Chapter 3.

Law 4.2.1

BMH0
⇔
(
∀ s : State, ss0, ss1 : P State⊥ •
((s, ss0) ∈ B ∧ ss0 ⊆ ss1 ∧ ⊥ ∈ ss0 ∧ ⊥ ∈ ss1)⇒ (s, ss1) ∈ B

)
∧
BMH


Proof.

BMH0 {Definition of BMH0}

⇔
(
∀ s : State, ss0, ss1 : P State⊥ •
((s, ss0) ∈ B ∧ ss0 ⊆ ss1 ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss1))⇒ (s, ss1) ∈ B

)
{Propositional calculus}

⇔

 ∀ s : State, ss0, ss1 : P State⊥ •(
(s, ss0) ∈ B ∧ ss0 ⊆ ss1
∧ ((⊥ ∈ ss0 ∧ ⊥ ∈ ss1) ∨ (⊥ /∈ ss1 ∧ ⊥ /∈ ss0))

)
⇒ (s, ss1) ∈ B


Revision: 704f887 (2014-02-04 11:14:10 +0000) 34



{Propositional calculus}

⇔


∀ s : State, ss0, ss1 : P State⊥ •(
((s, ss0) ∈ B ∧ ss0 ⊆ ss1 ∧ ⊥ ∈ ss0 ∧ ⊥ ∈ ss1)⇒ (s, ss1) ∈ B

)
∧(
((s, ss0) ∈ B ∧ ss0 ⊆ ss1 ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss1)⇒ (s, ss1) ∈ B

)


{Predicate calculus}

⇔


(
∀ s : State, ss0, ss1 : P State⊥ •
((s, ss0) ∈ B ∧ ss0 ⊆ ss1 ∧ ⊥ ∈ ss0 ∧ ⊥ ∈ ss1)⇒ (s, ss1) ∈ B

)
∧(
∀ s : State, ss0, ss1 : P State⊥ •
((s, ss0) ∈ B ∧ ss0 ⊆ ss1 ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss1)⇒ (s, ss1) ∈ B

)


{Predicate calculus: type restriction}

⇔


(
∀ s : State, ss0, ss1 : P State⊥ •
((s, ss0) ∈ B ∧ ss0 ⊆ ss1 ∧ ⊥ ∈ ss0 ∧ ⊥ ∈ ss1)⇒ (s, ss1) ∈ B

)
∧(
∀ s : State, ss0, ss1 : P State •
((s, ss0) ∈ B ∧ ss0 ⊆ ss1)⇒ (s, ss1) ∈ B

)


{Definition of BMH (Definition 20)}

⇔


(
∀ s : State, ss0, ss1 : P State⊥ •
((s, ss0) ∈ B ∧ ss0 ⊆ ss1 ∧ ⊥ ∈ ss0 ∧ ⊥ ∈ ss1)⇒ (s, ss1) ∈ B

)
∧
BMH



This result confirms that for sets of final states that terminate this health-
iness condition enforces BMH exactly as in the original theory of binary
multirelations [15]. This ensures that if it is possible to terminate in some
final state, then termination is also guaranteed in any superset.

4.2.2 BMH1
The second healthiness condition BMH1 requires that if it possible to choose
a set of final states where termination is not guaranteed, then it must also be
possible to choose an equivalent set of states where termination is guaranteed.
This healthiness condition is similar in nature to H2 in the theory of designs.
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Definition 31 (BMH1)

∀ s : State; ss : P State⊥ • (s, ss ∪ {⊥}) ∈ B ⇒ (s, ss) ∈ B

If it is possible to reach a set of final states (ss∪{⊥}) from some initial state
s, where termination is not required, then the set of final states ss, possibly
without ⊥, so that termination is required is also associated with s.

This healthiness condition excludes relations that only offer sets of final
states that may not terminate. Consider the following example.

Example 9

{s : State, ss : P State⊥ | (x 7→ 1) ∈ ss ∧ ⊥ ∈ ss}

This relation describes an assignment to the only program variable x where
termination is not guaranteed. However, it discards the inclusive situation
where termination may indeed occur. The inclusion of an equivalent final set
of states that requires termination does not change the choices available to
the angel as it is still impossible to guarantee termination.

The definition of BMH1 can be stated in a slightly different way by
strengthening the antecedent as shown in the following Lemma 4.2.1.

Lemma 4.2.1

BMH1
⇔
∀ s : State, ss : P State⊥ • (s, ss ∪ {⊥}) ∈ B ∧ ⊥ /∈ ss ⇒ (s, ss) ∈ B

Proof.

BMH1 {Definition of BMH1}
⇔ ∀ s : State, ss : P State⊥ • (s, ss ∪ {⊥}) ∈ B ⇒ (s, ss) ∈ B

{Predicate calculus}

⇔ ∀ s : State, ss : P State⊥ •

 (s, ss ∪ {⊥}) ∈ B ∧ (⊥ ∈ ss ∨ ⊥ /∈ ss))
⇒
(s, ss) ∈ B


{Predicate calculus}

⇔ ∀ s : State, ss : P State⊥ •

 ((s, ss ∪ {⊥}) ∈ B ∧ ⊥ ∈ ss)⇒ (s, ss) ∈ B
∧
((s, ss ∪ {⊥}) ∈ B ∧ ⊥ /∈ ss)⇒ (s, ss) ∈ B


{Property of sets (Lemma B.3.5)}
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⇔ ∀ s : State, ss : P State⊥ •

 ((s, ss) ∈ B ∧ ⊥ ∈ ss)⇒ (s, ss) ∈ B
∧
((s, ss ∪ {⊥}) ∈ B ∧ ⊥ /∈ ss)⇒ (s, ss) ∈ B


{Predicate calculus}

⇔ ∀ s : State, ss : P State⊥ • ((s, ss ∪ {⊥}) ∈ B ∧ ⊥ /∈ ss)⇒ (s, ss) ∈ B

This property could alternatively be restated by restricting the type of ss to
P State. This concludes our discussion regarding BMH1.

4.2.3 BMH2
The third healthiness condition captures a redundancy in the model, namely
that a set of final states defined by either the empty set or the set {⊥}
characterises abortion.

Definition 32 (BMH2)

∀ s : State • (s, ∅) ∈ B ⇔ (s, {⊥}) ∈ B
Therefore we require that for all initial states s, it is related to the empty set
of final states if, and only if, it is also related to the set of final states {⊥}.

If we consider BMH1 in isolation, it covers the reverse implication of
BMH2 because if (s, {⊥}) is in the relation, so is (s, ∅). However, the
implication of BMH2 is stronger than BMH1 by requiring (s, {⊥}) to be
in the relation if (s, ∅) is in the relation.

The reason for letting this redundancy persist in the model is to keep it
as similar as possible to the original model of binary multirelations. This is
of particular interest as it helps with linking these models.

4.2.4 BMH3
The fourth healthiness condition characterises a subset of the model, of type
BM⊥, that corresponds to the original theory of binary multirelations.

Definition 33 (BMH3)

∀ s : State •

 ((s, ∅) /∈ B)
⇒
(∀ ss : P State⊥ • (s, ss) ∈ B ⇒ ⊥ /∈ ss)
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If an initial state s is not related to the empty set, then it must also be the
case that for all sets of final states ss related to s, ⊥ is not included in the
set of final states ss.

This healthiness condition excludes relations that do not guarantee ter-
mination for particular initial states, yet establish some set of final states.
Example 7 is an instance of such a relation. This is also the case for the
original theory of binary multirelations. If it is possible for a program not
to terminate when started from some initial state, then execution from that
state must lead to arbitrary behaviour. This is the same intuition behind
H3 in the theory of designs.

It is precisely the restriction imposed by BMH3 that we avoid with
the binary multirelational model proposed. However, in order to study its
relationship with the existing models the subset of BMH3-healthy relations
is of interest.

4.3 Healthiness conditions as fixed points
In this section we specify functions whose fixed points characterise the new
model of binary multirelations. We also specify functions that characterise
the subset corresponding to the original model of [15]. This characterisation
allows, for example, to prove that the healthiness conditions are idempotent.

In Sections 4.3.1 to 4.3.4, each healthiness condition is characterised by a
corresponding function. The systematic exploration of the properties of the
functional composition of each function is deferred to Appendices B.1 to B.2.
Finally, in Sections 4.3.5 and 4.3.6 the two functions that characterise the
model as a whole, and its subset of interest, are presented. Furthermore, we
prove that the fixed points correspond exactly to the relations satisfied by
the predicative healthiness conditions defined earlier.

In general, for each healthiness condition of interest, we use the notation
bmhx to denote the function whose fixed points correspond exactly to the
relations characterised by the healthiness condition BMHx.

bmhx(B) = B ⇔ BMHx
Furthermore, the notation bmhx,y denotes the functional composition of the
respective functions:

bmhx,y(B) = bmhx ◦ bmhy(B)

This concludes the discussion of the notation used in the following sections.
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4.3.1 bmh0

The first function of interest is bmh0 whose fixed points are the BMH0-
healthy binary multirelations.

Definition 34 (bmh0)

bmh0(B) =

{
s : State, ss : P State⊥
| ∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)

}
This definition is justified by the following Lemma 4.3.1.

Lemma 4.3.1 (BMH0-iff-bmh0)

BMH0⇔ bmh0(B) = B

Proof.

BMH0 {Definition of BMH0}

⇔
(
∀ s0 : State, ss0, ss1 : P State⊥ •
((s0, ss0) ∈ B ∧ ss0 ⊆ ss1 ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss1))⇒ (s0, ss1) ∈ B

)
{Predicate calculus: quantifier scope}

⇔

 ∀ s0 : State, ss1 : P State⊥ •(
∃ ss0 : P State⊥ • (s0, ss0) ∈ B ∧ ss0 ⊆ ss1
∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss1)

)
⇒ (s0, ss1) ∈ B


{Property of sets: subset inclusion}

⇔


s0 : State, ss1 : P State⊥∣∣∣∣ ∃ ss0 : P State⊥ • (s0, ss0) ∈ B ∧ ss0 ⊆ ss1
∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss1)

 ⊆ B

{Property of sets}

⇔


s0 : State, ss1 : P State⊥∣∣∣∣ ∃ ss0 : P State⊥ • (s0, ss0) ∈ B ∧ ss0 ⊆ ss1
∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss1)

 ∪ B

 = B

{Property of sets}

⇔




s0 : State, ss1 : P State⊥∣∣∣∣∣∣
(
∃ ss0 : P State⊥ • (s0, ss0) ∈ B ∧ ss0 ⊆ ss1
∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss1)

)
∨ (s0, ss1) ∈ B


 = B

{Instantiation of existential quantifier for ss0 = ss1}
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⇔


s0 : State, ss1 : P State⊥∣∣∣∣ ∃ ss0 : P State⊥ • (s0, ss0) ∈ B ∧ ss0 ⊆ ss1
∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss1)


 = B

{Definition of bmh0}
⇔ bmh0(B) = B

When healthiness conditions are expressed as fixed points of a function it
is essential that they are idempotent [1]. This is established for each of the
functions bmh in Appendix B.1. In the case of bmh0 this is established by
the Lemma B.1.1.

4.3.2 bmh1

In this section the function bmh1 that characterises BMH1-healthy rela-
tions is presented.

Definition 35 (bmh1)

bmh1(B) = {s : State, ss : P State⊥ | (s, ss ∪ {⊥}) ∈ B ∨ (s, ss) ∈ B}

The function returns all pairs (s, ss) in B, such that if a set of final states
includes ⊥ then there is also a set of final states without ⊥. Its relationship
with BMH1 is justified by the following Lemma 4.3.2.

Lemma 4.3.2 (BMH1-iff-bmh1)

BMH1⇔ bmh1(B) = B

Proof.

BMH1 {Definition of BMH1}
⇔ ∀ s : State; ss : P State⊥ • (s, ss ∪ {⊥}) ∈ B ⇒ (s, ss) ∈ B

{Property of sets and definition of subset inclusion}
⇔ {s : State; ss : P State⊥ | (s, ss ∪ {⊥}) ∈ B} ⊆ B {Property of sets}
⇔ ({s : State; ss : P State⊥ | (s, ss ∪ {⊥}) ∈ B} ∪ B) = B

{Property of sets}
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⇔ ({s : State; ss : P State⊥ | (s, ss ∪ {⊥}) ∈ B ∨ (s, ss) ∈ B}) = B
{Definition of bmh1}

⇔ bmh1(B) = B

Lemma B.1.2 establishes that bmh1 is idempotent. This concludes our dis-
cussion regarding the definition of bmh1.

4.3.3 bmh2

The healthiness condition BMH2 is characterised by the function bmh2.

Definition 36

bmh2(B) =̂

{
s : State, ss : P State⊥
| (s, ss) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)

}
The definition considers every pair (s, ss) in B and requires that (s, {⊥}) is in
B if and only if (s, ∅) is also in B. If the equivalence is not satisfied then bmh2
yields the empty set. This definition is justified by the following Lemma 4.3.3.

Lemma 4.3.3 (BMH2-iff-bmh2)

BMH2⇔ bmh2(B) = B
Proof.
BMH2 {Definition of BMH2}
⇔ ∀ s : State • (s, ∅) ∈ B ⇔ (s, {⊥}) ∈ B {Predicate calculus}

⇔ ∀ s : State •

 (s, ∅) ∈ B ⇒ (s, {⊥}) ∈ B
∧
(s, {⊥}) ∈ B ⇒ (s, ∅) ∈ B

 {Predicate calculus}

⇔ ∀ s : State •

 (∃ ss0 : P State⊥ • (s, ∅) ∈ B ∧ (s, ss0) ∈ B)⇒ (s, {⊥}) ∈ B
∧
(∃ ss0 : P State⊥ • (s, {⊥}) ∈ B ∧ (s, ss0) ∈ B)⇒ (s, ∅) ∈ B


{Predicate calculus}

⇔ ∀ s : State, ss0 : P State⊥ •

 ((s, ∅) ∈ B ∧ (s, ss0) ∈ B)⇒ (s, {⊥}) ∈ B
∧
((s, {⊥}) ∈ B ∧ (s, ss0) ∈ B)⇒ (s, ∅) ∈ B


{Predicate calculus}
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⇔ ∀ s : State, ss0 : P State⊥ •

 (s, ss0) ∈ B ⇒ ((s, {⊥}) ∈ B ∨ (s, ∅) /∈ B)
∧
(s, ss0) ∈ B ⇒ ((s, ∅) ∈ B ∨ (s, {⊥}) /∈ B)


{Predicate calculus}

⇔ ∀ s : State, ss0 : P State⊥ • (s, ss0) ∈ B ⇒

 (s, {⊥}) ∈ B ∨ (s, ∅) /∈ B)
∧
((s, ∅) ∈ B ∨ (s, {⊥}) /∈ B)


{Predicate calculus}

⇔ ∀ s : State, ss0 : P State⊥ • (s, ss0) ∈ B ⇒ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
{Property of sets}

⇔ B ⊆ {s : State, ss : P State⊥ | (s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B}
{Property of sets}

⇔ B = (B ∩ {s : State, ss : P State⊥ | (s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B})
{Property of sets}

⇔ B = {s : State, ss : P State⊥ | (s, ss) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)}
{Definition of bmh2}

⇔ B = bmh2(B)

Similarly, Lemma B.1.3 establishes that bmh2 is an idempotent function.

4.3.4 bmh3

This section introduces the definition of bmh3 whose fixed points are BMH3-
healthy relations.

Definition 37

bmh3(B)

=̂

{s : State, ss : P State⊥ | ((s, ∅) ∈ B ∨ ⊥ /∈ ss) ∧ (s, ss) ∈ B}

The definition considers every pair (s, ss) in B and requires that either ss
is a set of final states with guaranteed termination or (s, ∅) is in B, and
thus the initial state s leads to arbitrary behaviour. This is justified by the
following Law 4.3.1.
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Law 4.3.1 (BMH3-bmh3)

BMH3⇔ bmh3(B) = B

Proof.

BMH3 {Definition of BMH3}
⇔ ∀ s : State • ((s, ∅) /∈ B)⇒ (∀ ss : P State⊥ • (s, ss) ∈ B ⇒ ⊥ /∈ ss)

{Predicate calculus}
⇔ ∀ s : State, ss : P State⊥ • ((s, ∅) /∈ B)⇒ ((s, ss) ∈ B ⇒ ⊥ /∈ ss)

{Predicate calculus}
⇔ ∀ s : State, ss : P State⊥ • ((s, ss) ∈ B ∧ ⊥ ∈ ss)⇒ (s, ∅) ∈ B

{Predicate calculus}
⇔ ∀ s : State, ss : P State⊥ • (s, ss) ∈ B ⇒ ((s, ∅) ∈ B ∨ ⊥ /∈ ss)

{Property of sets and subset inclusion}
⇔ B ⊆ {s : State, ss : P State⊥ | ((s, ∅) ∈ B ∨ ⊥ /∈ ss)}

{Property of sets}
⇔ B = (B ∩ {s : State, ss : P State⊥ | ((s, ∅) ∈ B ∨ ⊥ /∈ ss)})

{Property of sets}
⇔ B = {s : State, ss : P State⊥ | ((s, ∅) ∈ B ∨ ⊥ /∈ ss) ∧ (s, ss) ∈ B}

{Definition of bmh3}
⇔ B = bmh3(B)

Finally, Lemma B.1.4 establishes that bmh3 is an idempotent function.
This section concludes our discussion regarding the definition of the bmhx

functions. Their functional composition is studied in detail in Appendix B.1.
In the following sections we focus our attention only on the functional com-
positions that characterise the theory and its subset of interest.

4.3.5 BMH0-BMH2 as a fixed point (bmh0,1,2)
The relations in the theory are characterised by the conjunction of the health-
iness conditions BMH0-BMH2. These relations can also be characterised
as fixed points of the function bmh0,1,2 as defined below.
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Definition 38

bmh0,1,2(B) =̂


s : State, ss : P State⊥∣∣∣∣∣∣
∃ ss0 • ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


This definition is justified by the functional composition of the respective
bmh functions as shown in the following Lemma 4.3.4.

Lemma 4.3.4

bmh0 ◦ bmh1 ◦ bmh2(B)

=
s : State, ss : P State⊥∣∣∣∣∣∣
∃ ss0 • ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


Proof.

bmh0 ◦ bmh1 ◦ bmh2(B) {Definition of bmh0 ◦ bmh1}

=


s : State, ss : P State⊥∣∣∣∣ ∃ ss0 • ((s, ss0) ∈ bmh2(B) ∨ (s, ss0 ∪ {⊥}) ∈ bmh2(B))
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss))


{Definition of bmh2}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ ss0 : State⊥ •
(s, ss0) ∈

{
s : State, ss : P State⊥
| (s, ss) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)

}
∨

(s, ss0 ∪ {⊥}) ∈
{

s : State, ss : P State⊥
| (s, ss) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)

}


∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss))


{Property of sets}
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=


s : State, ss : P State⊥∣∣∣∣∣∣∣∣
∃ ss0 •

 ((s, ss0) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B))
∨
((s, ss0 ∪ {⊥}) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B))


∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss))


{Predicate calculus}

=


s : State, ss : P State⊥∣∣∣∣∣∣
∃ ss0 • ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


In the following Lemma 4.3.5 we prove that bmh0,1,2 is an idempotent func-
tion.

Lemma 4.3.5 (bmh0,1,2-idempotent)

bmh0,1,2 ◦ bmh0,1,2(B) = bmh0,1,2(B)

Proof.

bmh0,1,2 ◦ bmh0,1,2(B) {Definition of bmh0,1,2}

=


s : State, ss : P State⊥∣∣∣∣∣∣
∃ ss0 • ((s, ss0) ∈ bmh0,1,2(B) ∨ (s, ss0 ∪ {⊥}) ∈ bmh0,1,2(B))
∧ ((s, {⊥}) ∈ bmh0,1,2(B)⇔ (s, ∅) ∈ bmh0,1,2(B))
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


{Law B.2.6, Law B.2.5 and predicate calculus}

=


s : State, ss : P State⊥∣∣∣∣ ∃ ss0 • ((s, ss0) ∈ bmh0,1,2(B) ∨ (s, ss0 ∪ {⊥}) ∈ bmh0,1,2(B))
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


{Predicate calculus}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣

(
∃ ss0 • (s, ss0) ∈ bmh0,1,2(B) ∧ ss0 ⊆ ss
∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)

)
∨(
∃ ss0 • (s, ss0 ∪ {⊥}) ∈ bmh0,1,2(B) ∧ ss0 ⊆ ss
∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)

)


{Law B.2.4}
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=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣




((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧

∃ ss1 •
(

((s, ss1) ∈ B ∨ (s, ss1 ∪ {⊥}) ∈ B)
∧ ss1 ⊆ ss ∧ (⊥ ∈ ss1 ⇔ ⊥ ∈ ss)

)


∨
((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧

∃ ss1 •
(

((s, ss1) ∈ B ∨ (s, ss1 ∪ {⊥} ∪ {⊥}) ∈ B)
∧ ss1 ⊆ ss ∧ (⊥ ∈ ss1 ⇔ ⊥ ∈ ss)

)





{Property of sets and predicate calculus}

=


s : State, ss : P State⊥∣∣∣∣∣∣∣∣
((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧(
∃ ss1 • ((s, ss1) ∈ B ∨ (s, ss1 ∪ {⊥}) ∈ B) ∧ ss1 ⊆ ss
∧ (⊥ ∈ ss1 ⇔ ⊥ ∈ ss)

)


{Definition of bmh0,1,2}
= bmh0,1,2(B)

The particular order of the functional composition is justified by Theorem 4.3.1.

Theorem 4.3.1

BMH0 ∧ BMH1 ∧ BMH2⇔ bmh0,1,2(B) = B

Proof. Follows from Lemmas 4.3.6 to 4.3.8 and Lemma 4.3.9.

This theorem, together with the respective lemmas enumerated in the fol-
lowing paragraphs, establishes that bmh0,1,2 is a suitable function for char-
acterising BMH0-BMH2-healthy relations. Appendix B.1 provides some
reasoning as to why other orders of application are not desirable. For ex-
ample, not all functions are necessarily commutative.

From bmh0,1,2 to BMH0-BMH2

In the following laws we prove that the fixed points of bmh0,1,2 satisfy each
of the predicative healthiness conditions BMH0, BMH1 and BMH2.

Revision: 704f887 (2014-02-04 11:14:10 +0000) 46



Lemma 4.3.6
(bmh0,1,2(B) = B)⇒ BMH0

Proof.
BMH0 {Definition of BMH0}

=

(
∀ s0 : State, ss0, ss1 : P State⊥ •
((s0, ss0) ∈ B ∧ ss0 ⊆ ss1 ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss1))⇒ (s0, ss1) ∈ B

)
{Predicate calculus: quantifier scope}

=


∀ s0 : State, ss1 : P State⊥ •
(∃ ss0 : P State⊥ • (s0, ss0) ∈ B ∧ ss0 ⊆ ss1 ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss1))
⇒
(s0, ss1) ∈ B


{Assumption: bmh0,1,2(B) = B}

=


∀ s0 : State, ss1 : P State⊥ •

∃ ss0 : P State⊥ •
(

(s0, ss0) ∈ bmh0,1,2(B) ∧ ss0 ⊆ ss1
∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss1)

)
⇒
(s0, ss1) ∈ bmh0,1,2(B)


{Law B.2.4}

=



∀ s0 : State, ss1 : P State⊥ •
((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧

∃ ss0 •
(

((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧ ss0 ⊆ ss1 ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss1)

)


⇒
(s0, ss1) ∈ bmh0,1,2(B)


{Law B.2.3}

=

(
∀ s0 : State, ss1 : P State⊥ •
(s0, ss1) ∈ bmh0,1,2(B)⇒ (s0, ss1) ∈ bmh0,1,2(B)

)
{Predicate calculus}

= true

Lemma 4.3.7
(bmh0,1,2(B) = B)⇒ BMH1
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Proof.

BMH1 {Lemma 4.2.1}
= ∀ s : State, ss : P State⊥ • ((s, ss ∪ {⊥}) ∈ B ∧ ⊥ /∈ ss)⇒ (s, ss) ∈ B

{Assumption: bmh0,1,2(B) = B}

=

(
∀ s : State, ss : P State⊥ •
((s, ss ∪ {⊥}) ∈ bmh0,1,2(B) ∧ ⊥ /∈ ss)⇒ (s, ss) ∈ bmh0,1,2(B)

)
{Law B.2.3}

=



∀ s : State, ss : P State⊥ •
((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B) ∧ ⊥ /∈ ss
∧

∃ ss0 : P State⊥ •
(

((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧ ss0 ⊆ (ss ∪ {⊥}) ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ (ss ∪ {⊥}))

)


⇒
(s, ss) ∈ bmh0,1,2(B)


{Property of sets}

=



∀ s : State, ss : P State⊥ •
((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B) ∧ ⊥ /∈ ss
∧

∃ ss0 : P State⊥ •
(

((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧ ss0 ⊆ (ss ∪ {⊥}) ∧ ⊥ ∈ ss0

)


⇒
(s, ss) ∈ bmh0,1,2(B)


{Predicate calculus and property of sets}

=



∀ s : State, ss : P State⊥ •
((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B) ∧ ⊥ /∈ ss
∧

∃ ss0 : P State⊥ •
(

((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧ (ss0 \ {⊥}) ⊆ ss ∧ ⊥ ∈ ss0

)


⇒
(s, ss) ∈ bmh0,1,2(B)


{Introduce fresh variable}
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=



∀ s : State, ss : P State⊥ •
((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B) ∧ ⊥ /∈ ss
∧

∃ ss0, t : P State⊥ •

 ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧ t ⊆ ss ∧ ⊥ ∈ ss0
∧ t = (ss0 \ {⊥})




⇒
(s, ss) ∈ bmh0,1,2(B)


{Lemma B.3.2}

=



∀ s : State, ss : P State⊥ •
((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B) ∧ ⊥ /∈ ss
∧

∃ ss0, t : P State⊥ •

 ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧ t ⊆ ss ∧ ⊥ /∈ t
∧ t ∪ {⊥} = ss0




⇒
(s, ss) ∈ bmh0,1,2(B)


{One-point rule}

=



∀ s : State, ss : P State⊥ •
((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B) ∧ ⊥ /∈ ss
∧

∃ t : P State⊥ •
(

((s, t ∪ {⊥}) ∈ B ∨ (s, t ∪ {⊥} ∪ {⊥}) ∈ B)
∧ t ⊆ ss ∧ ⊥ /∈ t

)


⇒
(s, ss) ∈ bmh0,1,2(B)


{Property of sets and predicate calculus}

=


∀ s : State, ss : P State⊥ • ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧
∃ t : P State⊥ • (s, t ∪ {⊥}) ∈ B ∧ t ⊆ ss ∧ ⊥ /∈ t ∧ ⊥ /∈ ss


⇒
(s, ss) ∈ bmh0,1,2(B)


{Law B.2.3}
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=



∀ s : State, ss : P State⊥ • ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧
∃ t : P State⊥ • (s, t ∪ {⊥}) ∈ B ∧ t ⊆ ss ∧ ⊥ /∈ t ∧ ⊥ /∈ ss


⇒

((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧

∃ ss0 : State⊥ •
(

((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧ ss0 ⊆ ss1 ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss1)

)



{Predicate calculus}

=



∀ s : State, ss : P State⊥ • ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧
∃ t : P State⊥ • (s, t ∪ {⊥}) ∈ B ∧ t ⊆ ss ∧ ⊥ /∈ t ∧ ⊥ /∈ ss


⇒

((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ ∃ ss0 : State⊥ • (s, ss0) ∈ B ∧ ss0 ⊆ ss1 ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss1)
∨
∃ ss0 : State⊥ • (s, ss0 ∪ {⊥}) ∈ B ∧ ss0 ⊆ ss1 ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss1)





{Predicate calculus}

=



∀ s : State, ss : P State⊥ • ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧
∃ t : P State⊥ • (s, t ∪ {⊥}) ∈ B ∧ t ⊆ ss ∧ ⊥ /∈ t ∧ ⊥ /∈ ss


⇒

((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧
∃ ss0 : State⊥ • (s, ss0) ∈ B ∧ ss0 ⊆ ss1 ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss1)
∨
∃ ss0 : State⊥ • (s, ss0 ∪ {⊥}) ∈ B ∧ ss0 ⊆ ss1 ∧ ⊥ ∈ ss0 ∧ ⊥ ∈ ss1
∨
∃ ss0 : State⊥ • (s, ss0 ∪ {⊥}) ∈ B ∧ ss0 ⊆ ss1 ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss1






{Variable renaming and predicate calculus}

= true
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Lemma 4.3.8

(bmh0,1,2(B) = B)⇒ BMH2

Proof.

BMH2 {Definition of BMH2}
= ∀ s : State • (s, ∅) ∈ B ⇔ (s, {⊥}) ∈ B

{Assumption: bmh0,1,2(B) = B}
= ∀ s : State • (s, ∅) ∈ bmh0,1,2(B)⇔ (s, {⊥}) ∈ bmh0,1,2(B)

{Law B.2.5 and Law B.2.6}
= ∀ s : State • ((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)⇔ ((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)

{Predicate calculus}
= true

These laws confirm that a fixed point of bmh0,1,2 satisfies each of the predic-
ative healthiness conditions BMH0-BMH2. In the following laws we prove
the reverse implication of Theorem 4.3.1.

From BMH0-BMH2 to bmh0,1,2

A binary multirelation that is BMH0, BMH1 and BMH2-healthy is a
fixed point of bmh0,1,2.

Lemma 4.3.9 Provided B is BMH0−BMH2-healthy.

bmh0,1,2(B) = B

Proof.

bmh0,1,2(B) = B {Definition of bmh0,1,2}

⇔


s : State, ss : P State⊥∣∣∣∣∣∣
∃ ss0 • ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)

 = B

{Assumption: B is BMH2-healthy}
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⇔


s : State, ss : P State⊥∣∣∣∣ ∃ ss0 • ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)

 = B

{Assumption: B is BMH1-healthy and predicate calculus}

⇔


s : State, ss : P State⊥∣∣∣∣ ∃ ss0 • ((s, ss0) ∈ B ∨ ((s, ss0 ∪ {⊥}) ∈ B ∧ (s, ss0) ∈ B)
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)

 = B

{Predicate calculus: absorption law}

⇔
{

s : State, ss : P State⊥∣∣ ∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)

}
= B

{Assumption: B is BMH0-healthy}

⇔
{

s : State, ss : P State⊥∣∣ (∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)) ∧ (s, ss) ∈ B

}
= B

{Instantiation of existential quantifier for ss0 = ss}

⇔


s : State, ss : P State⊥∣∣∣∣∣∣∣∣
 (∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss))
∨
(s, ss) ∈ B


∧ (s, ss) ∈ B

 = B

{Predicate calculus: absorption law}
⇔ {s : State, ss : P State⊥ | (s, ss) ∈ B} = B {Property of sets}
⇔ true

These proofs conclude our discussion of the healthiness conditions of the new
theory of binary multirelations. These relations can be characterised either
by the predicates BMH0-BMH2 or as fixed points of bmh0,1,2. In the
following section we focus our attention on the subset of the theory that is
in addition BMH3-healthy.

4.3.6 BMH0-BMH3 as a fixed point (bmh0,1,3,2)
The relations that are BMH0, BMH1, BMH2 and BMH3-healthy can be
characterised as fixed points of the following function.
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Definition 39

bmh0,1,3,2(B)

=

s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 •

(
(s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)



This definition is justified by the following Lemma 4.3.10.

Lemma 4.3.10

bmh0 ◦ bmh1 ◦ bmh3 ◦ bmh2(B)

=

s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 •

(
(s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)



Proof.

bmh0 ◦ bmh1 ◦ bmh3 ◦ bmh2(B) {Law B.2.8}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
∃ ss0 •

 ((s, ss0) ∈ bmh2(B) ∨ (s, ss0 ∪ {⊥}) ∈ bmh2(B))
∧
(s, ∅) ∈ bmh2(B) ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


∨
∃ ss0 • ((s, ss0) ∈ bmh2(B) ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss)


{Definition of bmh2}
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=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ ss0 •





(s, ss0) ∈


s : State, ss : P State⊥∣∣∣∣∣∣
(s, ss) ∈ B
∧
((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)


∨

(s, ss0 ∪ {⊥}) ∈


s : State, ss : P State⊥∣∣∣∣∣∣
(s, ss) ∈ B
∧
((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)




∧

(s, ∅) ∈
{

s : State, ss : P State⊥
| (s, ss) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)

}
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


∨

∃ ss0 •

 (s, ss0) ∈
{

s : State, ss : P State⊥
| (s, ss) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)

}
∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss




{Property of sets}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ ss0 •



 ((s, ss0) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B))
∨
((s, ss0 ∪ {⊥}) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B))


∧
((s, ∅) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B))
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


∨

∃ ss0 •
(

(s, ss0) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)


{Predicate calculus}
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=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ ss0 •


((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧
(s, ∅) ∈ B ∧ (s, {⊥}) ∈ B
∧
ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


∨

∃ ss0 •
(

(s, ss0) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)


{Predicate calculus}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


(s, ∅) ∈ B ∧ (s, {⊥}) ∈ B
∧

∃ ss0 •

 ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧
ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)




∨

∃ ss0 •
(

(s, ss0) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)


{Law B.2.9}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



(s, ∅) ∈ B ∧ (s, {⊥}) ∈ B
∧

(s, {⊥}) ∈ B
∨

∃ ss0 •

 ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧
ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)





∨

∃ ss0 •
(

(s, ss0) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)


{Predicate calculus: absorption law}
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=


s : State, ss : P State⊥∣∣∣∣∣∣∣∣
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨

∃ ss0 •
(

(s, ss0) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)


{Predicate calculus}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨ (s, {⊥}) ∈ B ∧ (s, ∅) ∈ B
∧
∃ ss0 •

(
(s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)


∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 •

(
(s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)



{Predicate calculus: absorption law}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 •

(
(s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)



In Lemma B.1.13 we prove that bmh0,1,3,2 is idempotent. This also follows
directly from idempotency of the respective functions bmh0-bmh3.

The following Theorem 4.3.2, together with the respective lemmas that
we discuss in the following sections, establishes that the fixed points of
bmh0,1,3,2 correspond to the conjunction of the predicative healthiness con-
ditions BMH0-BMH3.

Theorem 4.3.2

BMH0 ∧ BMH1 ∧ BMH2 ∧ BMH3⇔ bmh0,1,3,2(B) = B

Proof. The implication follows from Lemma 4.3.11. While the reverse im-
plication follows from the fact that bmh0,1,3,2 is a fixed point of bmh0,1,2
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(Lemma B.1.14) and Lemmas 4.3.6 to 4.3.8 and Law 4.3.2.

In the following sections we prove the auxiliary results pertaining to The-
orem 4.3.2. First, we consider the lemmas needed to prove the implication.
This is followed by lemmas supporting the proof of the reverse implication.

From bmh0,1,3,2 to BMH0-BMH3

Since the model of BMH0-BMH3 is a subset of the more general model
of BMH0-BMH2, every fixed point of bmh0,1,3,2 is also a fixed point of
bmh0,1,2. This result is established in Lemma B.1.14. Together with those
results established in Section 4.3.5, this allows us to ascertain that any fixed
point of bmh0,1,3,2 also satisfies BMH0-BMH2.

Finally, the following Law 4.3.2 establishes that every fixed point of
bmh0,1,3,2 satisfies the predicative healthiness condition BMH3.

Law 4.3.2

(bmh0,1,3,2(B) = B)⇒ BMH3

Proof.

BMH3 {Definition of BMH3}

= ∀ s0 : State •

 ((s0, ∅) /∈ B)
⇒
(∀ ss0 : P State⊥ • (s0, ss0) ∈ B ⇒ ⊥ /∈ ss0)


{Predicate calculus}

= ∀ s0 : State •

 (∃ ss0 : P State⊥ • (s0, ss0) ∈ B ∧ ⊥ ∈ ss0)
⇒
((s0, ∅) ∈ B)


{Assumption: bmh0,1,3,2(B) = B}

= ∀ s0 : State •

 (∃ ss0 : P State⊥ • (s0, ss0) ∈ bmh0,1,3,2(B) ∧ ⊥ ∈ ss0)
⇒
((s0, ∅) ∈ bmh0,1,3,2(B))


{Law B.2.10 and Law B.2.13}
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= ∀ s0 : State •





∃ ss0 : P State⊥ •
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨

(s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧

∃ ss0 •
(

(s, ss0) ∈ B ∧ ss0 ⊆ ss
∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)



∧
⊥ ∈ ss0


⇒
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)


{Predicate calculus}

= ∀ s0 : State •


(
∃ ss0 : P State⊥ •
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B) ∧ ⊥ ∈ ss0

)
⇒
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)


{Case analysis on ss0}

= ∀ s0 : State •

 ((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
⇒
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)

 {Predicate calculus}

= true

Having established the proof for the implication of Theorem 4.3.2, in the
following section we focus on the reverse implication.

From BMH0-BMH3 to bmh0,1,3,2

Finally, the Lemma 4.3.11 establishes the proof with respect to the reverse
implication of Theorem 4.3.2.

Lemma 4.3.11

BMH0 ∧ BMH1 ∧ BMH2 ∧ BMH3⇒ bmh0,1,3,2(B) = B

Proof.

bmh0,1,3,2(B) {Definition of bmh0,1,3,2}
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=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 : P State⊥ •

(
(s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)



{Predicate calculus}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B) ∨ ((s, {⊥}) /∈ B ∧ (s, ∅) /∈ B))
∧ ((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨
(∃ ss0 : P State⊥ • (s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss)




{Predicate calculus}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, ∅) ∈ B ⇔ (s, {⊥}) ∈ B)
∧ ((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨
(∃ ss0 : P State⊥ • (s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss)




{Assumption: B is BMH2-healthy}

=


s : State, ss : P State⊥∣∣∣∣∣∣
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨
(∃ ss0 : P State⊥ • (s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss)


{Assumption: B is BMH0-healthy}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨ ∃ ss0 : P State⊥ • (s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0
∧
(s, ss) ∈ B ∧ ⊥ /∈ ss




{Predicate calculus: instatiation of existential quantifier for ss0 = ss}
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=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨
 (∃ ss0 : P State⊥ • (s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0)
∨
((s, ss) ∈ B ∧ ⊥ /∈ ss)


∧
((s, ss) ∈ B ∧ ⊥ /∈ ss)




{Predicate calculus: absorption law}

=


s : State, ss : P State⊥∣∣∣∣∣∣
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨
((s, ss) ∈ B ∧ ⊥ /∈ ss)


{Assumption: B is BMH2-healthy}

= {s : State, ss : P State⊥ | (s, ∅) ∈ B ∨ ((s, ss) ∈ B ∧ ⊥ /∈ ss)}
{Assumption: B is BMH0, BMH2 and BMH3-healthy and Law B.2.15}
= B

These results establish that there are suitable functions whose fixed points
characterise the theories of interest. The more general theory, that can en-
code sets of final states where termination is not guaranteed is characterised
by bmh0,1,2. The function bmh0,1,3,2 characterises the subset that corres-
ponds to the original theory of binary multirelations. The relationship with
the original theory of binary multirelations is explored in Section 4.6.

4.4 Refinement ordering
The refinement order for the new binary multirelation model is defined ex-
actly as in the original theory of binary multirelations [15].

Definition 40 (Refinement)

B1 vBM⊥ B0 =̂ B1 ⊇ B0

It is defined as reverse subset inclusion, such that a program B0 refines B1 if
and only if B0 is a subset of B1.
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The extreme points of the theory follow from the subset ordering. As
expected of a theory of designs, they are the everywhere miraculous program
and abort. Their definition is presented below.

Definition 41 (Miracle)

>BM⊥ =̂ ∅

As in the original theory, miracle is denoted by the absence of any relationship
between any input state and any set of final states, that is, the program
cannot possibly be executed.

Definition 42 (Abort)

⊥BM⊥ =̂ State × P State⊥

On the other hand, abort is characterised by the universal relation similarly
to the original theory [15], such that every initial state is related to every
possible set of final states.

4.5 Operators
In this section the operators of the theory are defined. In Sections 4.5.1
to 4.5.3 the main operators are defined, namely, assignment, angelic choice
and demonic choice. In Section 4.5.4 the definition of sequential composition
in the new model is presented.

In Chapter 5 we establish that the operators defined here are in corres-
pondence with those of the new theory of designs with angelic nondetermin-
ism. There we prove that the operators are closed. Together with the re-
spective isomorphism establish between the theories, these results are suffi-
cient to establish closure of the operators under BMH0-BMH2. The proof
of closure using only the assumptions of this model is left as future work.

4.5.1 Assignment
In the new model there is in fact the possibility to define two distinct as-
signment operators. The first one behaves exactly as in the original theory
of binary multirelations (x :=BM e). It specifies the assignment of the value
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of expression e to the program variable x ; is guaranteed to terminate. This
operator does not need to be redefined, since BM ⊆ BM⊥.

The new operator that we define below, however, behaves rather differ-
ently, in that the sets of final states may or may not be terminating.

Definition 43

(x :=BM⊥ e) =̂ {s : State, ss : P State⊥ | s ⊕ (x 7→ e) ∈ ss}

This assignment guarantees that for every initial state s, there is some set of
final states available for angelic choice where x has the value of expression
e. However, termination is not guaranteed. While the angel can choose the
final value of x it cannot possibly guarantee termination in this case.

4.5.2 Angelic choice
The definition of angelic choice is the same as in the original theory of binary
multirelations.

Definition 44

B0 tBM⊥ B1 =̂ B0 ∩ B1

It is defined by set intersection, such that for every set of final states available
for demonic choice in B0 and B1 when started from a particular initial state,
only those that can be chosen both in B0 and B1 are available.

In the following paragraphs we explore some of the properties observed
by the angelic choice operator.

Properties

An interesting property of angelic choice that is observed in this model is
illustrated by the following Law 4.5.1. It considers the angelic choice between
two assignments of the same value, yet only one is guaranteed to terminate.

Law 4.5.1

(x :=BM⊥ e) tBM⊥ (x :=BM e) = (x :=BM e)
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Proof.

(x :=BM⊥ e) tBM⊥ (x :=BM e) {Definition of :=BM⊥ , :=BM and tBM⊥}

=

 {s : State, ss : P State⊥ | s ⊕ (x 7→ e) ∈ ss}
∩
{s : State, ss : P State | s ⊕ (x 7→ e) ∈ ss}

 {Type: ⊥ /∈ P State}

=

 {s : State, ss : P State⊥ | s ⊕ (x 7→ e) ∈ ss}
∩
{s : State, ss : P State⊥ | s ⊕ (x 7→ e) ∈ ss ∧ ⊥ /∈ ss}


{Property of sets and predicate calculus}

= {s : State, ss : P State⊥ | s ⊕ (x 7→ e) ∈ ss ∧ ⊥ /∈ ss}
{Type: ⊥ /∈ P State}

= {s : State, ss : P State | s ⊕ (x 7→ e) ∈ ss} {Definition of :=BM }
= (x :=BM e)

This result can be interpreted as follows: given an assignment which is guar-
anteed to terminate, adding an equivalent angelic choice which is potentially
non-terminating does not in fact introduce any new choices. Termination
can still be enforced.

In general, and as expected from the original model of binary multire-
lations, the angelic choice operator observes the following properties with
respect to the extreme points.

Law 4.5.2

>BM⊥ tBM⊥ B = >BM⊥

Proof.

>BM⊥ tBM⊥ B {Definition of >BM⊥ and tBM⊥}
= ∅ ∩ B {Property of sets}
= ∅ {Definition of >BM⊥}
= >BM⊥
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The angelic choice between an everywhere miraculous program and any other
program is still miraculous.

Law 4.5.3

⊥BM⊥ tBM⊥ B = B

Proof.

⊥BM⊥ tBM⊥ B {Definition of ⊥BM⊥ and tBM⊥}
= (State × P State⊥) ∩ B {Property of sets}
= B

On the other hand, the angelic choice between abort and any other program
B is the same as B. That is, the angel will avoid choosing an aborting
program if possible.

4.5.3 Demonic choice
The demonic choice operator is defined by set union, exactly as in the original
theory of binary multirelations.

Definition 45

B0 uBM⊥ B1 =̂ B0 ∪ B1

For every initial state, a corresponding set of final states available for demonic
choice in either, or both, of B0 and B1, is included in the result.

In the following paragraphs we present some results regarding the demonic
choice operator.

Properties

Similar to the angelic choice operator, there is a general result regarding
the demonic choice over the two assignment operators, terminating and not
necessarily terminating. This is shown in the following Law 4.5.4.
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Law 4.5.4

(x :=BM e) uBM⊥ (x :=BM⊥ e) = (x :=BM⊥ e)

Proof.

(x :=BM e) uBM⊥ (x :=BM⊥ e) {Definition of :=BM , :=BM⊥ and uBM⊥}

=

 {s : State, ss : P State | s ⊕ (x 7→ e) ∈ ss}
∪
{s : State, ss : P State⊥ | s ⊕ (x 7→ e) ∈ ss}

 {Type: ⊥ /∈ P State}

=

 {s : State, ss : P State | s ⊕ (x 7→ e) ∈ ss ∧ ⊥ /∈ ss}
∪
{s : State, ss : P State⊥ | s ⊕ (x 7→ e) ∈ ss}


{Property of sets}

= {s : State, ss : P State | (s ⊕ (x 7→ e) ∈ ss ∧ ⊥ /∈ ss) ∨ s ⊕ (x 7→ e) ∈ ss}
{Predicate calculus: absorption law}

= {s : State, ss : P State | s ⊕ (x 7→ e) ∈ ss} {Definition of :=BM⊥}
= (x :=BM⊥ e)

This result can be interpreted as follows: if there is an assignment for which
termination is not guaranteed, then the demonic choice over this assignment
and an equivalent one that is guaranteed to terminate is the same as the
assignment that does not require termination. In other words, if it is possible
for the demon to choose between two similar sets of final states, one that is
possibly non-terminating and one that terminates, then the one for which
termination is not guaranteed dominates the choice.

The following two laws show how the demonic choice operator behaves
with respect to the extreme points of the theory.

Law 4.5.5

⊥BM⊥ uBM⊥ B = ⊥BM⊥

Proof.

⊥BM⊥ uBM⊥ B {Definition of ⊥BM⊥ and uBM⊥}
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= (State × P State⊥) ∪ B {Property of sets}
= (State × P State⊥) {Definition of ⊥BM⊥}
= ⊥BM⊥

Law 4.5.6

>BM⊥ uBM⊥ B = B

Proof.

>BM⊥ uBM⊥ B {Definition of >BM⊥ and uBM⊥}
= ∅ ∪ B {Property of sets}
= B

As expected, the demonic choice between abort and some other program is
abort. In the case of a miracle, the demon will avoid choosing it if possible.

Since the angelic and demonic choice operators are defined as set intersec-
tion and union, respectively, they also distribute through each other. This is
exactly the same property as in the original theory of binary multirelations.

4.5.4 Sequential composition
The definition of sequential composition is not immediately obvious. In fact,
one of the main reasons for developing a new binary multirelational model
is that it provides a more intuitive approach to the definition of sequential
composition. Consider the following example from the theory of designs.

Example 10

(x ′ = 1 ` true) ; D IID {Definition of IID}
= (x ′ = 1 ` true) ; D (true ` x ′ = x)

{Definition of sequential composition for designs}
= (¬ (x ′ 6= 1 ; true) ∧ ¬ (true ; false) ` true ; x ′ = x)

{Definition of sequential composition}
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= (¬ (∃ x0 • x0 6= 1 ∧ true) ∧ ¬ (∃ x0 • true ∧ false) ` ∃ x0 • true ∧ x ′ = x0)
{Predicate calculus and one-point rule}

= (¬ true ∧ ¬ false ` true) {Predicate calculus}
= (false ` true) {Property of designs and predicate calculus}
= true {Definition of ⊥D}
= ⊥D

In this case, a non-H3-design is sequentially composed with IID, the Skip
of the theory. The result is an aborting program. In fact, this result can be
generalised for the sequential composition of any non-H3-design.

The behaviour just described provides the motivation for the definition
of sequential composition in the new binary multirelational model.

Definition 46

B0 ; BM⊥ B1

=̂
s0 : State, ss0 : P State⊥∣∣∣∣∣∣∣∣
∃ ss : P State⊥ • (s0, ss) ∈ B0 ∧ ⊥ ∈ ss
∨
(⊥ /∈ ss ∧ ss ⊆ {s1 : State | (s1, ss0) ∈ B1})




This definition is similar to the one for binary multirelations, except for
the case where B0 may lead to sets of final states where termination is not
guaranteed. For sets of final states where termination is guaranteed, that
is, ⊥ is not in the set of intermediate states ss, then the definition matches
that of the original theory of binary multirelations. If ⊥ is in ss, and hence
termination is not guaranteed, then the result of the sequential composition
is arbitrary as it can include any set of final states.

If we assume that B0 is BMH0-healthy, then the definition of sequential
composition can be split into the set union of two sets as shown in Law 4.5.7.

Law 4.5.7 Provided B0 is BMH0-healthy.

B0 ; BM⊥ B1

=
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 {s0 : State, ss0 : P State⊥ | (s0, State⊥) ∈ B0}
∪
{s0 : State, ss0 : P State⊥ | (s0, {s1 : State | (s1, ss0) ∈ B1}) ∈ B0}



Proof.

B0 ; BM⊥ B1 {Definition of ; BM⊥}

=


s0 : State, ss0 : P State⊥∣∣∣∣∣∣∣∣
∃ ss : P State⊥ • (s0, ss) ∈ B0 ∧ ⊥ ∈ ss
∨
(⊥ /∈ ss ∧ ss ⊆ {s1 : State | (s1, ss0) ∈ B1})




{Predicate calculus and property of sets}

=



{
s0 : State, ss0 : P State⊥∣∣ ∃ ss : P State⊥ • (s0, ss) ∈ B0 ∧ ⊥ ∈ ss

}
∪

s0 : State, ss0 : P State⊥∣∣∣∣ ∃ ss : P State⊥ • (s0, ss) ∈ B0

∧ (⊥ /∈ ss ∧ ss ⊆ {s1 : State | (s1, ss0) ∈ B1})




{Propositional calculus and property of sets}

=




s0 : State, ss0 : P State⊥∣∣∣∣ ∃ ss : P State⊥ • (s0, ss) ∈ B0

∧ ⊥ ∈ ss ∧ ss ⊆ State⊥


∪

s0 : State, ss0 : P State⊥∣∣∣∣ ∃ ss : P State⊥ • (s0, ss) ∈ B0

∧ ⊥ /∈ ss ∧ ss ⊆ {s1 : State | (s1, ss0) ∈ B1}




{⊥ in State⊥ and ⊥ not in State}

=




s0 : State, ss0 : P State⊥∣∣∣∣ ∃ ss : P State⊥ • (s0, ss) ∈ B0

∧ ⊥ ∈ ss ∧ ss ⊆ State⊥ ∧ ⊥ ∈ State⊥


∪

s0 : State, ss0 : P State⊥∣∣∣∣∣∣
∃ ss : P State⊥ • (s0, ss) ∈ B0

∧ ⊥ /∈ ss ∧ ss ⊆ {s1 : State | (s1, ss0) ∈ B1}
∧ ⊥ /∈ {s1 : State | (s1, ss0) ∈ B1}
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{Assumption: B0 is BMH0-healthy and Law B.2.1}

=

 {s0 : State, ss0 : P State⊥ | (s0, State⊥) ∈ B0}
∪
{s0 : State, ss0 : P State⊥ | (s0, {s1 : State | (s1, ss0) ∈ B1}) ∈ B0}



The first set considers the case when B0 leads to sets of final states where
termination is not required (State⊥). The second set considers the case where
termination is required.

For a similar example to Example 10 expressed in the new theory, we
consider the following example, where a non-terminating assignment is fol-
lowed by the assignment that requires termination, but does not change the
value of x .

Example 11

(x :=BM⊥ e) ; BM⊥ (x :=BM x) {Definition of ; BM⊥ (Law 4.5.7)}

=


{s0 : State, ss0 : P State⊥ | (s0, State⊥) ∈ (x :=BM⊥ e)}
∪{

s0 : State, ss0 : P State⊥
| (s0, {s1 : State | (s1, ss0) ∈ (x :=BM x)}) ∈ (x :=BM⊥ e)

}


{Definition of :=BM and :=BM⊥}

=



{
s0 : State, ss0 : P State⊥
| (s0, State⊥) ∈ {s : State, ss : P State⊥ | s ⊕ (x 7→ e) ∈ ss}

}
∪

s0 : State, ss0 : P State⊥∣∣∣∣∣∣
(s0, {s1 : State | (s1, ss0) ∈ (x :=BM x)})
∈
{s : State, ss : P State | s ⊕ (x 7→ e) ∈ ss}




{Property of sets}

=


{s0 : State, ss0 : P State⊥ | s0 ⊕ (x 7→ e) ∈ State⊥}
∪{

s0 : State, ss0 : P State⊥∣∣ s0 ⊕ (x 7→ e) ∈ {s1 : State | (s1, ss0) ∈ (x :=BM x)}

}


{Property of sets}
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=


{s0 : State, ss0 : P State⊥ | true}
∪{

s0 : State, ss0 : P State⊥∣∣ s0 ⊕ (x 7→ e) ∈ {s1 : State | (s1, ss0) ∈ (x :=BM x)}

}


{Property of sets and definition of ⊥BM⊥}
= ⊥BM⊥

The result of this sequential composition is an aborting program. If it is
possible for the first program not to terminate, then the sequential compos-
ition cannot provide any guarantees either. The properties observed by the
sequential composition operator are explored in what follows.

Properties

The first property of interest considers the sequential composition of >BM⊥

followed by some program B. The result is also a miraculous program as
shown in the following Law 4.5.8

Law 4.5.8

>BM⊥ ; BM⊥ B = >BM⊥

Proof.

>BM⊥ ; BM⊥ B {Definition of >BM⊥}
= ∅ ; BM⊥ B

{Definition of ; BM⊥ (Law 4.5.7 as >BM⊥ is BMH0-healthy)}

=

 {s0 : State, ss0 : P State⊥ | (s0, State⊥) ∈ ∅}
∪
{s0 : State, ss0 : P State⊥ | (s0, {s1 : State | (s1, ss0) ∈ B1}) ∈ ∅}


{Property of sets}

= {s0 : State, ss0 : P State⊥ | false} ∪ {s0 : State, ss0 : P State⊥ | false}
{Property of sets}

= ∅ ∪ ∅ {Property of sets and definition of >BM⊥}
= >BM⊥
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The following law expresses that the sequential composition of abort with
another program is also abort.

Law 4.5.9

⊥BM⊥ ; BM⊥ B = ⊥BM⊥

Proof.

⊥BM⊥ ; BM⊥ B {Definition of ⊥BM⊥}
= (State × P State⊥) ; BM⊥ B

{Definition of ; BM⊥ (Law 4.5.7 as ⊥BM⊥ is BMH0-healthy)}

=


{

s0 : State, ss0 : P State⊥ | (s0, State⊥) ∈ (State × P State⊥)
}

∪{
s0 : State, ss0 : P State⊥
| (s0, {s1 : State | (s1, ss0) ∈ B}) ∈ (State × P State⊥)

}


{Property of sets}
= {s0 : State, ss0 : P State⊥ | true} ∪ {s0 : State, ss0 : P State⊥ | true}

{Property of sets}
= (State × P State⊥) {Definition of ⊥BM⊥}
= ⊥BM⊥

In the following paragraphs we explore some examples with respect to the
extreme points of the theory.

Examples

The following example describes the general behaviour of some program B
that is BMH0-healthy sequentially composed with a miraculous program.

Example 12

B ; BM⊥ >BM⊥ {Definition of >BM⊥ and ; BM⊥ (Law 4.5.7)}

=

 {s0 : State, ss0 : P State⊥ | (s0, State⊥) ∈ B}
∪
{s0 : State, ss0 : P State⊥ | (s0, {s1 : State | (s1, ss0) ∈ ∅}) ∈ B}


{Property of sets}
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=

 {s0 : State, ss0 : P State⊥ | (s0, State⊥) ∈ B}
∪
{s0 : State, ss0 : P State⊥ | (s0, ∅) ∈ B}


If B may not terminate for some set of final states, and it is BMH0-healthy,
then the result of the sequential composition is also abort, as State⊥ is in B.
If B aborts for some particular initial state s0, then that state is related to
the empty set in B and the result of the sequential composition is also abort.
Otherwise, the result is miraculous as the union of both sets if the empty set.

The following example describes the behaviour of a program B sequen-
tially composed with abort.

Example 13

B ; BM⊥ ⊥BM⊥ {Definition of ⊥BM⊥ and ; BM⊥ (Law 4.5.7)}

=


{s0 : State, ss0 : P State⊥ | (s0, State⊥) ∈ B}
∪{

s0 : State, ss0 : P State⊥
| (s0, {s1 : State | (s1, ss0) ∈ (State × P State⊥)}) ∈ B

}


{Property of sets}

=

 {s0 : State, ss0 : P State⊥ | (s0, State⊥) ∈ B}
∪
{s0 : State, ss0 : P State⊥ | (s0, {s1 : State | true}) ∈ B}


{Property of sets}

= {s0 : State, ss0 : P State⊥ | (s0, State⊥) ∈ B ∨ (s0, State) ∈ B}

Because B is upward closed, if it definitely terminates then State is a superset
of all sets of final states and is in B. If B may or may not terminate for some
particular set of final states, then State⊥ is also in B due to the upward
closure guaranteed by BMH0. In either case, the sequential composition
behaves as abort. If B is miraculous, then so is the sequential composition.

4.6 Relationship with binary multirelations
In this section we focus our attention on the relationship between the sub-
set of the theory that is BMH3-healthy and the original theory of binary
multirelations [15]. In the following Sections 4.6.1 and 4.6.2 we define the
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linking functions that relate both models. Finally in Section 4.6.3 we prove
that the linking functions form a bijection under the respective healthiness
conditions of each theory.

4.6.1 bmb2bm
The function bmb2bm maps binary multirelations in the new model, of type
BM⊥, to those in the original model. It is defined by considering every pair
in (s, ss) in B such that ⊥ is not in ss.

Definition 47 (bmb2bm)

bmb2bm : BM⊥ 7→ BM
bmb2bm(B) =̂ {s : State, ss : P State⊥ | ((s, ss) ∈ B ∧ ⊥ /∈ ss)}

In order to show that bmb2bm yields a binary multirelation that is BMH-
healthy, we first calculate the result of applying bmb2bm to a relation that is
BMH0-BMH3-healthy in Lemma 4.6.1. Finally in Theorem 4.6.1 we prove
that bmb2bm yields a BMH-healthy binary multirelation.

Lemma 4.6.1

bmb2bm(bmh0,1,3,2(B))

=

s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B) ∧ ⊥ /∈ ss
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 •

(
(s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)



Proof.

bmb2bm(bmh0,1,3,2(B)) {Definition of bmb2bm}
= {s : State, ss : P State⊥ | ((s, ss) ∈ bmh0,1,3,2(B) ∧ ⊥ /∈ ss)}

{Definition of bmh0,1,3,2}
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=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(s, ss) ∈



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 •

(
(s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)



∧ ⊥ /∈ ss


{Property of sets}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣


((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 •

(
(s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)



∧ ⊥ /∈ ss


{Predicate calculus}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B) ∧ ⊥ /∈ ss
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 •

(
(s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)




Theorem 4.6.1 (bmb2bm-is-bmhupclosed)

bmhupclosed ◦ bmb2bm(bmh0,1,3,2(B)) = bmb2bm(bmh0,1,3,2(B))

Proof.

bmhupclosed ◦ bmb2bm(bmh0,1,3,2(B)) {Definition of bmhupclosed}

=

{
s : State, ss : P State⊥∣∣ ∃ ss0 • (s, ss0) ∈ bmb2bm(bmh0,1,3,2(B)) ∧ ⊥ /∈ ss0 ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss

}
{Law B.2.17}
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=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ ss0 • (s, ss0) ∈



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B) ∧ ⊥ /∈ ss
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 •

(
(s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)



∧
⊥ /∈ ss0 ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss


{Variable renaming and property of sets}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∃ ss0 •


((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B) ∧ ⊥ /∈ ss0
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss1 •

(
(s, ss1) ∈ B ∧ ss1 ⊆ ss0 ∧ ⊥ /∈ ss1 ∧ ⊥ /∈ ss0

)



∧
⊥ /∈ ss0 ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss


{Predicate calculus: distributivity and quantifier scope}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B) ∧ ⊥ /∈ ss ∧ ∃ ss0 • ⊥ /∈ ss0 ∧ ss0 ⊆ ss
∨

(s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧

∃ ss1, ss0 •

 (s, ss1) ∈ B ∧ ss1 ⊆ ss0 ∧ ⊥ /∈ ss1 ∧ ⊥ /∈ ss0
∧
⊥ /∈ ss0 ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss





{Predicate calculus: case-analysis on ss0}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B) ∧ ⊥ /∈ ss
∨

(s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧

∃ ss1, ss0 •

 (s, ss1) ∈ B ∧ ss1 ⊆ ss0 ∧ ⊥ /∈ ss1 ∧ ⊥ /∈ ss0
∧
⊥ /∈ ss0 ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss





{Predicate calculus}
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=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B) ∧ ⊥ /∈ ss
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss1 •

(
(s, ss1) ∈ B ∧ ss1 ⊆ ss ∧ ⊥ /∈ ss1 ∧ ⊥ /∈ ss

)



{Lemma 4.6.1}

= bmb2bm(bmh0,1,3,2(B))

This result establishes that for BMH0-BMH3-healthy relations bmb2bm(B)
yields relations that are in the original theory.

4.6.2 bm2bmb
The function that maps from relations in the original model, of type BM ,
into the new model is bm2bmb and its definition is presented below.

Definition 48 (bm2bmb)
bm2bmb : BM 7→ BM⊥

bm2bmb(B) =̂

{
s : State, ss : P State⊥
| ((s, ss) ∈ B ∧ ⊥ /∈ ss) ∨ (s, ∅) ∈ B

}
It considers every pair (s, ss) in B where ⊥ is not in the set of final states
ss, or if B is aborting for a particular initial state s, then the result is the
universal relation of type BM⊥.

In the following Lemma 4.6.2 we calculate the result of applying bm2bmb
to a relation that is BMH-healthy. Finally, Theorem 4.6.2 establishes that
bm2bmb yields relations that are BMH0-BMH3-healthy.

Lemma 4.6.2
bm2bmb(bmhupclosed(B))

=
s : State, ss : P State⊥∣∣∣∣∣∣
∃ ss0 • (s, ss0) ∈ B ∧ ⊥ /∈ ss0 ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss
∨
(s, ∅) ∈ B
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Proof.

bm2bmb(bmhupclosed(B)) {Definition of bm2bmb}

=

{
s : State, ss : P State⊥
| ((s, ss) ∈ bmhupclosed(B) ∧ ⊥ /∈ ss) ∨ (s, ∅) ∈ bmhupclosed(B)

}
{Definition of bmhupclosed}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣

(
(s, ss) ∈

{
s : State, ss : P State⊥∣∣ ∃ ss0 • (s, ss0) ∈ B ∧ ⊥ /∈ ss0 ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss

}
∧ ⊥ /∈ ss

)
∨

(s, ∅) ∈
{

s : State, ss : P State⊥∣∣ ∃ ss0 • (s, ss0) ∈ B ∧ ⊥ /∈ ss0 ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss

}


{Property of sets and predicate calculus}

=


s : State, ss : P State⊥∣∣∣∣∣∣
∃ ss0 • (s, ss0) ∈ B ∧ ⊥ /∈ ss0 ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss
∨
∃ ss0 • (s, ss0) ∈ B ∧ ⊥ /∈ ss0 ∧ ss0 ⊆ ∅


{Case-analysis on ss0 and one-point rule}

=


s : State, ss : P State⊥∣∣∣∣∣∣
∃ ss0 • (s, ss0) ∈ B ∧ ⊥ /∈ ss0 ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss
∨
(s, ∅) ∈ B



Theorem 4.6.2

bmh0,1,3,2 ◦ bm2bmb(bmhupclosed(B)) = bm2bmb(bmhupclosed(B))

Proof.

bmh0,1,3,2 ◦ bm2bmb(bmhupclosed(B)) {Definition of bmh0,1,3,2}
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=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣

((s, ∅) ∈ bm2bmb(bmhupclosed(B)) ∧ (s, {⊥}) ∈ bm2bmb(bmhupclosed(B)))
∨

(s, {⊥}) /∈ bm2bmb(bmhupclosed(B)) ∧ (s, ∅) /∈ bm2bmb(bmhupclosed(B))
∧

∃ ss0 •
(

(s, ss0) ∈ bm2bmb(bmhupclosed(B))
∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)



{Law B.2.19 and Law B.2.18}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣

((s, ∅) ∈ B ∧ (s, ∅) ∈ B)
∨

((s, ∅) /∈ B ∧ (s, ∅) /∈ B)
∧

∃ ss0 •
(

(s, ss0) ∈ bm2bmb(bmhupclosed(B))
∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)



{Predicate calculus and definition of bm2bmb(bmhupclosed(B)) (Law B.2.16)}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(s, ∅) ∈ B
∨

∃ ss0 •

 (s, ss0) ∈


s : State, ss : P State⊥∣∣∣∣∣∣
∃ ss0 • (s, ss0) ∈ B ∧ ⊥ /∈ ss0 ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss
∨
(s, ∅) ∈ B


∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss




{Variable renaming and property of sets}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣

(s, ∅) ∈ B
∨

∃ ss0 •


 ∃ ss1 • (s, ss1) ∈ B ∧ ⊥ /∈ ss1 ∧ ss1 ⊆ ss0 ∧ ⊥ /∈ ss0
∨
(s, ∅) ∈ B


∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss




{Predicate calculus}
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=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣

(s, ∅) ∈ B
∨(
∃ ss0, ss1 • (s, ss1) ∈ B ∧ ⊥ /∈ ss1 ∧ ss1 ⊆ ss0 ∧ ⊥ /∈ ss0
∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)
∨(
∃ ss0 • (s, ∅) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)


{Predicate calculus}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
(s, ∅) ∈ B
∨
(∃ ss1 • (s, ss1) ∈ B ∧ ⊥ /∈ ss1 ∧ ss1 ⊆ ss ∧ ⊥ /∈ ss)
∨
((s, ∅) ∈ B ∧ ∃ ss0 • ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss)


{Predicate calculus: absorption law}

=


s : State, ss : P State⊥∣∣∣∣∣∣
(s, ∅) ∈ B
∨
(∃ ss1 • (s, ss1) ∈ B ∧ ⊥ /∈ ss1 ∧ ss1 ⊆ ss ∧ ⊥ /∈ ss)


{Law B.2.16}

= bm2bmb(bmhupclosed(B))

These results complete the proofs for healthiness regarding both linking func-
tions. In the following section we discuss the isomorphism.

4.6.3 bm2bmb and bmb2bm
Using the results from the previous section we establish that bm2bmb and
bmb2bm form a bijection for healthy relations. Theorem 4.6.3 establishes
this for relations that are BMH0-BMH3-healthy, while Theorem 4.6.4 es-
tablishes the bijection for relations that are BMH-healthy.

Theorem 4.6.3 Provided B is BMH0-BMH3-healthy.

bm2bmb ◦ bmb2bm(B) = B
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Proof.

bm2bmb ◦ bmb2bm(B) {Assumption: B is BMH0-BMH3-healthy}
= bm2bmb ◦ bmb2bm(bmh0,1,3,2(B)) {Definition of bm2bmb}

=


s : State, ss : P State⊥∣∣∣∣∣∣
((s, ss) ∈ bmb2bm(bmh0,1,3,2(B)) ∧ ⊥ /∈ ss)
∨
(s, ∅) ∈ bmb2bm(bmh0,1,3,2(B))

 {Law B.2.17}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


(s, ss) ∈



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B ∧ ⊥ /∈ ss)
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 •

(
(s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)



∧ ⊥ /∈ ss


∨

(s, ∅) ∈



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B ∧ ⊥ /∈ ss)
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 •

(
(s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)





{Property of sets}
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=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣




((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B ∧ ⊥ /∈ ss)
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 •

(
(s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)



∧ ⊥ /∈ ss


∨

((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B) ∧ ⊥ /∈ ∅
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 •

(
(s, ss0) ∈ B ∧ ss0 ⊆ ∅ ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ∅

)




{Property of sets, predicate calculus and one-point rule}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B ∧ ⊥ /∈ ss)
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 •

(
(s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)



∨
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
(s, ∅) ∈ B





{Predicate calculus}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣


((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B ∧ ⊥ /∈ ss)
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 •

(
(s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)



∨
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)


{Predicate calculus: absorption law}
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=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 •

(
(s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)



{Definition of bmh0,1,3,2}

= bmh0,1,3,2(B) {Assumption: B is BMH0-BMH3-healthy}
= B

Theorem 4.6.4 Provided B is BMH-healthy.

bmb2bm ◦ bm2bmb(B) = B

Proof.

bmb2bm ◦ bm2bmb(B) {Assumption: B is BMH-healthy}
= bmb2bm ◦ bm2bmb(bmhupclosed(B)) {Definition of bmb2bm}
= {s : State, ss : P State⊥ | ((s, ss) ∈ bm2bmb(bmhupclosed(B)) ∧ ⊥ /∈ ss)}

{Law B.2.16}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣


(s, ss) ∈


s : State, ss : P State⊥∣∣∣∣∣∣
∃ ss0 • (s, ss0) ∈ B ∧ ⊥ /∈ ss0 ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss
∨
(s, ∅) ∈ B


∧
⊥ /∈ ss




{Property of sets}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣


 ∃ ss0 • (s, ss0) ∈ B ∧ ⊥ /∈ ss0 ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss
∨
(s, ∅) ∈ B


∧
⊥ /∈ ss




{Predicate calculus}
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=


s : State, ss : P State⊥∣∣∣∣∣∣
(∃ ss0 • (s, ss0) ∈ B ∧ ⊥ /∈ ss0 ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss)
∨
((s, ∅) ∈ B ∧ ⊥ /∈ ss)


{Instantiation: consider case where ss0 = ∅}

=

{
s : State, ss : P State⊥
| ∃ ss0 • (s, ss0) ∈ B ∧ ⊥ /∈ ss0 ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss

}
{Definition of bmhupclosed}

= bmhupclosed(B) {Assumption: B is BMH-healthy}
= B

These results show that the subset of the theory that is BMH3-healthy is
isomorphic to the original theory of binary multirelations [15]. This confirms
that while our model is more expressive, it is still possible to express every
program that could be specified using the original model.

4.7 Final considerations
In this section we have introduced a new binary multirelational model that
allows specifying sets of final states for which termination is not required.
This model extends that of [15] by using the symbol ⊥ to denote the possib-
ility for non-termination. The healthiness conditions have been introduced
as predicates and subsequently characterised as fixed points of idempotent
functions. These functions have been studied at length and their functional
composition has been justified.

The operators of the theory have been introduced and their properties
studied. The definition of sequential composition is the most unexpected.
Its intuition comes from the theory of designs. The full justification for the
definition of some of the operators and of the refinement order, is deferred
until the study of the equivalent predicative model in the following Chapter 5.
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Chapter 5

Designs with angelic
nondeterminism

In this chapter we introduce a new UTP theory of designs that embodies the
notion of angelic nondeterminism. The starting points for this predicative
model are the theory of [14] and the binary multirelational model presented
in Chapter 4. For this reason we begin this chapter by discussing the choice
of alphabet in Section 5.1 and its relationship with that of [14].

In Section 5.2 the healthiness conditions of the theory are defined. These
are specified by idempotent and monotonic functions whose fixed points are
the designs of interest.

Since this theory is a predicative account of the model of Chapter 4, in
Section 5.3 we establish that these models are isomorphic. This is achieved by
defining a pair of linking functions and subsequently proving that they form a
bijection. This result enables us, for example, to establish the correspondence
between the healthiness conditions and operators of both models.

In Section 5.4 we justify that the theory of designs that we propose is
a complete lattice. The definition of refinement adopted is the same as
in the original theory of designs. Furthermore, we prove that this corres-
ponds exactly to the refinement ordering of the binary multirelational model
of Chapter 4, which is defined as subset ordering.

Section 5.5 discusses the main operators of the theory, including assign-
ment and sequential composition. The entire Section 5.6 is dedicated to the
main focus of this theory: angelic and demonic nondeterminism. Finally,
in Section 5.7 we show that the subset of H3-designs of our theory is iso-
morphic to the UTP model of [14].
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5.1 Alphabet
The result in [14] establishes that demonic and angelic nondeterminism can-
not be both directly modelled in the relational setting of the UTP. To
address that, Cavalcanti et al. [14] propose a non-homogeneous theory that
can encode demonic and angelic choices. Our aim is to build on that model,
which is isomorphic to the monotonic predicate transformers [14], and define
a theory of designs (that includes the observational variables ok and ok ′ and
can describe both demonic and angelic nondeterminism). In order to put our
choice of alphabet into perspective, we first explain the reasoning behind the
alphabet used in [14].

The work of Cavalcanti et al. [14] considers an alphabet that includes the
undashed program variables and, as the only dashed variable, ac′. This sole
dashed variable represents the set of final states that can be chosen by the
angel. A state is a record whose components represent program variables.
For example, if we specify a program that uses the program variable x , then
each state in ac′ must contain a component of name x ′, whose value is one
of the possible final values of x ′.

The non-homogeneous relations can be understood as establishing the
relationship between an initial state and a set of possible final states corres-
ponding to the choices available to the angel. For example, in the case of the
program specified by x := 1t x := 2, where t is the angelic choice operator,
the set of outcomes ac′ includes at least two states whose component x ′ is
set to the possible final values of x , 1 and 2, respectively.

Perhaps, the most surprising observation we can make about the theory
in [14] is the absence of variables such as ok and ok ′, although it captures ter-
mination. In particular, the healthiness conditions of that theory correspond
to H1, H2 and in fact H3 as well. However, for our purposes, it is essential
to use the variables ok and ok ′ as other theories of interest, namely the the-
ory of reactive processes [7], make use of these. Furthermore, as mentioned
before, it is absolutely vital that we can consider non-H3 designs.

The theory that we propose is, therefore, a theory of designs: we consider
an alphabet that includes ok and ok ′. In addition, we introduce two variables
s and ac′ as shown below.

Definition 49 (Alphabet)

s : State
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ac′ : P State
ok, ok ′ : {true, false}

We observe that as mentioned in Chapter 2, it is possible to define a non-
homogeneous theory of designs with ok and ok ′.

The variable s encapsulates the initial values of program variables as
record components: each component corresponds to an undashed program
variable. The set of final states ac′ is similar to that of [14] with the notable
difference that we do not dash the variables in the record components, instead
we only consider these as undashed. This simplifies reasoning and proofs. We
observe that we still make an explicit distinction between the initial state,
which are encoded by s, and the final states, which are encoded in the set
defined by ac′. It is possible to relate the two sets through the following pair
of functions.

Definition 50 (acdash-to-ac)

acdash2ac(ss) =
{

s0 : Sinα, s1 : Soutα
| s1 ∈ ss ∧ (

∧
x : αP • s0.x = s1.(x ′)) • s0

}
ac2acdash(zz) =

{
z0 : Sinα, z1 : Soutα
| z0 ∈ ss ∧ (

∧
x : αP • z0.x = z1.(x ′)) • z1

}
The function acdash2ac maps a set ss of angelic choices whose record compon-
ents are dashed variables into a set whose record components are undashed.
This is achieved by considering every state s1 in ss and every state s0, such
that s0 is a state on the undashed variables of P and whose components are
exactly the same as those in s1, except that those in s1 are dashed. Each state
is characterised by its alphabet, so in the case of the dashed sate s1 : Soutα
this corresponds to a state whose record components are those in the output
alphabet, outα, for some program.

These two functions are important in the definition of a link between
the theories as explained later in Section 5.7. In the following section we
introduce the healthiness conditions.

5.2 Healthiness conditions
The theory we propose is a theory of designs. Therefore, predicates at the
very are fixed points of H1 and H2. Furthermore, since we seek to integrate
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designs with a model similar to [14], a consistent notion of termination must
be established. In that model, non-termination is possible if the set of angelic
choices can be empty [14]. However, explicit non-termination cannot be
required since the theory adopts H2 as a healthiness condition.

In addition to characterising termination appropriately, we also need to
ensure that the set of final choices ac′ is upward closed. The reason be-
hind this is further explained in Section 5.2.2. These two concerns are ad-
dressed separately by the healthiness conditions A0 and A1, respectively.
We introduce A0 in Section 5.2.1 and A1 in Section 5.2.2. Finally in Sec-
tion 5.2.3 both functions are composed together and their combined proper-
ties explored.

5.2.1 A0
The first healthiness condition provides a consistent treatment of termination
between the auxiliary variable ok ′ and the value of ac′ in the theory. It is
defined as follows.

Definition 51 (A0) If ok ′ holds, then ac′ cannot be empty. Otherwise any
value for ac′ is allowed.

A0(P) =̂ P ∧ ((ok ∧ ¬ P f )⇒ (ok ′ ⇒ ac′ 6= ∅))

A0 states that when a design P terminates, that is ok ′ is true, then it must
also be the case that ac′ is not empty. In other words, there must be at least
one final state in ac′ available to the angel. If the precondition ¬ P f is not
satisfied then the design aborts and there are no guarantees on the outcome.
This embodies the notion of termination as found in [14] and related models,
such as binary multirelations [15]. This particular definition ensures that H1
and H2 are preserved as shown in the following section.

Properties

In the following laws we show that A0 is closed with respect to designs,
idempotent, and monotonic with respect to the refinement ordering.

Law 5.2.1 (A0-design) If P is a design so is A0(P).

A0(P) = (¬ P f ` P t ∧ ac′ 6= ∅)

Revision: 704f887 (2014-02-04 11:14:10 +0000) 87



Proof.
A0(P) {Definition of design and A0}
= (¬ P f ` P t) ∧ ((ok ∧ ¬ P f )⇒ (ok ′ ⇒ ac′ 6= ∅))

{Definition of design and propositional calculus}
= (ok ∧ ¬ P f )⇒ (P t ∧ ok ′ ∧ (ok ′ ⇒ ac′ 6= ∅)) {Propositional calculus}
= (ok ∧ ¬ P f )⇒ (P t ∧ ok ′ ∧ ac′ 6= ∅) {Definition of design}
= (¬ P f ` P t ∧ ac′ 6= ∅)

Law 5.2.1 establishes that a design in our theory can be stated in the usual
manner, with a precondition and a postcondition, but the postcondition must
guarantee that ac′ is not equal to the empty set. In other words, once its
precondition is satisfied, it establishes the postcondition and terminates.

Law 5.2.2 (A0-idempotent)
A0 ◦ A0(P) = A0(P)

Proof.
A0 ◦ A0(P) {Law 5.2.1}
= A0(¬ P f ` P t ∧ ac′ 6= ∅) {Law 5.2.1}
= (¬ P f ` P t ∧ ac′ 6= ∅ ∧ ac′ 6= ∅) {Propositional calculus}
= (¬ P f ` P t ∧ ac′ 6= ∅) {Definition of A0}
= A0(P)

Law 5.2.3 (A0-monotonic)
(P v Q)⇒ (A0(P) v A0(Q))

Proof.
A0(Q) {Definition of A0}
= Q ∧ ((ok ∧ ¬ Qf )⇒ (ok ′ ⇒ ac′ 6= ∅))

{Assumption: [Q ⇒ P]⇔ [¬ P ⇒ ¬ Q]}
⇒ P ∧ ((ok ∧ ¬ P f )⇒ (ok ′ ⇒ ac′ 6= ∅)) {Definition of A0}
= A0(P)
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Law 5.2.2 establishes that the function A0 is idempotent, and Law 5.2.3
establishes that it is monotonic. These results confirm the suitability of A0
as a healthiness condition. In the following section we explore the closure
properties of A0.

Closure properties

In the following laws we show that A0 is closed with respect to disjunction
and conjunction.

Law 5.2.4 (A0-conjunction-closure) Provided P and Q are A0-healthy.

A0(P ∧ Q) = P ∧ Q

Proof.

P ∧ Q {Assumption: P and Q are A0-healthy}
= A0(P) ∧ A0(Q) {Definition of A0}

=

 (P ∧ ((ok ∧ ¬ P f )⇒ (ok ′ ⇒ ac′ 6= ∅)))
∧
(Q ∧ ((ok ∧ ¬ Qf )⇒ (ok ′ ⇒ ac′ 6= ∅)))

 {Propositional calculus}

= (P ∧ Q) ∧ (((ok ∧ ¬ P f ) ∨ (ok ∧ ¬ Qf ))⇒ (ok ′ ⇒ ac′ 6= ∅))
{Propositional calculus}

= (P ∧ Q) ∧ ((ok ∧ ¬ (P f ∧ Qf ))⇒ (ok ′ ⇒ ac′ 6= ∅))
{Definition of A0}

= A0(P ∧ Q)

Law 5.2.5 (A0-disjunction-closure) Provided P and Q are A0-healthy.

A0(P ∨ Q) = P ∨ Q

Proof.

P ∨ Q {Assumption: P and Q are A0-healthy}
= A0(P) ∨ A0(Q) {Definition of A0}
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= (¬ P f ` P t ∧ ac′ 6= ∅) ∨ (¬ Qf ` Qt ∧ ac′ 6= ∅)
{Disjunction of designs}

= (¬ P f ∧ ¬ Qf ` (P t ∧ ac′ 6= ∅) ∨ (Qt ∧ ac′ 6= ∅))
{Propositional calculus}

= (¬ (P f ∨ Qf ) ` (P t ∨ Qt) ∧ ac′ 6= ∅) {Property of substitution}
= (¬ (P ∨ Q)f ` (P ∨ Q)t ∧ ac′ 6= ∅) {Definition of A0}
= A0(P ∨ Q)

We observe that the proofs for both Law 5.2.4 and Law 5.2.5 also show that
A0 distributes over conjunction and disjunction, irrespective of satisfying
their provisos. This concludes our discussion of the basic properties of A0.

5.2.2 A1
In addition to requiring a consistent treatment of termination, our theory of
designs requires that both pre and postcondition observe the upward closure
of the set of final states, ac′. When this requirement is applied on simple
predicates, this corresponds exactly to the healthiness condition PBMH
of [14]. The definition is reproduced below.

Definition 52 (PBMH)

PBMH(P) =̂ P ; ac ⊆ ac′

For every fixed point P of PBMH, the value of ac′ must be upward closed.
We observe that the function PBMH is idempotent. Other properties of
interest are established in Appendix D.

The requirement upon our theory of designs regarding upward closure
concerns both pre and postcondition. This is specified by the following
healthiness condition A1.

Definition 53 (A1)

A1(P0 ` P1) =̂ (¬ PBMH(¬ P0) ` PBMH(P1))

The upward closure of ac′ in the postcondition is enforced exactly as in [14].
However, the precondition is treated differently. In this case we ensure that
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it is the negation of the precondition that is upward closed, since it is the
negation that actually establishes the value of ac′ for designs that do not
require termination. This can be illustrated by the following Lemma 5.2.1.

Lemma 5.2.1

A1(P0 ` P1) = ok ⇒ (((P1 ; ac ⊆ ac′) ∧ ok ′) ∨ (¬ P0 ; ac ⊆ ac′))

Proof.

A1(P0 ` P1) {Definition of A1}
= (¬ (¬ P0 ; ac ⊆ ac′) ` P1 ; ac ⊆ ac′) {Definition of designs}
= (ok ∧ ¬ (¬ P0 ; ac ⊆ ac′))⇒ ((P1 ; ac ⊆ ac′) ∧ ok ′)

{Predicate calculus}
= ok ⇒ (((P1 ; ac ⊆ ac′) ∧ ok ′) ∨ (¬ P0 ; ac ⊆ ac′))

When the program is started it can either terminate, in which case ok ′ is
true and P1 is established, or ¬ P0 is established and termination is then not
required. In either case we enforce the upward closure of ac′.

This concludes our discussion of the definition of A1. In the sequel we
show how it satisfies some basic properties.

Properties

In the following Laws 5.2.6 and 5.2.7 we establish that A1 is an idempotent
and monotonic function.

Law 5.2.6 (A1-idempotent)

A1 ◦ A1(P0 ` P1)

Proof.

A1 ◦ A1(P0 ` P1) {Definition of A1}
= A1 ◦ (¬ PBMH(¬ P0) ` PBMH(P1)) {Definition of A1}
= (¬ (PBMH(¬ ¬ PBMH(¬ P0))) ` PBMH ◦ PBMH(P1))

{Propositional calculus}
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= (¬ (PBMH ◦ PBMH(¬ P0)) ` PBMH ◦ PBMH(P1)) {Law D.1.1}
= (¬ (PBMH(¬ P0)) ` PBMH(P1)) {Definition of A1}
= A1(P0 ` P1)

Law 5.2.7 (A1-monotonic)

(P v Q)⇒ A1(P) v A1(Q)

Proof.

A1(Q) {Definition of design}
= A1(¬ Qf ` Qt) {Definition of design and propositional calculus}
= A1((¬ ok ∨ Qf ) ∨ (Qt ∧ ok ′)) {Assumption: [Q ⇒ P] holds}
= A1((¬ ok ∨ (Qf ∧ (Qf ⇒ P f ))) ∨ (Qt ∧ (Qt ⇒ P t) ∧ ok ′))

{Predicate calculus and definition of design}
= A1(¬ (Qf ∧ P f ) ` Qt ∧ P t) {Definition of A1}
= (¬ PBMH(Qf ∧ P f ) ` PBMH(Qt ∧ P t)) {Definition of PBMH}
= (¬ PBMH(Qf ∧ P f ) ` PBMH(Qt ∧ P t))

{Definition of sequential composition}
= (¬ ∃ ac0 • Qf [ac0/ac′] ∧ P f [ac0/ac′] ∧ ac0 ⊆ ac′ ` (Qt ∧ P t) ; ac ⊆ ac′)

{Predicate calculus}

=

 ∀ ac0 • ¬ Qf [ac0/ac′] ∨ ¬ P f [ac0/ac′] ∨ ¬ (ac0 ⊆ ac′)
`
(Qt ∧ P t) ; ac ⊆ ac′


{Predicate calculus}

=


∀ ac0 •

 (¬ Qf [ac0/ac′] ∨ ¬ (ac0 ⊆ ac′))
∨
(¬ P f [ac0/ac′] ∨ ¬ (ac0 ⊆ ac′))


`
(Qt ∧ P t) ; ac ⊆ ac′


{Weaken precondition}
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w


∀ ac0 • (¬ Qf [ac0/ac′] ∨ ¬ (ac0 ⊆ ac′))
∨
∀ ac0 • (¬ P f [ac0/ac′] ∨ ¬ (ac0 ⊆ ac′))
`
(Qt ∧ P t) ; ac ⊆ ac′

 {Weaken precondition}

w (∀ ac0 • (¬ P f [ac0/ac′] ∨ ¬ (ac0 ⊆ ac′)) ` (Qt ∧ P t) ; ac ⊆ ac′)
{Predicate calculus}

= (¬ ∃ ac0 • P f [ac0/ac′] ∧ ac0 ⊆ ac′ ` (Qt ∧ P t) ; ac ⊆ ac′)
{Definition of sequential composition}

= (¬ (P f ; ac ⊆ ac′) ` (Qt ∧ P t) ; ac ⊆ ac′) {Strengthen postcondition}
w (¬ (P f ; ac ⊆ ac′) ` P t ; ac ⊆ ac′) {Definition of PBMH}
= (¬ PBMH(P f ) ` PBMH(P t)) {Definition of A1}
= A1(¬ P f ` P t) {Definition of designs}
= A1(P)

These results establish the suitability of A1 as a healthiness condition. We
tackle the commutativity of A1 and A0 in Section 5.2.3, where we define A.
In the following section we show the closure properties satisfied by A1.

Closure properties

The function A1 is closed with respect to disjunction. In fact it also distrib-
utes through disjunction. This is expected as PBMH is defined by the stand-
ard sequential composition operator that distributes over disjunction [1].

Law 5.2.8 (A1-distribute-disjunction)

A1(P ∨ Q) = A1(P) ∨ A1(Q)

Proof.

A1(P) ∨ A1(Q) {Definition of design}
= A1(¬ P f ` P t) ∨ A1(¬ Qf ` Qt) {Definition of A1}
= (¬ PBMH(P f ) ` PBMH(P t)) ∨ (¬ PBMH(Qf ) ` PBMH(Qt))

{Disjunction of designs}
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= (¬ PBMH(P f ) ∧ ¬ PBMH(Qf ) ` PBMH(P t) ∨ PBMH(Qt))
{Propositional calculus}

= (¬ (PBMH(P f ) ∨ PBMH(Qf )) ` PBMH(P t) ∨ PBMH(Qt))
{Disjunction closure of PBMH (Law D.3.1)}

= (¬ (PBMH(P f ∨ Qf )) ` PBMH(P t ∨ Qt)) {Definition of A1}
= A1(¬ (P f ∨ Qf ) ` P t ∨ Qt) {Propositional calculus}
= A1(¬ P f ∧ ¬ Qf ` P t ∨ Qt) {Disjunction of designs}
= A1(¬ P f ` P t) ∨ (¬ Qf ` Qt) {Definition of design}
= A1(P ∨ Q)

Law 5.2.9 (A-closure-disjunction) Provided P and Q are A1-healthy.

A1(P ∨ Q) = P ∨ Q

Proof.

A1(P ∨ Q) = P ∨ Q {Law 5.2.8}
= A1(P) ∨ A1(Q) {Assumption: P and Q are A1-healthy}
= P ∨ Q

This concludes our discussion regarding the properties observed by A1. In
the following section we discuss the functional composition of A0 and A1.

5.2.3 A
The proposed theory of designs is characterised by the two healthiness con-
ditions A0 and A1. The order in which these functions are composed is
important since they do not always necessarily commute. In order to see the
reason behind this consider the following counter-example.

Counter-example 1

A0 ◦ A1(true ` ac′ = ∅) {Definition of A1}
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= A0(¬ (false ; ac ⊆ ac′) ` ac′ = ∅ ; ac ⊆ ac′)
{Definition of sequential composition}

= A0(¬ (false ∧ ∃ ac0 • ac0 ⊆ ac′) ` ∃ ac0 • ac0 = ∅ ∧ ac0 ⊆ ac′)
{One-point rule and predicate calculus}

= A0(true ` true) {Definition of A0}
= A0(true ` ac′ 6= ∅)

A1 ◦ A0(true ` ac′ = ∅) {Definition of A0}
= A1(true ` ac′ = ∅ ∧ ac′ 6= ∅) {Predicate calculus}
= A1(true ` false) {Definition of A1}
= (¬ (false ; ac ⊆ ac′) ` false ; ac ⊆ ac′)

{Definition of sequential composition}
= (true ` false)

In this example we apply the healthiness conditions to an unhealthy design
whose postcondition requires non-termination: ac′ = ∅. In the first case A1
changes the postcondition into true, followed by the application of A0. While
in the second case, A0 is applied in the first place, making the postcondition
false, a predicate that satisfies PBMH. The resulting predicate conforms to
the definition of Miracle. Thus the functions do not always commute.

If instead we consider healthy predicates, then we can ensure that A0 and
A1 commute. The following Law 5.2.10 establishes this result for predicates
that are A1 healthy. In fact the only requirement is for the postcondition,
P t to satisfy PBMH.

Law 5.2.10 (A0-A1-commutative) Provided P t satisfies PBMH.

A0 ◦ A1(P) = A1 ◦ A0(P)

Proof.

A0 ◦ A1(P) {Definition of design}
= A0 ◦ A1(¬ P f ` P t) {Definition of A1}
= A0(¬ PBMH(P f ) ` PBMH(P t)) {Law 5.2.1}
= (¬ PBMH(P f ) ` PBMH(P t) ∧ ac′ 6= ∅)

{ac′ 6= ∅ satisfies PBMH (Lemma D.4.5)}
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= (¬ PBMH(P f ) ` PBMH(P t) ∧ PBMH(ac′ 6= ∅))
{Closure of PBMH w.r.t. conjunction (Law D.3.2)}

= (¬ PBMH(P f ) ` PBMH(PBMH(P t) ∧ PBMH(ac′ 6= ∅)))
{ac′ 6= ∅ satisfies PBMH (Lemma D.4.5)}

= (¬ PBMH(P f ) ` PBMH(PBMH(P t) ∧ ac′ 6= ∅))
{Assumption: P t satisfies PBMH}

= (¬ PBMH(P f ) ` PBMH(P t ∧ ac′ 6= ∅)) {Definition of A1}
= A1(¬ P f ` P t ∧ ac′ 6= ∅) {Definition of A0}
= A1 ◦ A0(¬ P f ` P t) {Definition of design}
= A1 ◦ A0(P)

Following this discussion it is safe to introduce the definition of A as the
functional composition of A1 followed by A0.

Definition 54 (A)

A(P) =̂ A0 ◦ A1(P)

Law 5.2.10 establishes that once the postcondition of P satisfies PBMH
then the functions commute. Therefore by functionally composing first A1
we guarantee that this is always the case. In the following section we explore
some of the basic properties of A as expected of a healthiness condition.

Properties

In the following laws we prove that A is idempotent, monotonic and that it
commutes with H1 ◦ H2. These results establish the suitability of A as a
healthiness condition for a theory of designs.

Law 5.2.11 (A-idempotent)

A ◦ A(P) = A(P)

Proof.

A ◦ A(P) {Definition of A twice}
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= A0 ◦ A1 ◦ A0 ◦ A1(P)
{Law 5.2.10 and A1(P) ensures P t satisfies PBMH}

= A0 ◦ A0 ◦ A1 ◦ A1(P)
{A0-idempotent (Law 5.2.2) and A1-idempotent (Law 5.2.6)}

= A0 ◦ A1(P) {Definition of A}
= A(P)

The proof of Law 5.2.11 relies on the fact that once A1(P) is applied, then
P t is guaranteed to satisfy PBMH. In turn this means that A0 and A1
commute according to Law 5.2.10. Finally both idempotents allow us to
establish that the result of applying A twice is indeed A.

Law 5.2.12 (A-monotonic)

P v Q ⇒ A(P) v A(Q)

Proof. Follows from A0-monotonic (Law 5.2.3) and A1-monotonic (Law 5.2.7).

As expected, the function A is monotonic as established by Law 5.2.12. This
follows from the monotonicity of both A0 and A1.

Law 5.2.13 (A-H-commutative)

H1 ◦ H2 ◦ A(P) = A ◦ H1 ◦ H2(P)

Proof.

H1 ◦ H2 ◦ A {Definition of A}
= H1 ◦ H2(¬ PBMH(P f ) ` PBMH(P t) ∧ ac′ 6= ∅)

{Property of designs}
= (¬ PBMH(P f ) ` PBMH(P t) ∧ ac′ 6= ∅) {Definition of A}
= A(¬ P f ` P t) {Definition of H1 ◦ H2}
= A ◦ H1 ◦ H2(P)
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The healthiness condition of our theory is H ◦ A. Since H and A commute,
and H and A are idempotents, so is H ◦ A [1]. Furthermore, monotonicity
also follows from monotonicity of H and A.

This concludes our discussion of the healthiness conditions of the theory
of designs with angelic nondeterminism. The designs of interest are charac-
terised as fixed points of A, an idempotent and monotonic function.

5.3 Relationship with the binary multirela-
tional model

In this section we prove that the predicative model of A-healthy designs is
isomorphic to the binary multirelational model presented in Chapter 4. As
mentioned previously, this allows us to establish the correspondence of the
healthiness conditions and operators of both models.

In order to do so, we define a pair of linking functions: bmb2d, that maps
from binary multirelations to predicates, and d2bmb that maps in the oppos-
ite direction. The latter is defined in the following Section 5.3.1 while the
former is defined in Section 5.3.2. Finally, in Section 5.3.3 the isomorphism
is established by proving that both functions form a bijection.

5.3.1 From designs to binary multirelations (d2bmb)
The first linking function of interest is d2bmb. It maps from A-healthy
designs into relations of type BM⊥. It is defined as follows.

Definition 55 (d2bmb) Provided P is a design.

d2bmb : A 7→ BM⊥

d2bmb(P) =̂


s : State, ss : P State⊥∣∣∣∣∣∣
(¬ P f ⇒ P t)[ss/ac′] ∧ ⊥ /∈ ss)
∨
(P f [ss \ {⊥}/ac′] ∧ ⊥ ∈ ss)


For a given design P = (¬ P f ` P t), the set construction of d2bmb(P) is
split into two disjuncts.

In the first disjunction we consider the case where P is guaranteed to
terminate, with ok and ok ′ both being substituted for true. The resulting
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set of final states ss, for which termination is required (⊥ /∈ ss) is obtained
by substituting ss for ac′ in P.

The second disjunct considers the case where ok is also true, but ok ′ is
false. This corresponds to the situation where P does not terminate. In this
case, the set of final states is obtained by substituting ss \ {⊥} for ac′ and
requiring ⊥ to be in the set of final states ss.

As a consequence of P satisfying H2, we ensure that if there is some set
of final states captured by the second disjunct with ⊥, then there is also an
equivalent set of final states without ⊥ that is captured by the first disjunct.

In the following Theorem 5.3.1 we prove that the application of d2bmb
to A-healthy designs yields relations that are BMH0-BMH2-healthy.

Theorem 5.3.1

bmh0,1,2 ◦ d2bmb(A(P)) = d2bmb(A(P))

Proof.

bmh0,1,2 ◦ d2bmb(A(P)) {Definition of bmh0,1,2}

=


s : State, ss : P State⊥∣∣∣∣∣∣∣∣
∃ ss0 : P State⊥ •
((s, ss0) ∈ d2bmb(A(P)) ∨ (s, ss0 ∪ {⊥}) ∈ d2bmb(A(P)))
∧ ((s, {⊥}) ∈ d2bmb(A(P))⇔ (s, ∅) ∈ d2bmb(A(P)))
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


{Lemma C.1.4}

=


s : State, ss : P State⊥∣∣∣∣∣∣
∃ ss0 : P State⊥ •
((s, ss0) ∈ d2bmb(A(P)) ∨ (s, ss0 ∪ {⊥}) ∈ d2bmb(A(P)))
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


{Predicate calculus}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣

(
∃ ss0 : P State⊥ • (s, ss0) ∈ d2bmb(A(P))
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)

)
∨(
∃ ss0 : P State⊥ • (s, ss0 ∪ {⊥}) ∈ d2bmb(A(P))
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)

)


{Lemmas C.1.2 and C.1.3}
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=


s : State, ss : P State⊥∣∣∣∣∣∣∣∣
(
∃ ac0 : P State •
(P f [ac0/ac′] ∨ (P t [ac0/ac′] ∧ ss 6= ∅ ∧ ⊥ /∈ ss)) ∧ ac0 ⊆ ss

)
∨
(∃ ac0 : P State • P f [ac0/ac′] ∧ ac0 ⊆ ss)


{Predicate calculus and Lemma C.1.1}

= d2bmb(A(P))

This result, whose proof relies on a number of lemmas proved in Appendix C.1,
establishes the suitability of d2bmb as a linking function.

In order to understand the result of applying d2bmb better, we consider
the following Example 14. It specifies a program that either assigns the value
1 to the sole program variable x and successfully terminates, or assigns the
value 2 to x , in which case termination is not required.

Example 14

d2bmb((x 7→ 2) /∈ ac′ ` (x 7→ 1) ∈ ac′) {Definition of d2bmb}

=


s : State, ss : P State⊥∣∣∣∣∣∣
((x 7→ 2) /∈ ac′ ⇒ (x 7→ 1) ∈ ac′)[ss/ac′] ∧ ⊥ /∈ ss)
∨
(((x 7→ 2) ∈ ac′)[ss \ {⊥}/ac′] ∧ ⊥ ∈ ss)


{Predicate calculus and substitution}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((x 7→ 2) ∈ ss ∧ ⊥ /∈ ss)
∨
((x 7→ 1) ∈ ss ∧ ⊥ /∈ ss)
∨
((x 7→ 2) ∈ (ss \ {⊥}) ∧ ⊥ ∈ ss)


{Property of sets}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((x 7→ 2) ∈ ss ∧ ⊥ /∈ ss)
∨
((x 7→ 1) ∈ ss ∧ ⊥ /∈ ss)
∨
((x 7→ 2) ∈ ss ∧ (x 7→ 2) /∈ {⊥} ∧ ⊥ ∈ ss)


{Property of sets}
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=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((x 7→ 2) ∈ ss ∧ ⊥ /∈ ss)
∨
((x 7→ 1) ∈ ss ∧ ⊥ /∈ ss)
∨
((x 7→ 2) ∈ ss ∧ ⊥ ∈ ss)


{Predicate calculus}

= {s : State, ss : P State⊥ | (x 7→ 2) ∈ ss ∨ ((x 7→ 1) ∈ ss ∧ ⊥ /∈ ss)}
{Definition of uBM⊥ and :=BM⊥ and :=BM }

= (x :=BM⊥ 2) uBM⊥ (x :=BM 1)

As expected, the function d2bmb yields a program with the same behaviour
specified using the binary multirelational model. It is the demonic choice
over two assignments, one requires termination while the other does not.

5.3.2 From binary multirelations to designs (bmb2d)
The second linking function of interest is bmb2d that maps binary multire-
lations to A-healthy predicates. Its definition is presented below.

Definition 56

bmb2d : BM⊥ 7→ A
bmb2d(B) =̂ ((s, ac′ ∪ {⊥}) /∈ B ` (s, ac′) ∈ B)

It is defined as a design, such that for a particular initial state s, the precondi-
tion requires (s, ac′∪{⊥}) not to be in B, while the postcondition establishes
that (s, ac′) is in B. This definition can be expanded into a more intuitive
representation according to the following Lemma 5.3.1.

Lemma 5.3.1

bmb2d(B) = ok ⇒

 ((s, ac′) ∈ B ∧ ⊥ /∈ ac′ ∧ ok ′)
∨
((s, ac′ ∪ {⊥}) ∈ B


Proof. Follows from the definition of design and type restriction on ac′.

The behaviour of bmb2d is split into two disjuncts. The first one considers
the case where B requires termination, and hence ⊥ is not part of the set of
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final states of the pair in B. While the second disjunct considers sets of final
states that do not require termination, in which case ok ′ can be either true
or false.

The following Theorem 5.3.2 establishes that bmb2d(B) yields A-healthy
designs provided that B is BMH0-BMH2-healthy.

Theorem 5.3.2 Provided B satisfies bmh0,1,2.

A ◦ bmb2d(B) = bmb2d(B)

Proof.

A ◦ bmb2d(B) {Assumption: B = bmh0,1,2(B) and Lemma C.2.2}

= A

 ¬ ((s, ac′ ∪ {⊥}) ∈ B ; ac ⊆ ac′)
`
((s, ac′) ∈ B ; ac ⊆ ac′) ∧ (s, ∅) /∈ B

 {Lemma C.2.1}

= A

 ¬ ((s, ac′ ∪ {⊥}) ∈ B ; ac ⊆ ac′)
`
((s, ac′) ∈ B ; ac ⊆ ac′) ∧ ac′ 6= ∅ ∧ (s, ∅) /∈ B


{Definition of PBMH}

= A

 ¬ PBMH((s, ac′ ∪ {⊥}) ∈ B)
`
PBMH((s, ac′) ∈ B) ∧ ac′ 6= ∅ ∧ (s, ∅) /∈ B

 {Definition of A}

=

 ¬ (PBMH ◦ PBMH((s, ac′ ∪ {⊥}) ∈ B))
`
PBMH(PBMH((s, ac′) ∈ B) ∧ ac′ 6= ∅ ∧ (s, ∅) /∈ B) ∧ ac′ 6= ∅


{(PBMH-idempotent) Law D.1.1}

=

 ¬ PBMH((s, ac′ ∪ {⊥}) ∈ B)
`
PBMH(PBMH((s, ac′) ∈ B) ∧ ac′ 6= ∅ ∧ (s, ∅) /∈ B) ∧ ac′ 6= ∅


{Lemma D.4.5 and Lemma D.4.6}

=


¬ PBMH((s, ac′ ∪ {⊥}) ∈ B)
`

PBMH
(

PBMH((s, ac′) ∈ B) ∧ PBMH(ac′ 6= ∅)
∧ PBMH((s, ∅) /∈ B)

)
∧ ac′ 6= ∅


{Law D.2.2}
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=


¬ PBMH((s, ac′ ∪ {⊥}) ∈ B)(̀

PBMH((s, ac′) ∈ B) ∧ PBMH(ac′ 6= ∅)
∧ PBMH((s, ∅) /∈ B) ∧ ac′ 6= ∅

)


{Lemma D.4.5 and Lemma D.4.6 and predicate calculus}

=

 ¬ PBMH((s, ac′ ∪ {⊥}) ∈ B)
`
PBMH((s, ac′) ∈ B) ∧ ac′ 6= ∅ ∧ (s, ∅) /∈ B


{Definition of PBMH and Lemma C.2.1}

=

 ¬ ((s, ac′ ∪ {⊥}) ∈ B ; ac ⊆ ac′)
`
((s, ac′) ∈ B ; ac ⊆ ac′) ∧ (s, ∅) /∈ B


{Assumption: B = bmh0,1,2(B) and Lemma C.2.2}

= bmb2d(B)

This result confirms that bmb2d is closed with respect to A when applied to
relations that are BMH0-BMH2-healthy. This concludes our discussion of
bmb2d. In the following section we focus our attention on the isomorphism.

5.3.3 Isomorphism: d2bmb and bmb2d
In this section we show that d2bmb and bmb2d form a bijection. The follow-
ing Theorem 5.3.3 establishes that d2bmb is the inverse function of bmb2d for
relations that are BMH0-BMH2-healthy. While Theorem 5.3.4 establishes
that bmb2d is the inverse function of d2bmb for designs that are A-healthy.
Together these results establish that the models are isomorphic.

Theorem 5.3.3 Provided B is BMH0-BMH2-healthy.

d2bmb ◦ bmb2d(B) = B

Proof.

d2bmb ◦ bmb2d(B) {Assumption: B is BMH0-BMH2-healthy}
= d2bmb ◦ bmb2d(bmh0,1,2(B)) {Lemma C.2.2}
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= d2bmb




¬ ((s, {⊥}) ∈ B ∧ (s, ∅) ∈ B)
∧

¬

 ((s, ac′ ∪ {⊥}) ∈ B ; ac ⊆ ac′)
∧
(s, {⊥}) /∈ B ∧ (s, ∅) /∈ B




`
((s, ac′) ∈ B ; ac ⊆ ac′) ∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B


{Definition of d2bmb}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣






¬ ((s, {⊥}) ∈ B ∧ (s, ∅) ∈ B)
∧

¬

 ((s, ac′ ∪ {⊥}) ∈ B ; ac ⊆ ac′)
∧
(s, {⊥}) /∈ B ∧ (s, ∅) /∈ B




⇒
((s, ac′) ∈ B ; ac ⊆ ac′) ∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B


[ss/ac′]

∧ ⊥ /∈ ss


∨
¬


¬ ((s, {⊥}) ∈ B ∧ (s, ∅) ∈ B)
∧

¬

 ((s, ac′ ∪ {⊥}) ∈ B ; ac ⊆ ac′)
∧
(s, {⊥}) /∈ B ∧ (s, ∅) /∈ B


 [ss \ {⊥}/ac′]

∧ ⊥ ∈ ss




{Subtitution}

Revision: 704f887 (2014-02-04 11:14:10 +0000) 104



=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣






¬ ((s, {⊥}) ∈ B ∧ (s, ∅) ∈ B)
∧

¬

 ((s, ac′ ∪ {⊥}) ∈ B ; ac ⊆ ss)
∧
(s, {⊥}) /∈ B ∧ (s, ∅) /∈ B




⇒
((s, ac′) ∈ B ; ac ⊆ ss) ∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B


∧ ⊥ /∈ ss


∨
¬


¬ ((s, {⊥}) ∈ B ∧ (s, ∅) ∈ B)
∧

¬

 ((s, ac′ ∪ {⊥}) ∈ B ; ac ⊆ (ss \ {⊥}))
∧
(s, {⊥}) /∈ B ∧ (s, ∅) /∈ B




∧ ⊥ ∈ ss




{Predicate claculus}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


¬




¬ ((s, {⊥}) ∈ B ∧ (s, ∅) ∈ B)
∧

¬

 ((s, ac′ ∪ {⊥}) ∈ B ; ac ⊆ ss)
∧
(s, {⊥}) /∈ B ∧ (s, ∅) /∈ B




∨
((s, ac′) ∈ B ; ac ⊆ ss) ∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B


∧ ⊥ /∈ ss


∨


((s, {⊥}) ∈ B ∧ (s, ∅) ∈ B)
∨ ((s, ac′ ∪ {⊥}) ∈ B ; ac ⊆ (ss \ {⊥}))
∧
(s, {⊥}) /∈ B ∧ (s, ∅) /∈ B




∧ ⊥ ∈ ss




{Predicate calculus}
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=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((s, {⊥}) ∈ B ∧ (s, ∅) ∈ B ∧ ⊥ /∈ ss)
∨
(((s, ac′ ∪ {⊥}) ∈ B ; ac ⊆ ss) ∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B ∧ ⊥ /∈ ss)
∨
(((s, ac′) ∈ B ; ac ⊆ ss) ∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B ∧ ⊥ /∈ ss)
∨
((s, {⊥}) ∈ B ∧ (s, ∅) ∈ B ∧ ⊥ ∈ ss)
∨
(((s, ac′ ∪ {⊥}) ∈ B ; ac ⊆ (ss \ {⊥})) ∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B ∧ ⊥ ∈ ss)


{Predicate calculus}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((s, {⊥}) ∈ B ∧ (s, ∅) ∈ B)
∨
(((s, ac′ ∪ {⊥}) ∈ B ; ac ⊆ ss) ∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B ∧ ⊥ /∈ ss)
∨
(((s, ac′) ∈ B ; ac ⊆ ss) ∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B ∧ ⊥ /∈ ss)
∨
(((s, ac′ ∪ {⊥}) ∈ B ; ac ⊆ (ss \ {⊥})) ∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B ∧ ⊥ ∈ ss)


{Type: ⊥ /∈ ac}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((s, {⊥}) ∈ B ∧ (s, ∅) ∈ B)
∨
(((s, ac′ ∪ {⊥}) ∈ B ; ac ⊆ ss) ∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B ∧ ⊥ /∈ ss)
∨
(((s, ac′) ∈ B ; ac ⊆ ss) ∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B ∧ ⊥ /∈ ss)
∨
(((s, ac′ ∪ {⊥}) ∈ B ; ac ⊆ ss) ∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B ∧ ⊥ ∈ ss)


{Predicate calculus}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, {⊥}) ∈ B ∧ (s, ∅) ∈ B)
∨
(((s, ac′ ∪ {⊥}) ∈ B ; ac ⊆ ss) ∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B)
∨
(((s, ac′) ∈ B ; ac ⊆ ss) ∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B ∧ ⊥ /∈ ss)


{Predicate calculus}
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=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((s, {⊥}) ∈ B ∧ (s, ∅) ∈ B)
∨

(s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧ ((s, ac′ ∪ {⊥}) ∈ B ; ac ⊆ ss)
∨
(((s, ac′) ∈ B ; ac ⊆ ss) ∧ ⊥ /∈ ss)





{Law B.2.2}

= bmh0,1,2(B) {Assumption: B is BMH0-BMH2-healthy}
= B

Theorem 5.3.4 Provided P is A-healthy.

bmb2d ◦ d2bmb(P) = P

Proof.

bmb2d ◦ d2bmb(P) {Assumption: P is A-healthy}
= bmb2d ◦ d2bmb(A(P)) {Definition of bmb2d}

= ok ⇒

 ((s, ac′) ∈ d2bmb(A(P)) ∧ ⊥ /∈ ac′ ∧ ok ′)
∨
((s, ac′ ∪ {⊥}) ∈ d2bmb(A(P)) ∧ ⊥ /∈ ac′)


{Definition of d2bmb(A(P)) Lemma C.1.1}
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= ok ⇒




(s, ac′) ∈



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
∃ ac0 : P State • P f [ac0/ac′]
∨
(P t [ac0/ac′] ∧ ⊥ /∈ ss ∧ ss 6= ∅)


∧ ac0 ⊆ ss


∧ ⊥ /∈ ac′ ∧ ok ′


∨

(s, ac′ ∪ {⊥}) ∈



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
∃ ac0 : P State • P f [ac0/ac′]
∨
(P t [ac0/ac′] ∧ ⊥ /∈ ss ∧ ss 6= ∅)


∧ ac0 ⊆ ss


∧ ⊥ /∈ ac′




{Property of sets}

= ok ⇒




∃ ac0 : P State • P f [ac0/ac′]
∨
(P t [ac0/ac′] ∧ ⊥ /∈ ac′ ∧ ac′ 6= ∅)


∧ ac0 ⊆ ac′ ∧ ⊥ /∈ ac′ ∧ ok ′


∨
∃ ac0 : P State • P f [ac0/ac′]
∨
(P t [ac0/ac′] ∧ ⊥ /∈ (ac′ ∪ {⊥}) ∧ (ac′ ∪ {⊥}) 6= ∅)


∧ ac0 ⊆ (ac′ ∪ {⊥}) ∧ ⊥ /∈ ac′




{Property of sets and predicate calculus}

= ok ⇒


(∃ ac0 : P State • P f [ac0/ac′] ∧ ac0 ⊆ ac′ ∧ ⊥ /∈ ac′ ∧ ok ′)
∨(
∃ ac0 : P State •
P t [ac0/ac′] ∧ ac0 ⊆ ac′ ∧ ⊥ /∈ ac′ ∧ ac′ 6= ∅ ∧ ok ′

)
∨
(∃ ac0 : P State • P f [ac0/ac′] ∧ ac0 ⊆ (ac′ ∪ {⊥}) ∧ ⊥ /∈ ac′)


{Type restriction: ⊥ /∈ ac0 and property of sets}
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= ok ⇒


(∃ ac0 : P State • P f [ac0/ac′] ∧ ac0 ⊆ ac′ ∧ ⊥ /∈ ac′ ∧ ok ′)
∨(
∃ ac0 : P State •
P t [ac0/ac′] ∧ ac0 ⊆ ac′ ∧ ⊥ /∈ ac′ ∧ ac′ 6= ∅ ∧ ok ′

)
∨
(∃ ac0 : P State • P f [ac0/ac′] ∧ ac0 ⊆ ac′ ∧ ⊥ /∈ ac′)


{Predicate calculus}

= ok ⇒


(
∃ ac0 : P State •
P t [ac0/ac′] ∧ ac0 ⊆ ac′ ∧ ⊥ /∈ ac′ ∧ ac′ 6= ∅ ∧ ok ′

)
∨
(∃ ac0 : P State • P f [ac0/ac′] ∧ ac0 ⊆ ac′ ∧ ⊥ /∈ ac′)


{Type restriction: ⊥ /∈ ac′}

= ok ⇒

 (∃ ac0 : P State • P t [ac0/ac′] ∧ ac0 ⊆ ac′ ∧ ac′ 6= ∅ ∧ ok ′)
∨
(∃ ac0 : P State • P f [ac0/ac′] ∧ ac0 ⊆ ac′)


{Definition of sequential composition}

= ok ⇒

 ((P t ; ac ⊆ ac′) ∧ ac′ 6= ∅ ∧ ok ′)
∨
(P f ; ac ⊆ ac′)

 {Predicate calculus}

= (ok ∧ ¬ (P f ; ac ⊆ ac′))⇒ ((P t ; ac ⊆ ac′) ∧ ac′ 6= ∅ ∧ ok ′)
{Definition of design}

= (¬ (P f ; ac ⊆ ac′) ` (P t ; ac ⊆ ac′) ∧ ac′ 6= ∅)
{Definition of PBMH}

= (¬ PBMH(P f ) ` PBMH(P t) ∧ ac′ 6= ∅) {Definition of A}
= A(P) {Assumption: P is A-healthy}
= P

This result is of fundamental importance since it allows the same programs
to be characterised using two different approaches. The binary multirela-
tional model provides a set-theoretic approach, while the predicative theory
proposed can easily be linked with other UTP theories of interest, namely
the theory of reactive processes.

Furthermore, this dual approach enables us to justify the definition of cer-
tain aspects of our theory. This includes the healthiness conditions and the
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definition of certain operators such as sequential composition. The most in-
tuitive and appropriate model can be used in each case. The results obtained
in either model can then be related using the linking functions.

5.4 Refinement
The healthiness condition A can be understood as a function from the theory
of designs into our theory. The theory of designs is a complete lattice [1].
Since A is idempotent and monotonic, a result in [1] establishes that such
a function also yields a complete lattice. Therefore we can assert that the
theory we propose is also a complete lattice under the implication ordering.

In the following Section 5.4.1 we define the extreme points of the lattice
and explore basic properties. Finally, in Section 5.4.2 we prove that the
refinement order of our theory corresponds to subset inclusion in the binary
multirelational model of Chapter 4.

5.4.1 Extreme points
The extreme points of interest are Abort (⊥Dac) and Miracle (>Dac) as
expected of a theory of designs. In what follows we explore these two points
and prove that they are A-healthy.

Abort

In the original theory of designs the bottom of the lattice is true and this
can be expressed as a design, either (false ` true) or (false ` false). In the
theory proposed in [14] the bottom of the lattice is also true. In the theory
that we propose, the definition is also true.

Definition 57 (Abort)

⊥Dac =̂ true

A program that aborts provides no guarantees about termination. Indeed
it also leaves the set of angelic choices ac′ unrestricted, so the empty set is
a possibility. The following Law 5.4.1 establishes that true is an A-healthy
predicate.
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Law 5.4.1 (⊥Dac-A-healthy)

A(⊥Dac) = ⊥Dac

Proof.

A(⊥Dac) {Definition of ⊥Dac}
= A(true) {Property of designs}
= A(false ` true) {Definition of A}
= (¬ PBMH(true) ` PBMH(true) ∧ ac′ 6= ∅)

{Definition of PBMH and sequential composition}

=

 ∃ ac0, ok0 • true[ac0, ok0/ac′, ok ′] ∧ ac0 ⊆ ac′
`
∃ ac0, ok0 • true[ac0, ok0/ac′, ok ′] ∧ ac0 ⊆ ac′ ∧ ac′ 6= ∅


{Property of substitution and propositional calculus}

= (false ` ac′ 6= ∅) {Definition of design and propositional calculus}
= ⊥Dac

This result establishes that ⊥Dac is indeed a design in the theory.

Miracle

As explained previously, in the lattice of designs, the top of the lattice is
Miracle (¬ ok). In the theory proposed in [14], the top is false. Since in
our theory we include the observational variables ok and ok ′, the top is also
¬ ok. This is shown in the following definition.

Definition 58 (Miracle)

>Dac =̂ ¬ ok

The program >Dac corresponds to the design specified as (true ` false). The
following Law 5.4.2 establishes that ¬ ok is an A-healthy predicate.

Law 5.4.2 (>Dac-A-healthy)

A(>Dac) = >Dac
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Proof.

A(>Dac) {Definition of >Dac}
= A(¬ ok) {Property of designs}
= A(true ` false) {Definition of A}
= (¬ PBMH(false) ` PBMH(false) ∧ ac′ 6= ∅) {Definition of PBMH}

=

 ∃ ac0, ok0 • false[ac0, ok0/ac′, ok ′] ∧ ac0 ⊆ ac′
`
(∃ ac0, ok0 • false[ac0, ok0/ac′, ok ′] ∧ ac0 ⊆ ac′) ∧ ac′ 6= ∅


{Property of substitution and propositional calculus}

= (true ` false) {Property of designs and propositional calculus}
= >Dac

The program ¬ ok is the top of the lattice since it refines any A-healthy
predicate. The proof for the bottom of the lattice, true, follows directly from
the implication ordering. Thus we can establish the following property.

Law 5.4.3 (Ordering) For any predicate P that is A-healthy.

⊥Dac vD P vD >Dac

Proof. Follows from A monotonic, the definition of >Dac, ⊥Dac and the im-
plication ordering.

This concludes our introduction to the extreme points of the theory. In the
following Section 5.4.2 we establish the relationship between the refinement
order of this theory and that of the binary multirelational model.

5.4.2 Relationship with binary multirelations
The development in Chapter 4 was meant to keep the model as similar as
possible to the original model of binary multirelations. In Section 4.4 the
refinement order was defined as subset inclusion, like in the original theory.
The following Theorem 5.4.1 establishes that in fact the refinement order
vBM⊥ corresponds to the refinement order of designs vD in this theory.
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Theorem 5.4.1 Provided B0 and B1 are BMH0-BMH2-healthy.
bmb2d(B0) vD bmb2d(B1)⇔ B0 vBM⊥ B1

Proof.
bmb2d(B0) vD bmb2d(B1) {Definition of bmb2d}

=

 ((s, ac′ ∪ {⊥}) /∈ B0 ` (s, ac′) ∈ B0)
vD
((s, ac′ ∪ {⊥}) /∈ B1 ` (s, ac′) ∈ B1)

 {Refinement of designs}

=

 ((s, ac′ ∪ {⊥}) /∈ B0 ∧ (s, ac′) ∈ B1)⇒ (s, ac′) ∈ B0

∧
(s, ac′ ∪ {⊥}) /∈ B0 ⇒ (s, ac′ ∪ {⊥}) /∈ B1


{Predicate calculus}

=


 (s, ac′ ∪ {⊥}) /∈ B0 ⇒ (s, ac′) ∈ B0

∨
(s, ac′) ∈ B1 ⇒ (s, ac′) ∈ B0


∧
(s, ac′ ∪ {⊥}) /∈ B0 ⇒ (s, ac′ ∪ {⊥}) /∈ B1


{Assumption: B0 is BMH1-healthy}

=




 (s, ac′ ∪ {⊥}) /∈ B0 ⇒ (s, ac′) ∈ B0

∧
(s, ac′ ∪ {⊥}) ∈ B0 ⇒ (s, ac′) ∈ B0


∨
(s, ac′) ∈ B1 ⇒ (s, ac′) ∈ B0


∧
(s, ac′ ∪ {⊥}) /∈ B0 ⇒ (s, ac′ ∪ {⊥}) /∈ B1


{Predicate calculus}

=


 ((s, ac′ ∪ {⊥}) /∈ B0 ∨ (s, ac′ ∪ {⊥}) ∈ B0)⇒ (s, ac′) ∈ B0

∨
(s, ac′) ∈ B1 ⇒ (s, ac′) ∈ B0


∧
(s, ac′ ∪ {⊥}) /∈ B0 ⇒ (s, ac′ ∪ {⊥}) /∈ B1


{Predicate calculus}

=

 (s, ac′) ∈ B0 ∨ ((s, ac′) ∈ B1 ⇒ (s, ac′) ∈ B0)
∧
(s, ac′ ∪ {⊥}) /∈ B0 ⇒ (s, ac′ ∪ {⊥}) /∈ B1


{Predicate calculus}
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=

 (s, ac′) ∈ B1 ⇒ (s, ac′) ∈ B0

∧
(s, ac′ ∪ {⊥}) ∈ B1 ⇒ (s, ac′ ∪ {⊥}) ∈ B0

 {Lemma C.3.2}

= B1 ⊆ B0 {Definition of vBM⊥}
= B0 vBM⊥ B1

It is reassuring to find that the refinement order in our theory of designs
with angelic nondeterminism corresponds to subset ordering in the binary
multirelational model. This is particularly important as it confirms the in-
tuitive definition of the binary multirelational model.

5.5 Operators
In this section we define the main operators of the theory. This includes
the definition of assignment in the following Section 5.5.1 and sequential
composition in Section 5.5.2.

5.5.1 Assignment
Similarly to the theory of [14], the assignment operator is defined as follows.

Definition 59 (Assignment)

(x :=Dac e) =̂ (true ` s ⊕ (x 7→ e) ∈ ac′)

It is defined by considering the design whose precondition is true, and whose
postcondition establishes that every set of final states in ac′ has a component
where x is assigned the value of expression e. This is defined by considering
the initial state s with the value of program variable x overridden.

5.5.2 Sequential composition
The most challenging aspect of the theory that we propose is its reliance on
non-homogeneous relations. This means that sequential composition cannot
simply be defined as relational composition like in other UTP theories. This
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is an unfortunate consequence. The definition we propose is layered upon
that of the sequential composition operator defined in [14].

The definition of sequential composition for designs is defined by consider-
ing the auxiliary variables ok and ok ′ separately. The sequential composition
of P and Q is defined as follows.

Definition 60 ( ; D-sequence)

P ; D Q =̂ ∃ ok0 • P[ok0/ok ′] ; A Q[ok0/ok]

This definition resembles relational composition with the notable difference
that instead of conjunction we use another operator ( ; A) that handles the
non-homogeneous alphabet of the relations. This operator corresponds to the
definition of sequential composition as introduced in [14], bearing in mind
that we have a slightly different alphabet. We present our definition.

Definition 61 ( ; A-sequence)

P ; A Q =̂ P[{z : State | Q[z/s]}/ac′]

The operator ; A handles sequential composition in the relational world with
angelic choices [14]. The composition can be understood as follows: a final
state of P ; A Q is a final state of Q that can be reached from a set of input
states z of Q that is available to P as a set ac′ of angelic choices.

Perhaps a more intuitive interpretation can be given by considering the
operator ; A as back propagating the information concerning the valid final
states, thus resembling a backtracking operation. In order to understand this
definition we introduce the following example from [14].

Example 15

(s ⊕ (x 7→ 1)) ∈ ac′ ; A

 (s ⊕ (x 7→ s.x + 1)) ∈ ac′
∧
(s ⊕ (x 7→ s.x + 2)) ∈ ac′


{Definition of ; A and substitution}

= (s ⊕ (x 7→ 1)) ∈

z

∣∣∣∣∣∣
 (s ⊕ (x 7→ s.x + 1)) ∈ ac′
∧
(s ⊕ (x 7→ s.x + 2)) ∈ ac′

 [z/s]


{Substitution}
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= (s ⊕ (x 7→ 1)) ∈

z

∣∣∣∣∣∣
 (z ⊕ (x 7→ z .x + 1)) ∈ ac′
∧
(z ⊕ (x 7→ z .x + 2)) ∈ ac′


{Property of sets}

=

 (s ⊕ (x 7→ 1)⊕ (x 7→ (s ⊕ (x 7→ 1)).x + 1)) ∈ ac′
∧
(s ⊕ (x 7→ 1)⊕ (x 7→ (s ⊕ (x 7→ 1)).x + 2)) ∈ ac′


{Record component}

=

 (s ⊕ (x 7→ 1)⊕ (x 7→ 2)) ∈ ac′
∧
(s ⊕ (x 7→ 1)⊕ (x 7→ 3)) ∈ ac′

 {Property of ⊕}

= (s ⊕ (x 7→ 2)) ∈ ac′ ∧ (s ⊕ (x 7→ 3)) ∈ ac′

In this example we consider the sequential composition of a predicate that
assigns 1 to x , followed by the conjunction of two predicates: one that incre-
ments the initial value of x by one, and the other by two. We observe that
in [14] conjunction corresponds to angelic choice. If we take that interpreta-
tion, then the sequential composition yields two choices for assigning a value
to x in ac′ available to the angel.

In Appendix E we explore and prove the properties observed by the ; A
operator. These results are important for proving and characterising the
sequential composition of A-healthy designs. The follow theorem establishes
this relationship.

Theorem 5.5.1 (Sequential composition) Provided ok and ok ′ are not
free in P, Q, R and S, and that ¬ P and Q are PBMH-healthy.

(P ` Q) ; Dac (R ` S)
=

(¬ (¬ P ; A true) ∧ ¬ (Q ; A ¬ R) ` Q ; A (R⇒ S))

Proof.

(P ` Q) ; Dac (R ` S) {Definition of ; Dac}
= ∃ ok0 • (P ` Q)[ok0/ok ′] ; A (R ` S)[ok0/ok] {Definition of design}
= ∃ ok0 • ((ok ∧ P)⇒ (Q ∧ ok ′))[ok0/ok ′] ; A ((ok ∧ R)⇒ (S ∧ ok ′))[ok0/ok]

{Substitution and assumption}
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= ∃ ok0 • ((ok ∧ P)⇒ (Q ∧ ok0)) ; A ((ok0 ∧ R)⇒ (S ∧ ok ′))
{Case-analysis on ok0 and predicate calculus}

=

 (((ok ∧ P)⇒ Q) ; A (R⇒ (S ∧ ok ′)))
∨
(¬ (ok ∧ P) ; A true)

 {Predicate calculus}

=

 ((¬ ok ∨ ¬ P ∨ Q) ; A (R⇒ (S ∧ ok ′)))
∨
((¬ ok ∨ ¬ P) ; A true)


{Right-distributivity of ; A (Law E.3.1)}

=



(¬ ok ; A (R⇒ (S ∧ ok ′)))
∨
(¬ P ; A (R⇒ (S ∧ ok ′)))
∨
(Q ; A (R⇒ (S ∧ ok ′)))
∨
(¬ ok ; A true) ∨ (¬ P ; A true)


{Law E.1.1 and predicate calculus}

=


¬ ok ∨ (¬ P ; A (R⇒ (S ∧ ok ′)))
∨
(Q ; A (R⇒ (S ∧ ok ′)))
∨
(¬ P ; A true)


{Assumption: ¬ P is PBMH-healthy and Theorem E.8.1}

=

 ¬ ok ∨ (Q ; A (R⇒ (S ∧ ok ′)))
∨
(¬ P ; A true)


{Assumption: Q is PBMH-healthy and Lemma E.8.3}

=

 ¬ ok ∨ (Q ; A ¬ R) ∨ ((Q ; A (R⇒ S)) ∧ ok ′)
∨
(¬ P ; A true)


{Predicate calculus}

=

 (ok ∧ ¬ (¬ P ; A true) ∧ ¬ (Q ; A ¬ R))
⇒
((Q ; A (R⇒ S)) ∧ ok ′)

 {Definition of design}
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=

 ¬ (¬ P ; A true) ∧ ¬ (Q ; A ¬ R)
`
Q ; A (R⇒ S)



The result obtained is very similar to that of sequential composition for the
original theory of designs [1, 22], except for postcondition and the fact that
we use the operator ; A instead of the sequential composition operator for
relations [1]. The implication in the postcondition acts as a filter that removes
final states of Q that fail to satisfy R. We consider the following example.

Example 16

(true ` {x 7→ 1} ∈ ac′ ∧ {x 7→ 2} ∈ ac′) ; Dac (s.x 6= 1 ` s ∈ ac′)

{Theorem 5.5.1}

=

 ¬ (¬ true ; A true) ∧ ¬ (({x 7→ 1} ∈ ac′ ∧ {x 7→ 2} ∈ ac′) ; A s.x = 1)
`
({x 7→ 1} ∈ ac′ ∧ {x 7→ 2} ∈ ac′) ; A (s.x 6= 1⇒ s ∈ ac′)


{Predicate calculus}

=

 ¬ (false ; A true) ∧ ¬ (({x 7→ 1} ∈ ac′ ∧ {x 7→ 2} ∈ ac′) ; A s.x = 1)
`
({x 7→ 1} ∈ ac′ ∧ {x 7→ 2} ∈ ac′) ; A (s.x 6= 1⇒ s ∈ ac′)


{Property of ; A}

=

 ¬ false ∧ ¬ (({x 7→ 1} ∈ ac′ ∧ {x 7→ 2} ∈ ac′) ; A s.x = 1)
`
({x 7→ 1} ∈ ac′ ∧ {x 7→ 2} ∈ ac′) ; A (s.x 6= 1⇒ s ∈ ac′)


{Predicate calculus}

=

 ¬ (({x 7→ 1} ∈ ac′ ∧ {x 7→ 2} ∈ ac′) ; A s.x = 1)
`
({x 7→ 1} ∈ ac′ ∧ {x 7→ 2} ∈ ac′) ; A (s.x 6= 1⇒ s ∈ ac′)


{Definition of ; A and substitution}

=

 ¬ ({x 7→ 1} ∈ {s | s.x = 1} ∧ {x 7→ 2} ∈ {s | s.x = 1})
`
({x 7→ 1} ∈ {s | s.x 6= 1⇒ s ∈ ac′} ∧ {x 7→ 2} ∈ {s | s.x 6= 1⇒ s ∈ ac′})


{Property of sets}
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=

 ¬ ({x 7→ 1}.x = 1 ∧ {x 7→ 2}.x = 1)
`
({x 7→ 1}.x 6= 1⇒ {x 7→ 1} ∈ ac′) ∧ ({x 7→ 2}.x 6= 1⇒ {x 7→ 2} ∈ ac′)


{Value of component x}

=

 ¬ (1 = 1 ∧ 2 = 1)
`
(1 6= 1⇒ {x 7→ 1} ∈ ac′) ∧ (2 6= 1⇒ {x 7→ 2} ∈ ac′)


{Predicate calculus}

=

 true
`
(false ⇒ {x 7→ 1} ∈ ac′) ∧ (true ⇒ {x 7→ 2} ∈ ac′)


{Predicate calculus}

= (true ` {x 7→ 2} ∈ ac′)

In this case, there is an angelic choice between the assginment of the value
1 and 2 to the program variable x , sequentially composed with the program
that aborts if x is 1 and that otherwhise behaves as Skip. The resulting design
is just the assginment of 2 to x that avoids aborting. In the following section
we establish closure of the sequential composition operator with respect to A.

If we consider designs that observe H3, we can simplify the result further
as there are no dashed variables in the precondition.

(P ` Q) ; Dac (R ` S) = (P ∧ (¬ R ; A ¬ Q) ` (Q ; A (R⇒ S)))

This is similar to the definition of sequential composition for designs where
the precondition is a condition [22], except for the use of the operator ; A
instead of sequential composition.

Closure

It is important that we establish closure of sequential composition ( ; Dac)
with respect to A. The following closure proof relies on laws established
in Appendices D and E.

Law 5.5.1 ( ; Dac-A-closure) Provided P and Q are A-healthy and ok, ok ′
are not free in P and Q.

A(P ; Dac Q) = P ; Dac Q
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Proof.

P ; Dac Q {Assumption: P and Q are A-healthy}
= A(¬ P f ` P t) ; Dac A(¬ Qf ` Qt) {Definition of A}

=

 (¬ PBMH(P f ) ` PBMH(P t) ∧ ac′ 6= ∅)
; Dac
(¬ PBMH(Qf ) ` PBMH(Qt) ∧ ac′ 6= ∅)

 {Definition of ; Dac}

= ∃ ok0 •

 (¬ PBMH(P f ) ` PBMH(P t) ∧ ac′ 6= ∅)[ok0/ok ′]
; A
(¬ PBMH(Qf ) ` PBMH(Qt) ∧ ac′ 6= ∅)[ok0/ok]


{Definition of design}

= ∃ ok0 •

 ((ok ∧ ¬ PBMH(P f ))⇒ (PBMH(P t) ∧ ac′ 6= ∅ ∧ ok ′)[ok0/ok ′]
; A
((ok ∧ ¬ PBMH(Qf ))⇒ (PBMH(Qt) ∧ ac′ 6= ∅ ∧ ok ′)[ok0/ok]


{Substitution and assumption}

= ∃ ok0 •

 ((ok ∧ ¬ PBMH(P f ))⇒ (PBMH(P t) ∧ ac′ 6= ∅ ∧ ok0)
; A
((ok0 ∧ ¬ PBMH(Qf ))⇒ (PBMH(Qt) ∧ ac′ 6= ∅ ∧ ok ′)


{Case-analysis on ok0 and predicate calculus}

=


 ((ok ∧ ¬ PBMH(P f ))⇒ (PBMH(P t) ∧ ac′ 6= ∅))

; A
(¬ PBMH(Qf )⇒ (PBMH(Qt) ∧ ac′ 6= ∅ ∧ ok ′))


∨
(¬ (ok ∧ ¬ PBMH(P f )) ; A true)


{Predicate calculus}

=


 (¬ ok ∨ PBMH(P f ) ∨ (PBMH(P t) ∧ ac′ 6= ∅))

; A
(¬ PBMH(Qf )⇒ (PBMH(Qt) ∧ ac′ 6= ∅ ∧ ok ′))


∨
((¬ ok ∨ PBMH(P f )) ; A true)


{Right-distributivity of ; A (Law E.3.1)}
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=



(¬ ok ; A (¬ PBMH(Qf )⇒ (PBMH(Qt) ∧ ac′ 6= ∅ ∧ ok ′)))
∨
(PBMH(P f ) ; A (¬ PBMH(Qf )⇒ (PBMH(Qt) ∧ ac′ 6= ∅ ∧ ok ′)))
∨ (PBMH(P t) ∧ ac′ 6= ∅)

; A
(¬ PBMH(Qf )⇒ (PBMH(Qt) ∧ ac′ 6= ∅ ∧ ok ′))


∨
(¬ ok ; A true) ∨ (PBMH(P f ) ; A true)


{Law E.1.1 and predicate calculus}

=



¬ ok
∨
(PBMH(P f ) ; A (¬ PBMH(Qf )⇒ (PBMH(Qt) ∧ ac′ 6= ∅ ∧ ok ′)))
∨ (PBMH(P t) ∧ ac′ 6= ∅)

; A
(¬ PBMH(Qf )⇒ (PBMH(Qt) ∧ ac′ 6= ∅ ∧ ok ′))


∨
(PBMH(P f ) ; A true)


{Theorem E.8.1}

=



¬ ok
∨ (PBMH(P t) ∧ ac′ 6= ∅)

; A
(¬ PBMH(Qf )⇒ (PBMH(Qt) ∧ ac′ 6= ∅ ∧ ok ′))


∨
(PBMH(P f ) ; A true)


{Lemma E.8.1}
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=



¬ ok
∨
((PBMH(P t) ∧ ac′ 6= ∅) ; A PBMH(Qf ))
∨ (PBMH(P t) ∧ ac′ 6= ∅)

; A
(¬ PBMH(Qf )⇒ PBMH(Qt))

 ∧ ac′ 6= ∅ ∧ ok ′


∨
(PBMH(P f ) ; A true)


{Predicate calculus}

=



 ok ∧ ¬ (PBMH(P f ) ; A true)
∧
¬ ((PBMH(P t) ∧ ac′ 6= ∅) ; A PBMH(Qf ))


⇒ ((PBMH(P t) ∧ ac′ 6= ∅) ; A (¬ PBMH(Qf )⇒ PBMH(Qt)))
∧
ac′ 6= ∅ ∧ ok ′




{Definition of design}

=



 ¬ (PBMH(P f ) ; A true)
∧
¬ ((PBMH(P t) ∧ ac′ 6= ∅) ; A PBMH(Qf ))


̀ ((PBMH(P t) ∧ ac′ 6= ∅) ; A (¬ PBMH(Qf )⇒ PBMH(Qt)))
∧
ac′ 6= ∅




{Definition of A0}

= A0


 ¬ (PBMH(P f ) ; A true)
∧
¬ ((PBMH(P t) ∧ ac′ 6= ∅) ; A PBMH(Qf ))


(̀
((PBMH(P t) ∧ ac′ 6= ∅) ; A (¬ PBMH(Qf )⇒ PBMH(Qt)))

)


{Lemma D.4.5 and Laws D.3.1, D.3.2 and E.2.1}
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= A0


 ¬ PBMH(PBMH(P f ) ; A true)
∧
¬ PBMH((PBMH(P t) ∧ ac′ 6= ∅) ; A PBMH(Qf ))


`
PBMH

(
((PBMH(P t) ∧ ac′ 6= ∅) ; A (¬ PBMH(Qf )⇒ PBMH(Qt)))

)


{Predicate calculus and Law D.3.1}

= A0


¬ PBMH

 (PBMH(P f ) ; A true)
∨
((PBMH(P t) ∧ ac′ 6= ∅) ; A PBMH(Qf ))


`
PBMH

(
((PBMH(P t) ∧ ac′ 6= ∅) ; A (¬ PBMH(Qf )⇒ PBMH(Qt)))

)


{Definition of A1 and predicate calculus}

= A0 ◦ A1


¬ PBMH

 ¬ (PBMH(P f ) ; A true)
∧
¬ ((PBMH(P t) ∧ ac′ 6= ∅) ; A PBMH(Qf ))


(̀
((PBMH(P t) ∧ ac′ 6= ∅) ; A (¬ PBMH(Qf )⇒ PBMH(Qt)))

)


{Theorem 5.5.1}

= A0 ◦ A1

 (¬ PBMH(P f ) ` PBMH(P t) ∧ ac′ 6= ∅)
; Dac
(¬ PBMH(Qf ) ` PBMH(Qt) ∧ ac′ 6= ∅)


{Definition of A}

= A(A(¬ P f ` P t) ; Dac A(¬ Qf ` Qt))
{Assumption: P and Q are A-healthy}

= A(P ; Dac Q)

This result establishes that ; Dac is closed with respect to A provided both
operands are also A-healthy.

In the following section we justify the definition of the sequential compos-
ition operator by proving that it corresponds to the definition of sequential
composition for BM⊥ relations.
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Sequential composition in the binary multirelational model

The following Theorem 5.5.2 establishes that for designs that are A-healthy
the definitions of sequential composition in both models correspond.

Theorem 5.5.2 Provided P and Q are A-healthy.

bmb2d(d2bmb(P) ; BM⊥ d2bmb(Q)) = P ; Dac Q

Proof.

bmb2d(d2bmb(P) ; BM⊥ d2bmb(Q)) {Lemma C.2.9}

= ok ⇒


((s, {s1 : State | (s1, ac′) ∈ d2bmb(Q)}) ∈ d2bmb(P) ∧ ⊥ /∈ ac′ ∧ ok ′)
∨
((s, {s1 : State⊥ | true}) ∈ d2bmb(P) ∧ ⊥ /∈ ac′)
∨
((s, {s1 : State | (s1, ac′ ∪ {⊥}) ∈ d2bmb(Q)}) ∈ d2bmb(P) ∧ ⊥ /∈ ac′)


{Lemma C.2.8}

= ok ⇒


((¬ P f ⇒ P t)[{s : State | (¬ Qf ⇒ Qt)}/ac′] ∧ ⊥ /∈ ac′ ∧ ok ′)
∨
((s, {s1 : State⊥ | true}) ∈ d2bmb(P) ∧ ⊥ /∈ ac′)
∨
((s, {s1 : State | (s1, ac′ ∪ {⊥}) ∈ d2bmb(Q)}) ∈ d2bmb(P) ∧ ⊥ /∈ ac′)


{Lemma C.2.7}

= ok ⇒


((¬ P f ⇒ P t)[{s : State | (¬ Qf ⇒ Qt)}/ac′] ∧ ⊥ /∈ ac′ ∧ ok ′)
∨
((s, {s1 : State⊥ | true}) ∈ d2bmb(P) ∧ ⊥ /∈ ac′)
∨
((¬ P f ⇒ P t)[{s : State | Qf }/ac′] ∧ ⊥ /∈ ac′)


{Lemma C.2.4}

= ok ⇒


((¬ P f ⇒ P t)[{s : State | (¬ Qf ⇒ Qt)}/ac′] ∧ ⊥ /∈ ac′ ∧ ok ′)
∨
(P f [{s1 : State | true}/ac′] ∧ ⊥ /∈ ac′)
∨
((¬ P f ⇒ P t)[{s : State | Qf }/ac′] ∧ ⊥ /∈ ac′)


{Assumption: ⊥ /∈ ac′}
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= ok ⇒


((¬ P f ⇒ P t)[{s : State | (¬ Qf ⇒ Qt)}/ac′] ∧ ok ′)
∨
(P f [{s1 : State | true}/ac′])
∨
((¬ P f ⇒ P t)[{s : State | Qf }/ac′])


{Definition of ; A}

= ok ⇒


(((¬ P f ⇒ P t) ; A (¬ Qf ⇒ Qt)) ∧ ok ′)
∨
(P f ; A true)
∨
((¬ P f ⇒ P t) ; A Qf )


{Predicate calculus and Law E.3.1}

= ok ⇒


(((P f ; A (¬ Qf ⇒ Qt)) ∨ (P t ; A (¬ Qf ⇒ Qt))) ∧ ok ′)
∨
(P f ; A true)
∨
(P f ; A Qf ) ∨ (P t ; A Qf )


{Predicate calculus}

= ok ⇒


((P f ; A (¬ Qf ⇒ Qt)) ∧ ok ′)
∨
((P t ; A (¬ Qf ⇒ Qt)) ∧ ok ′)
∨
(P f ; A true) ∨ (P f ; A Qf ) ∨ (P t ; A Qf )


{Theorem E.8.1 under assumption that P is PBMH-healthy}

= ok ⇒

 ((P t ; A (¬ Qf ⇒ Qt)) ∧ ok ′)
∨
(P f ; A true) ∨ (P t ; A Qf )


{Lemma E.8.3 under assumption that P is PBMH-healthy}

= ok ⇒

 (P t ; A Qf ) ∨ ((P t ; A (¬ Qf ⇒ Qt)) ∧ ok ′)
∨
(P f ; A true) ∨ (P t ; A Qf )


{Predicate calculus}

= ok ⇒

 (P t ; A Qf ) ∨ ((P t ; A (¬ Qf ⇒ Qt)) ∧ ok ′)
∨
(P f ; A true)


{Predicate calculus}
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=
(
(ok ∧ ¬ (P t ; A Qf ) ∧ ¬ (P f ; A true))⇒ ((P t ; A (¬ Qf ⇒ Qt)) ∧ ok ′)

)
{Definition of design}

=

 ¬ (P t ; A Qf ) ∧ ¬ (P f ; A true)
`
P t ; A (¬ Qf ⇒ Qt)

 {Theorem 5.5.1}

= (¬ P f ` P t) ; Dac (¬ Qf ` Qt)
{Assumption: P and Q are A-healthy designs}

= P ; Dac Q

Furthermore, together with the closure of ; Dac, this result enables us to
ascertain the closure of ; BM⊥ .

This concludes our discussion of the definition of sequential composition.
In what follows, we concentrate our attention on important properties ob-
served by the sequential composition operator.

Skip

Similarly to the original theory of designs, we identify the Skip of the theory.
We denote it by IIDac and define it as follows.

Definition 62

IIDac =̂ (true ` s ∈ ac′)

This is a design whose precondition is true, thus it is always applicable, and
upon terminating it establishes that the input state s is in all sets of angelic
choices ac′. The only results that can be guaranteed by the angel are those
that are available in all demonic choices of the value of ac′ that can be made.
In this case, s is the only guarantee that we have, so the behaviour of IIDac
is to maintain the current state. In the following laws we prove that IIDac is
A-healthy and that it is the left-unit for sequential composition ( ; Dac).

Law 5.5.2 (IID-A-healthy)

A(IIDac) = IIDac
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Proof.

A(IIDac) {Definition of IIDac}
= A(true ` s ∈ ac′) {Definition of A}
= (¬ PBMH(¬ true) ` PBMH(s ∈ ac′) ∧ ac′ 6= ∅) {Lemma D.4.2}
= (¬ false ` PBMH(s ∈ ac′) ∧ ac′ 6= ∅) {Lemma D.4.3}
= (¬ false ` s ∈ ac′ ∧ ac′ 6= ∅) {Property of sets and predicate calculus}
= (true ` s ∈ ac′) {Definition of IIDac}
= IIDac

Law 5.5.3 ( ; Dac-left-unit) Provided P is a design.

IIDac ; Dac P = P

Proof.

IIDac ; Dac P {Definition of IIDac and design}
= (true ` s ∈ ac′) ; Dac (¬ P f ` P t) {Theorem 5.5.1}
= (¬ (¬ true ; A true) ∧ ¬ (s ∈ ac′ ; A P f ) ` s ∈ ac′ ; A (¬ P f ⇒ P t))

{Predicate calculus}
= (¬ (false ; A true) ∧ ¬ (s ∈ ac′ ; A P f ) ` s ∈ ac′ ; A (¬ P f ⇒ P t))

{Definition of ; A and substitution}
= (¬ false ∧ ¬ (s ∈ ac′ ; A P f ) ` s ∈ ac′ ; A (¬ P f ⇒ P t))

{Predicate calculus}
= (¬ (s ∈ ac′ ; A P f ) ` s ∈ ac′ ; A (¬ P f ⇒ P t)) {Law E.7.2}
= (¬ P f ` (¬ P f ⇒ P t)) {Predicate calculus}
= (¬ P f ` P t) {Definition of design}
= P

These laws establish that IIDac is indeed a suitable definition for Skip.
In what follows we establish that an H3-design in our theory requires

the precondition not to mention dashed variables, as expected [1]. We first

Revision: 704f887 (2014-02-04 11:14:10 +0000) 127



show the result of sequentially composing an A-healthy design P with IIDac
in Law 5.5.4. Finally Law 5.5.5 establishes that P ; Dac IIDac = P restricts
the precondition to a condition.

Law 5.5.4 ( ; Dac-sequence-Skip) Provided P is A-healthy.

P ; D IIDac = (¬ ∃ ac′ • P f ` P t)

Proof.

P ; Dac IIDac {Definition of design and IIDac}
= (¬ P f ` P t) ; Dac (true ` s ∈ ac′) {Theorem 5.5.1}
= (¬ (P f ; A true) ∧ ¬ (P t ; A false) ` P t ; A (true ⇒ s ∈ ac′))

{Predicate calculus}
= (¬ (P f ; A true) ∧ ¬ (P t ; A false) ` P t ; A s ∈ ac′)

{Assumption: P is A-healthy}

=

 ¬ (P f ; A true) ∧ ¬ ((P t ∧ ac′ 6= ∅) ; A false)
`
(P t ∧ ac′ 6= ∅) ; A (true ⇒ s ∈ ac′)


{Right-distributivity of ; A (Law E.4.1)}

=

 ¬ (P f ; A true) ∧ ¬ ((P t ; A false) ∧ (ac′ 6= ∅ ; A false))
`
(P t ; A s ∈ ac′) ∧ (ac′ 6= ∅ ; A s ∈ ac′)


{Definition of ; A and substitution}

=

 ¬ (P f ; A true) ∧ ¬ ((P t ; A false) ∧ ∅ 6= ∅)
`
(P t ; A s ∈ ac′) ∧ (ac′ 6= ∅ ; A s ∈ ac′)


{Property of sets and predicate calculus}

= (¬ (P f ; A true) ` (P t ; A s ∈ ac′) ∧ (ac′ 6= ∅ ; A s ∈ ac′))
{s ∈ ac′ is right-unit of ; A (Law E.7.3)}

= (¬ (P f ; A true) ` P t ∧ ac′ 6= ∅) {Law E.5.2}
= (¬ ∃ ac′ • P f ` P t ∧ ac′ 6= ∅) {Assumption: P is A-healthy}
= (¬ ∃ ac′ • P f ` P t)
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Law 5.5.5 (H3- ; Dac) Provided P is A-healthy, it is H3-healthy if, and
only if, its precondition does not mention ac′.

(P ; D IIDac) = P ⇔ (∃ ac′ • ¬ P f = ¬ P f )

Proof.

(P ; Dac IIDac) = P {Assumption: P is A-healthy}
⇔ (P ; Dac IID) = (¬ P f ` P t ∧ ac′ 6= ∅) {Law 5.5.4}
⇔ (¬ ∃ ac′ • P f ` P t ∧ ac′ 6= ∅) = (¬ P f ` P t ∧ ac′ 6= ∅)

{Equality of designs}
⇔ [(¬ ∃ ac′ • P f ) = ¬ P f ] {Predicate calculus}
⇔ [(∃ ac′ • P f ) = P f ] {Predicate calculus (Lemma C.3.1)}
⇔ [(∃ ac′ • ¬ P f ) = ¬ P f ]

These results show that we have a theory whose essential properties concern-
ing sequential composition hold as in the original theory of designs [1].

Sequential composition and the extreme points

In this section we establish the results of sequentially composing a program
with the extreme points of the lattice. As expected, we establish the same
left-zero laws that hold in the original theory of designs [1].

The following Law 5.5.6 establishes that it is impossible to recover from
an aborting program. Law 5.5.7 establishes that if a design is miraculous then
sequentially composing it with another design does not change its behaviour.

Law 5.5.6

⊥Dac ; Dac P = ⊥Dac

Proof.

⊥D ; Dac P {Definition of ⊥D}
= true ; Dac P {Definition of ; Dac}
= ∃ ok0 • true[ok0/ok ′] ; A P[ok0/ok]

{Case-split on ok0 and property of substitution}
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= (true ; A P[true/ok]) ∨ (true ; A P[false/ok]) {Definition of ; A}
= true ∨ true {Propositional calculus and definition of ⊥Dac}
= ⊥Dac

Law 5.5.7

>Dac ; Dac P = >Dac

Proof.

>Dac ; Dac P {Definition of >Dac}
= (¬ ok) ; Dac P {Definition of ; Dac}
= ∃ ok0 • (¬ ok)[ok0/ok ′] ; A P[ok0/ok]

{Substitution and case-split on ok0}
= (¬ ok ; A P[true/ok]) ∨ (¬ ok ; A P[false/ok])

{Definition of ; A and substitution}
= ¬ ok {Definition of >Dac}
= >Dac

Both of these results are expected of a theory of designs [1]. This concludes
our discussion of the main operators of the theory and their properties. In
the following section we concentrate our attention on nondeterminism.

5.6 Demonic and angelic nondeterminism
In this section we explore the two types of nondeterminism operators sup-
ported by the theory: angelic and demonic choice. We first discuss de-
monic nondeterminism in Section 5.6.1 followed by angelic nondeterminism
in Section 5.6.2. For each operator we establish its closure and the relation-
ship with the corresponding operator in the theory of binary multirelations
of Chapter 4. In addition, based on similar results established in the literat-
ure [13, 16, 20, 27], we state and prove certain properties of the operators.
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5.6.1 Demonic choice
The intuition for the demonic choice in our theory is related to the possible
ways of choosing a value for ac′. In general, this can be described using
disjunction like in the original theory of designs [1].

Definition 63

P uDac Q =̂ P ∨ Q

This corresponds to the greatest lower bound of the lattice. We consider the
following example, where ⊕ is the overriding operator [28].

Example 17

(x := 1) uDac (x := 2) {Definition of assignment}
= (true ` s ⊕ (x 7→ 1) ∈ ac′) uDac (true ` s ⊕ (x 7→ 2) ∈ ac′)

{Definition of uDac and disjunction of designs}
= (true ` s ⊕ (x 7→ 1) ∈ ac′ ∨ s ⊕ (x 7→ 2) ∈ ac′)

In this example we have at least two choices for the final value of ac′: one
has a state where x is 1 and the other has a state where x is 2. The demon
can choose any set ac′ satisfying either predicate. In this case, the angel is
not guaranteed to be able to choose a particular final value for x , since there
are no choices in the intersection of all possible choices of ac′.

Closure properties

The demonic choice operator is closed with respect to A, provided that
both operands are also A-healthy. This result follows from the distributive
property of A with respect to disjunction, as established by the follow-
ing Law 5.6.1.

Law 5.6.1 (A-disjunction-distribute)

A(P ∨ Q) = A(P) ∨ A(Q)

Proof.

A(P ∨ Q) {Definition of design}
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= A((¬ P f ` P t) ∨ (¬ Qf ` Qt)) {Disjunction of designs}
= A(¬ P f ∧ ¬ Qf ` P t ∨ Qt) {Predicate calculus}
= A(¬ (P f ∨ Qf ) ` P t ∨ Qt) {Definition of A}
= (¬ PBMH(P f ∨ Qf ) ` PBMH(P t ∨ Qt) ∧ ac′ 6= ∅)

{Distributivity of PBMH w.r.t. disjunction Law D.2.1}

=

 ¬ (PBMH(P f ) ∨ PBMH(Qf ))
`
(PBMH(P t) ∨ PBMH(Qt)) ∧ ac′ 6= ∅

 {Predicate calculus}

=

 ¬ PBMH(P f ) ∧ ¬ PBMH(Qf )
`
(PBMH(P t) ∧ ac′ 6= ∅) ∨ (PBMH(Qt) ∧ ac′ 6= ∅)


{Disjunction of designs}

=

 (¬ PBMH(P f ) ` PBMH(P t) ∧ ac′ 6= ∅)
∨
(¬ PBMH(Qf ) ` PBMH(Qt) ∧ ac′ 6= ∅)

 {Definition of A}

= A(¬ P f ` P t) ∨ A(¬ Qf ` Qt)

Law 5.6.2 Provided P and Q are A-healthy.

A(P uDac Q) = P uDac Q

Proof.

A(P uDac Q) {Definition of uDac and Law 5.6.1}
= A(P) ∨ A(Q) {Assumption: P and Q are A-healthy}
= P uDac Q

This concludes the proof for closure of uDac with respect to A.

Relationship with binary multirelations

The demonic choice operator (uDac) corresponds exactly to the demonic
choice operator (uBM⊥) of the binary multirelational model. This result
is established by the following Theorem 5.6.1.
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Theorem 5.6.1

bmb2p(B0 uBM⊥ B1) = bmb2p(B0) uDac bmb2p(B1)

Proof.

bmb2p(B0 uBM⊥ B1) {Definition of uBM⊥}
= bmb2p(B0 ∪ B1) {Definition of bmb2p}

= ok ⇒

 ((s, ac′) ∈ (B0 ∪ B1) ∧ ⊥ /∈ ac′ ∧ ok ′)
∨
((s, ac′ ∪ {⊥}) ∈ (B0 ∪ B1) ∧ ⊥ /∈ ac′)

 {Property of sets}

= ok ⇒

 (((s, ac′) ∈ B0 ∨ (s, ac′) ∈ B1) ∧ ⊥ /∈ ac′ ∧ ok ′)
∨
((((s, ac′ ∪ {⊥}) ∈ B0) ∨ (s, ac′ ∪ {⊥}) ∈ B1) ∧ ⊥ /∈ ac′)


{Propositional calculus}

= ok ⇒



 ((s, ac′) ∈ B0 ∧ ⊥ /∈ ac′)
∨
((s, ac′) ∈ B1 ∧ ⊥ /∈ ac′)

 ∧ ok ′


∨
((s, ac′ ∪ {⊥}) ∈ B0 ∧ ⊥ /∈ ac′)
∨
((s, ac′ ∪ {⊥}) ∈ B1 ∧ ⊥ /∈ ac′)


{Propositional calculus}

=




ok
∧
¬ ((s, ac′ ∪ {⊥}) ∈ B0 ∧ ⊥ /∈ ac′)
∧
¬ ((s, ac′ ∪ {⊥}) ∈ B1 ∧ ⊥ /∈ ac′)


⇒ ((s, ac′) ∈ B0 ∧ ⊥ /∈ ac′)

∨
((s, ac′) ∈ B1 ∧ ⊥ /∈ ac′)

 ∧ ok ′



{Property of designs}
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=



 ¬ ((s, ac′ ∪ {⊥}) ∈ B0 ∧ ⊥ /∈ ac′)
∧
¬ ((s, ac′ ∪ {⊥}) ∈ B1 ∧ ⊥ /∈ ac′)


̀ ((s, ac′) ∈ B0 ∧ ⊥ /∈ ac′)
∨
((s, ac′) ∈ B1 ∧ ⊥ /∈ ac′)




{Disjunction of designs and definition of uDac}

=

 (¬ ((s, ac′ ∪ {⊥}) ∈ B0 ∧ ⊥ /∈ ac′) ` (s, ac′) ∈ B0 ∧ ⊥ /∈ ac′)
uDac
(¬ ((s, ac′ ∪ {⊥}) ∈ B1 ∧ ⊥ /∈ ac′) ` (s, ac′) ∈ B1 ∧ ⊥ /∈ ac′)


{Definition of bmb2p}

= bmb2p(B0) uDac bmb2p(B1)

This result confirms the correspondence of demonic choice in both models.
In the following section we focus our attention on its properties.

Properties

In general, and since demonic choice is the greatest lower bound, if presented
with the possibility to abort (⊥Dac), we expect the demon to choose the
worst possible outcome as established by the following law.

Law 5.6.3 (u-⊥Dac)

P uDac ⊥Dac = ⊥Dac

Proof.

P uDac ⊥Dac {Definition of uDac and ⊥Dac}
= P ∨ true {Propositional calculus and definition of ⊥Dac}
= ⊥Dac

As observed in the original theory of designs [1], the sequential composi-
tion operator distributes through demonic choice, but only from the right as
established by ?? and Law 5.6.4.
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Law 5.6.4 (u-right-distributivity)

(P uDac Q) ; Dac R = (P ; Dac R) uDac (Q ; Dac R)

Proof.

(P ; Dac R) uDac (Q ; Dac R) {Definition of ; Dac and uDac}
= (∃ ok0 • P[ok0/ok ′] ; A R[ok0/ok ′]) ∨ (∃ ok0 • Q[ok0/ok ′] ; A R[ok0/ok])

{Propositional calculus}
= ∃ ok0 • (P[ok0/ok ′] ; A R[ok0/ok ′]) ∨ (Q[ok0/ok ′] ; A R[ok0/ok])

{Right-distributivity of ; A (Law E.3.1)}
= ∃ ok0 • ((P[ok0/ok ′] ∨ Q[ok0/ok ′]) ; A R[ok0/ok])

{Definition of ; A and uDac}
= (P uDac Q) ; Dac R

These results conclude our discussion regarding the demonic choice operator
and its properties. In the following section we focus our attention on the
angelic choice operator and its respective properties.

5.6.2 Angelic choice
In the original theory of designs there is no angelic choice, and therefore
the least upper bound of the lattice of designs, defined as conjunction, does
not correspond to angelic choice. In other theories, such as in the predicate
transformer model, angelic choice is defined exactly as the dual operator of
demonic choice [13]. The same is applicable for the model of [14], where
angelic choice is defined by conjunction, while demonic choice is disjunction.
The definition adopted in our model is also conjunction of designs.

Definition 64 (tDac)

P tDac Q =̂ P ∧ Q

This definition is justified by the correspondence with the angelic choice
operator of the binary multirelational model of Chapter 4.

To provide the intuition for this definition we consider the following Ex-
ample 18.
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Example 18

((x 7→ 1) /∈ ac′ ` (x 7→ 1) ∈ ac′) tDac (true ` (x 7→ 2) ∈ ac′)

{Definition of tDac}

=


(x 7→ 1) /∈ ac′ ∨ truè (x 7→ 1) /∈ ac′ ⇒ (x 7→ 1) ∈ ac′
∧
true ⇒ (x 7→ 2) ∈ ac′


 {Predicate calculus}

= (true ` (x 7→ 1) ∈ ac′ ∧ (x 7→ 2) ∈ ac′)

It considers the angelic choice between a design that assigns 1 to the only
program variable x but does not necessarily terminate, and a design that
assigns 2 to x but terminates. The result is a program that terminates and,
for every set of final states, there is the possibility for the angel to choose the
assignment of the value 1 or 2 to x .

Closure properties

Having defined angelic choice as the least upper bound operator, in the fol-
lowing Law 5.6.5 we prove that it is closed under A, provided that both
operands are A-healthy.

Law 5.6.5 (tDac-A-closed) Provided P and Q are A-healthy.

A(P tDac Q) = P tDac Q

Proof.

P tDac Q {Definition of design}
= (¬ P f ` P t) tDac (¬ Qf ` Qt) {Law A.2.6}
= (¬ P f ∨ ¬ Qf ` (P f ∧ Qt) ∨ (P t ∧ Qf ) ∨ (P t ∧ Qt))

{Assumption: P and Q are A-healthy}
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=



¬ PBMH(P f ) ∨ ¬ PBMH(Qf )̀
(PBMH(P f ) ∧ PBMH(Qt) ∧ ac′ 6= ∅)
∨
(PBMH(P t) ∧ ac′ 6= ∅ ∧ PBMH(Qf ))
∨
(PBMH(P t) ∧ ac′ 6= ∅ ∧ PBMH(Qt))




{Predicate calculus}

=



¬ (PBMH(P f ) ∧ PBMH(Qf ))̀
(PBMH(P f ) ∧ PBMH(Qt))
∨
(PBMH(P t) ∧ PBMH(Qf ))
∨
(PBMH(P t) ∧ PBMH(Qt))

 ∧ ac′ 6= ∅


{Law D.2.2}

=



¬ PBMH(PBMH(P f ) ∧ PBMH(Qf ))̀
PBMH(PBMH(P f ) ∧ PBMH(Qt))
∨
PBMH(PBMH(P t) ∧ PBMH(Qf ))
∨
PBMH(PBMH(P t) ∧ PBMH(Qt))

 ∧ ac′ 6= ∅


{Law D.2.1}

=



¬ PBMH(PBMH(P f ) ∧ PBMH(Qf ))
`

PBMH


(PBMH(P f ) ∧ PBMH(Qt))
∨
(PBMH(P t) ∧ PBMH(Qf ))
∨
(PBMH(P t) ∧ PBMH(Qt))

 ∧ ac′ 6= ∅


{Definition of A and predicate calculus}
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= A



¬ PBMH(P f ) ∨ ¬ PBMH(Qf )̀
(PBMH(P f ) ∧ PBMH(Qt) ∧ ac′ 6= ∅)
∨
(PBMH(P t) ∧ PBMH(Qf ) ∧ ac′ 6= ∅)
∨
(PBMH(P t) ∧ PBMH(Qt) ∧ ac′ 6= ∅)




{Assumption: P and Q are A-healthy}

= A(¬ P f ∨ ¬ Qf ` (P f ∧ Qt) ∨ (P t ∧ Qf ) ∨ (P t ∧ Qt)) {Law A.2.6}
= A((¬ P f ` P t) tDac (¬ Qf ` Qt)) {Definition of design}
= A(P tDac Q)

This proof relies on properties of PBMH and on Law A.2.6 that provides
a different result for the least upper bound of designs. Having established
closure, in the following section we establish the correspondence with the
binary multirelational model of Chapter 4.

Relationship with binary multirelations

In the following Theorem 5.6.2 we establish the correspondence of angelic
choice in both models. This law requires the operands to be BMH1-healthy.
This is satisfied by every binary multirelation that is BMH0-BMH2.

Theorem 5.6.2 Provided B0 and B1 are BMH1-healthy.

bmb2p(B0 tBM⊥ B1) = bmb2p(B0) tDac bmb2p(B1)

Proof.

bmb2p(B0) tDac bmb2p(B1) {Definition of bmb2p and tDac}

=

 ((s, ac′ ∪ {⊥}) /∈ B0 ∨ ⊥ ∈ ac′ ` (s, ac′) ∈ B0 ∧ ⊥ /∈ ac′)
`
((s, ac′ ∪ {⊥}) /∈ B1 ∨ ⊥ ∈ ac′ ` (s, ac′) ∈ B1 ∧ ⊥ /∈ ac′)


{Definition of t for designs}

Revision: 704f887 (2014-02-04 11:14:10 +0000) 138



=


((s, ac′ ∪ {⊥}) /∈ B0 ∨ ⊥ ∈ ac′ ∨ (s, ac′ ∪ {⊥}) /∈ B1 ∨ ⊥ ∈ ac′)̀ ((s, ac′ ∪ {⊥}) /∈ B0 ∨ ⊥ ∈ ac′)⇒ ((s, ac′) ∈ B0 ∧ ⊥ /∈ ac′)
∧
((s, ac′ ∪ {⊥}) /∈ B1 ∨ ⊥ ∈ ac′)⇒ ((s, ac′) ∈ B1 ∧ ⊥ /∈ ac′)




{Propositional calculus}

=


((s, ac′ ∪ {⊥}) /∈ B0 ∨ ⊥ ∈ ac′ ∨ (s, ac′ ∪ {⊥}) /∈ B1)̀ ((s, ac′ ∪ {⊥}) ∈ B0 ∨ (s, ac′) ∈ B0)
∧
((s, ac′ ∪ {⊥}) ∈ B1 ∨ (s, ac′) ∈ B1)

 ∧ ⊥ /∈ ac′


{Assumption: B0 and B1 are BMH1-healthy}

=


((s, ac′ ∪ {⊥}) /∈ B0 ∨ ⊥ ∈ ac′ ∨ (s, ac′ ∪ {⊥}) /∈ B1)̀ (((s, ac′ ∪ {⊥}) ∈ B0 ∧ (s, ac′) ∈ B0) ∨ (s, ac′) ∈ B0)
∧
(((s, ac′ ∪ {⊥}) ∈ B1 ∧ (s, ac′) ∈ B1) ∨ (s, ac′) ∈ B1)

 ∧ ⊥ /∈ ac′


{Propositional calculus: absorption law}

=

 ((s, ac′ ∪ {⊥}) /∈ B0 ∨ ⊥ ∈ ac′ ∨ (s, ac′ ∪ {⊥}) /∈ B1)
`
(s, ac′) ∈ B0 ∧ (s, ac′) ∈ B1 ∧ ⊥ /∈ ac′


{Propositional calculus}

=

 ¬ ((s, ac′ ∪ {⊥}) ∈ B0 ∧ (s, ac′ ∪ {⊥}) ∈ B1) ∨ ⊥ ∈ ac′
`
(s, ac′) ∈ B0 ∧ (s, ac′) ∈ B1 ∧ ⊥ /∈ ac′


{Property of sets}

=

 (s, ac′ ∪ {⊥}) /∈ (B0 ∩ B1) ∨ ⊥ ∈ ac′
`
(s, ac′) ∈ (B0 ∩ B1) ∧ ⊥ /∈ ac′

 {Definition of bmb2p}

= bmb2p(B0 ∩ B1) {Definition of tBM⊥}
= bmb2p(B0 tBM⊥ B1)

Having established the correspondence of the angelic choice operator in both
models, in the following section we focus on its properties.

Revision: 704f887 (2014-02-04 11:14:10 +0000) 139



Properties

In general, and since angelic choice is the least upper bound, the angelic
choice of a design P and the top of the lattice (>Dac) is also >Dac.

Law 5.6.6 Provided P is a design.

P tDac >Dac = >Dac

Proof.

P tDac >Dac {Definition of tDac and >Dac}
= P ∧ ¬ ok {Definition of design}
= (¬ P f ` P t) ∧ ¬ ok {Definition of design}
= ((ok ∧ ¬ P f )⇒ (P t ∧ ok ′)) ∧ ¬ ok {Predicate calculus}
= (¬ ok ∨ P f ∨ (P t ∧ ok ′)) ∧ ¬ ok {Predicate calculus: absorption law}
= ¬ ok {Definition of >Dac}
= >Dac

In this model, sequential composition does not necessarily distribute from
the right nor from the left. In order to explain the intuition behind this we
present the following Counter-example 2 for distribution from the left.

Counter-example 2 (true ` s ⊕ (x 7→ 1) ∈ ac′)
uDac
(true ` s ⊕ (x 7→ −1) ∈ ac′)

 ; Dac

 (s.x = 1 ` false)
t
(s.x = −1 ` false)



{Assumption: ; Dac distributes over uDac}
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=



 (true ` s ⊕ (x 7→ 1) ∈ ac′)
uDac
(true ` s ⊕ (x 7→ −1) ∈ ac′)

 ; Dac (s.x = 1 ` false)

tDac (true ` s ⊕ (x 7→ 1) ∈ ac′)
uDac
(true ` s ⊕ (x 7→ −1) ∈ ac′)

 ; Dac (s.x = −1 ` false)


{Definition of u}

=

 ((true ` s ⊕ (x 7→ 1) ∈ ac′ ∨ s ⊕ (x 7→ −1) ∈ ac′) ; Dac (s.x = 1 ` false))
tDac
((true ` s ⊕ (x 7→ 1) ∈ ac′ ∨ s ⊕ (x 7→ −1) ∈ ac′) ; Dac (s.x = −1 ` false))


{Theorem 5.5.1}

=




(true ; A true) ∧
¬ ((s ⊕ (x 7→ 1) ∈ ac′ ∨ s ⊕ (x 7→ −1) ∈ ac′) ; A s.x 6= 1)
`
(s ⊕ (x 7→ 1) ∈ ac′ ∨ s ⊕ (x 7→ −1) ∈ ac′) ; A (s.x = 1⇒ false)


tDac

(true ; A true) ∧
¬ ((s ⊕ (x 7→ 1) ∈ ac′ ∨ s ⊕ (x 7→ −1) ∈ ac′) ; A s.x 6= −1)
`
(s ⊕ (x 7→ 1) ∈ ac′ ∨ s ⊕ (x 7→ −1) ∈ ac′) ; A (s.x = −1⇒ false)




{Predicate calculus}

=




(true ; A true) ∧
¬ ((s ⊕ (x 7→ 1) ∈ ac′ ∨ s ⊕ (x 7→ −1) ∈ ac′) ; A s.x 6= 1)
`
(s ⊕ (x 7→ 1) ∈ ac′ ∨ s ⊕ (x 7→ −1) ∈ ac′) ; A s.x 6= 1


tDac

(true ; A true) ∧
¬ ((s ⊕ (x 7→ 1) ∈ ac′ ∨ s ⊕ (x 7→ −1) ∈ ac′) ; A s.x 6= −1)
`
(s ⊕ (x 7→ 1) ∈ ac′ ∨ s ⊕ (x 7→ −1) ∈ ac′) ; A s.x 6= −1




{Property of ; A and propositional calculus}
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=



 ¬ ((s ⊕ (x 7→ 1) ∈ ac′ ∨ s ⊕ (x 7→ −1) ∈ ac′) ; A s.x 6= 1)
`
(s ⊕ (x 7→ 1) ∈ ac′ ∨ s ⊕ (x 7→ −1) ∈ ac′) ; A s.x 6= 1


tDac ¬ ((s ⊕ (x 7→ 1) ∈ ac′ ∨ s ⊕ (x 7→ −1) ∈ ac′) ; A s.x 6= −1)
`
(s ⊕ (x 7→ 1) ∈ ac′ ∨ s ⊕ (x 7→ −1) ∈ ac′) ; A s.x 6= −1




{Definition of ; A and subsitution}

=



 ¬ (s ⊕ (x 7→ 1) ∈ {z | z .x 6= 1} ∨ s ⊕ (x 7→ −1) ∈ {z | z .x 6= 1})
`
(s ⊕ (x 7→ 1) ∈ {s | s.x 6= 1} ∨ s ⊕ (x 7→ −1) ∈ {s | s.x 6= 1})


tDac ¬ (s ⊕ (x 7→ 1) ∈ {z | z .x 6= −1} ∨ s ⊕ (x 7→ −1) ∈ {z | z .x 6= −1})
`
(s ⊕ (x 7→ 1) ∈ {s | s.x 6= −1} ∨ s ⊕ (x 7→ −1) ∈ {s | s.x 6= −1})




{Property of sets and predicate calculus}

=



 ¬ (¬ (s ⊕ (x 7→ 1).x 6= 1) ∨ ¬ (s ⊕ (x 7→ −1).x 6= 1))
`
true


tDac ¬ (¬ (s ⊕ (x 7→ 1).x 6= −1) ∨ ¬ (s ⊕ (x 7→ −1).x 6= −1))
`
true




{Property of ⊕}

=

 (¬ (¬ false ∨ ¬ true) ` true)
tDac
(¬ (¬ true ∨ ¬ false) ` true)

 {Propositional calculus}

= (false ` true) tDac (false ` true) {Property of tDac}
= (false ` true) {Definition of design and propositional calculus}
= true {Definitionf of ⊥Dac}
= ⊥Dac

This is a sequential composition. In the first program the precondition always
holds and the program presents a choice to the demon. In this case, the
demon can choose the set of final states, ac′, by guaranteeing that either x is
set to 1 or −1 in the final set of states ac′. The second program presents an
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angelic choice, but the precondition makes a restriction on the value of x in
the initial state s: in either case, if the precondition is satisfied the program
is >Dac, otherwise if no precondition can be satisfied, the program behaves
as ⊥Dac.

It is expected that the angel will avoid ⊥Dac if that it is possible. In this
case, it is expected, since the angel can avoid aborting irrespective of the
choice the demon makes before the angel. However, if we assume that the
sequential composition operator ; Dac left-distributes over angelic choice we
get a different result as shown above.

In addition, sequential composition does not distribute from the right. We
illustrate this problem in Counter-example 3. It is the sequential composition
of two designs. The first design is the angelic choice between the program
that assigns 2 to x , but may not terminate, and the program that always
terminates but whose final set of states ac′ is unrestricted, except that it
cannot be the empty set. The second design is miraculous for s.x = 2 and
for every other value of s.x it aborts.

Counter-example 3 ((x 7→ 2) /∈ ac′ ` (x 7→ 2) ∈ ac′)
tDac
(true ` ac′ 6= ∅)

 ; Dac

 s.x = 2
`
s.x 6= 2 ∧ ac′ 6= ∅



{Definition of tDac}

=


(x 7→ 2) /∈ ac′ ∨ truè (x 7→ 2) /∈ ac′ ⇒ (x 7→ 2) ∈ ac′
∧
true ⇒ ac′ 6= ∅


 ; Dac

 s.x = 2
`
s.x 6= 2 ∧ ac′ 6= ∅


{Predicate calculus}

= (true ` (x 7→ 2) ∈ ac′ ∧ ac′ 6= ∅) ; Dac (s.x = 2 ` s.x 6= 2 ∧ ac′ 6= ∅)
{Property of sets and predicate calculus}

= (true ` (x 7→ 2) ∈ ac′) ; Dac (s.x = 2 ` s.x 6= 2 ∧ ac′ 6= ∅)
{Theorem 5.5.1}

Revision: 704f887 (2014-02-04 11:14:10 +0000) 143



=

 ¬ (false ; A true) ∧ ¬ ((x 7→ 2) ∈ ac′ ; A s.x 6= 2)
`
(x 7→ 2) ∈ ac′ ; A (s.x = 2⇒ (s.x 6= 2 ∧ ac′ 6= ∅))


{Predicate calculus}

=

 ¬ (false ; A true) ∧ ¬ ((x 7→ 2) ∈ ac′ ; A s.x 6= 2)
`
(x 7→ 2) ∈ ac′ ; A s.x 6= 2)


{Definition of ; A and substitution}

=

 ¬ false ∧ ¬ ((x 7→ 2) ∈ {z | z .x 6= 2})
`
(x 7→ 2) ∈ {z | z .x 6= 2}

 {Property of sets}

=

 ¬ false ∧ ¬ ((x 7→ 2).x 6= 2)
`
(x 7→ 2).x 6= 2

 {Predicate calculus}

= (¬ (2 6= 2) ` 2 6= 2) {Predicate calculus}
= (true ` false) {Predicate calculus and definition of >Dac}
= >Dac

6= ((x 7→ 2) /∈ ac′ ` (x 7→ 2) ∈ ac′) ; Dac (s.x = 2 ` s.x 6= 2 ∧ ac′ 6= ∅)
tDac
(true ` ac′ 6= ∅) ; Dac (s.x = 2 ` s.x 6= 2 ∧ ac′ 6= ∅)


{Theorem 5.5.1}

=



 ¬ ((x 7→ 2) ∈ ac′ ; A true) ∧ ¬ ((x 7→ 2) ∈ ac′ ; A s.x 6= 2)
`
(x 7→ 2) ∈ ac′ ; A (s.x = 2⇒ (s.x 6= 2 ∧ ac′ 6= ∅))


tDac ¬ (false ; A true) ∧ ¬ (ac′ 6= ∅ ; A s.x 6= 2)
`
ac′ 6= ∅ ; A (s.x = 2⇒ (s.x 6= 2 ∧ ac′ 6= ∅))




{Predicate calculus}
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=



 ¬ ((x 7→ 2) ∈ ac′ ; A true) ∧ ¬ ((x 7→ 2) ∈ ac′ ; A s.x 6= 2)
`
(x 7→ 2) ∈ ac′ ; A s.x 6= 2


tDac ¬ (false ; A true) ∧ ¬ (ac′ 6= ∅ ; A s.x 6= 2)
`
ac′ 6= ∅ ; A s.x 6= 2




{Definition of ; A and substitution}

=



 ¬ ((x 7→ 2) ∈ {z | true}) ∧ ¬ ((x 7→ 2) ∈ {z | z .x 6= 2})
`
(x 7→ 2) ∈ {z | z .x 6= 2}


tDac ¬ false ∧ ¬ ({z | z .x 6= 2} 6= ∅)
`
{z | z .x 6= 2} 6= ∅




{Predicate calculus and property of sets}

=



 ¬ true ∧ ¬ (x 7→ 2).x 6= 2
`
(x 7→ 2).x 6= 2


tDac ¬ false ∧ ¬ true
`
true




{Predicate calculus}

= (false ` false) tDac (false ` true)
{Predicate calculus and definition of ⊥Dac}

= ⊥Dac tDac ⊥Dac {Definition of tDac, ⊥Dac and predicate calculus}
= ⊥Dac

In the first case, the angelic choice is resolved first and the result is the
program that always terminates and whose set of final states ac′ has a state
where x is assigned the value 2. Sequentially composing this with the second
design results in a miracle (>Dac) as the only state available for angelic choice
is where x has the value 2. However, this is precisely the case in which the
design behaves miraculously.

In the second case, we assume that sequential composition distributes
through angelic choice. In the resulting angelic choice there are two sequential
compositions. In the first one, the result is ⊥Dac as the first design may not
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terminate. While in the second, termination is guaranteed but any final set
of states (ac′ 6= ∅) may fail to satisfy the precondition s.x = 2, in which case
the design aborts.

Finally, the demonic and angelic choice operators distribute over one an-
other.

Law 5.6.7 (demonic-angelic-distributivity)

P uDac (Q tDac R) = (P uDac Q) tDac (P uDac R)

Proof. Follows from the distributive properties of conjunction and disjunc-
tion. Equivalently, this follows from the results established in the binary
multirelational model of Chapter 4 and the respective isomorphism.

This result has also been established in other models, such as the predicate
transformer model [13]. Since the angelic choice operator is the least upper
bound of the lattice, this result follows directly from the properties of the
lattice.

5.7 Relationship of H3 designs with angelic
nondeterminism

In this section we explore the relationship between the theory that we propose
and that of [14]. An isomorphism is established for a subset of the theory of
designs with angelic nondeterminism that are A and H3-healthy.

We begin Section 5.7.1 by characterising the correspondence between the
alphabets of the two theories. In Section 5.7.2 and Section 5.7.3 the linking
functions between the theories are defined: d2pbmh that maps from designs
into predicates, and pbmh2d that maps in the inverse direction. We prove
that both functions are closed within the respective theories. Finally in Sec-
tion 5.7.4 the isomorphism is established.

5.7.1 Alphabets
As mentioned previously in Section 5.1, the alphabet of the theory we pro-
pose differs slightly from that of [14], in that ac′ is a set of final states, but we
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consider undashed variables in the record components instead. In the follow-
ing Law 5.7.1 we establish that the functions we presented earlier, acdash2ac
and ac2acdash, are actually the inverse of each other.

Law 5.7.1 (acdash2ac ◦ ac2acdash)

acdash2ac ◦ ac2acdash(ss) = ss

Proof.

acdash2ac ◦ ac2acdash(ss) {Definition of acdash2ac}

=


s0 : Sinα, s1 : Soutα∣∣∣∣ s1 ∈ ac2acdash(ss)
∧ (
∧

x : αP • s0.x = s1.(x ′)) • s0

 {Definition of ac2acdash}

=


s0 : Sinα, s1 : Soutα∣∣∣∣∣∣ s1 ∈

{
z0 : Sinα, z1 : Soutα
| z0 ∈ ss ∧ (

∧
x : α • z0.x = z1.(x ′)) • z1

}
∧ (
∧

x : α • s0.x = s1.(x ′)) • s0


{Property of sets}

=


s0 : Sinα, s1 : Soutα∣∣∣∣ ∃ z0 : Sinα • z0 ∈ ss ∧ (

∧
x : α • z0.x = s1.(x ′))

∧ (
∧

x : αP • s0.x = s1.(x ′)) • s0


{Equality of records}

= {s0 : Sinα | ∃ z0 : Sinα • z0 ∈ ss ∧ z0 = s0 • s0} {One-point rule}
= {s0 : Sinα | s0 ∈ ss • s0} {Property of sets}
= ss

This means that we can recover the ac′ of either theory as needed. Some of
the proofs in this section use auxiliary results about these functions that are
established in Appendix G.

We observe that we also need to address the fact that we have a single
initial state s that encapsulates the values of the initial program variables as
record components. This notion is handled directly by the linking functions.
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5.7.2 From designs to PBMH predicates (d2pbmh)
The first linking function of interest is d2pbmh that maps from designs that
are A and H3-healthy into the theory of [14]. Its definition is presented
below.

Definition 65

d2pbmh : A 7→ PBMH
d2pbmh(P)

=̂

∃ ac0 • (¬ P f ⇒ P t)[ac0/ac′][inα/s] ∧ ac2acdash(ac0) ⊆ ac′

For a design P, via the substitution in P f and P t , we consider both its
pre and postconditions directly. This is sufficient since we require ok to be
true and hide ok ′ (Law A.2.3). The substitution of inα for s corresponds to
the substitution of every occurrence of a record component s.x for x , where
x is an input program variable. Finally, we substitute ac′ in P with the
temporary variable ac0. This allows us to relate the set of final states ac0
with ac′ by applying ac2acdash that replaces every undashed variable in all
sets of states in ac0 into dashed ones. Although the definition considers a
superset of ac2acdash(ac0) rather than equality this is not an issue, since for
every P that is A-healthy the sets of final states are always upward closed.

In the following Theorem 5.7.1 we prove that d2pbmh yields predicates
that are PBMH-healthy.

Theorem 5.7.1 Provided P is A and H3-healthy.

PBMH(d2pbmh(P)) = d2pbmh(P)

Proof.

PBMH(d2pbmh(P)) {Definition of d2pbmh}
= PBMH(∃ ac0 • (¬ P f ⇒ P t)[ac0/ac′][inα/s] ∧ ac2acdash(ac0) ⊆ ac′)

{Definition of PBMH}
= (∃ ac0 • (¬ P f ⇒ P t)[ac0/ac′][inα/s] ∧ ac2acdash(ac0) ⊆ ac′) ; ac ⊆ ac′

{Definition of sequential composition}
= ∃ ac1, ac0 • (¬ P f ⇒ P t)[ac0/ac′][inα/s] ∧ ac2acdash(ac0) ⊆ ac1 ∧ ac1 ⊆ ac′

{Transitivity of subset inclusion}
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= ∃ ac0 • (¬ P f ⇒ P t)[ac0/ac′][inα/s] ∧ ac2acdash(ac0) ⊆ ac′
{Definition of d2pbmh}

= d2pbmh(P)

The upward closure of d2pbmh follows directly from the definition of d2pbmh.
The proviso of Theorem 5.7.1 ensures that the function is only applied to
designs that are A and H3-healthy.

5.7.3 From PBMH predicates to designs (pbmh2d)
In this section we define the second linking function pbmh2d that maps from
predicates in the theory of [14] into designs that are A and H3-healthy.

Definition 66

pbmh2d : PBMH 7→ A

pbmh2d(P) =̂

 ¬ P[∅/ac′][s/inα]
`
∃ ac0 • P[ac0/ac′][s/inα] ∧ acdash2ac(ac0) ⊆ ac′


The definition yields a design whose precondition guarantees successful ter-
mination, the postcondition follows the same idea explored in the definition
of d2pbmh. Every input program variable x in inα is substituted with s.x ,
where s is the initial state, and ac0 is related to ac′ in our theory by applic-
ation of acdash2ac. In the model of [14], the possibility of non termination
occurs when ac′ is the empty set. Therefore the negation of this predicate
can be taken as a precondition.

In the following Theorem 5.7.2 we prove that pbmh2d yields designs that
are A and H3-healthy.

Theorem 5.7.2 Provided P is satisfies PBMH.

A ◦ H3(pbmh2d(P)) = pbmhd2d(P)

Proof.

A ◦ H3(pbmh2d(P)) {Definition of pbmh2d}
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= A ◦ H3

 ¬ P[∅/ac′][s/inα]
`
∃ ac0 • P[ac0/ac′][s/inα] ∧ acdash2ac(ac0) ⊆ ac′


{Definition of A ◦ H3}

=


∃ ac′ • ¬ P[∅/ac′][s/inα]
`
PBMH(∃ ac0 • P[ac0/ac′][s/inα] ∧ acdash2ac(ac0) ⊆ ac′)
∧ ac′ 6= ∅


{Predicate calculus: ac′ not free}

=


¬ P[∅/ac′][s/inα]
`
PBMH(∃ ac0 • P[ac0/ac′][s/inα] ∧ acdash2ac(ac0) ⊆ ac′)
∧ ac′ 6= ∅


{Definition of PBMH}

=


¬ P[∅/ac′][s/inα]
`
((∃ ac0 • P[ac0/ac′][s/inα] ∧ acdash2ac(ac0) ⊆ ac′) ; ac ⊆ ac′)
∧ ac′ 6= ∅


{Definition of sequential composition and substitution}

=


¬ P[∅/ac′][s/inα]
`
(∃ ac1, ac0 • P[ac0/ac′][s/inα] ∧ acdash2ac(ac0) ⊆ ac1 ∧ ac1 ⊆ ac′)
∧ ac′ 6= ∅


{Transitivity of subset inclusion}

=

 ¬ P[∅/ac′][s/inα]
`
∃ ac0 • P[ac0/ac′][s/inα] ∧ acdash2ac(ac0) ⊆ ac′ ∧ ac′ 6= ∅


{Lemma G.3.1}

= pbmh2d(P)

Similarly to the definition of d2pbmh, the proviso of Theorem 5.7.2 ensures
that the function is only applied to predicates that are PBMH-healthy.
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5.7.4 Isomorphism: d2pbmh and pbmh2d
In this section we establish that the linking functions d2pbmh and pbmh2d
are bijections. This result is established by Theorems 5.7.3 and 5.7.4.

Theorem 5.7.3 Provided P is A ◦ H3-healthy.

pbmh2d ◦ d2pbmh(P) = P

Proof.

pbmh2d ◦ d2pbmh(P) {Definition of d2pbmh}
= pbmh2d(∃ ac0 • (¬ P f ⇒ P t)[ac0/ac′][inα/s] ∧ ac2acdash(ac0) ⊆ ac′)

{Definition of pbmh2d}

=


¬
(
∃ ac0 • (¬ P f ⇒ P t)[ac0/ac′][inα/s]
∧ ac2acdash(ac0) ⊆ ac′

)
[∅/ac′][s/inα]

`

∃ ac0 •
(
∃ ac0 • (¬ P f ⇒ P t)[ac0/ac′][inα/s]
∧ ac2acdash(ac0) ⊆ ac′

)
[ac0/ac′][s/inα]

∧ acdash2ac(ac0) ⊆ ac′


{Variable renaming}

=


¬
(
∃ ac0 • (¬ P f ⇒ P t)[ac0/ac′][inα/s]
∧ ac2acdash(ac0) ⊆ ac′

)
[∅/ac′][s/inα]

`

∃ ac0 •
(
∃ ac1 • (¬ P f ⇒ P t)[ac1/ac′][inα/s]
∧ ac2acdash(ac1) ⊆ ac′

)
[ac0/ac′][s/inα]

∧ acdash2ac(ac0) ⊆ ac′


{Substitution}

=


¬ (∃ ac0 • (¬ P f ⇒ P t)[ac0/ac′] ∧ ac2acdash(ac0) ⊆ ∅)(̀
∃ ac0, ac1 • (¬ P f ⇒ P t)[ac1/ac′]
∧ ac2acdash(ac1) ⊆ ac0 ∧ acdash2ac(ac0) ⊆ ac′

)


{Property of ac2acdash and acdash2ac}
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=


¬
(
∃ ac0 • (¬ P f ⇒ P t)[ac0/ac′] ∧
acdash2ac ◦ ac2acdash(ac0) ⊆ acdash2ac(∅)

)
̀ ∃ ac0, ac1 • (¬ P f ⇒ P t)[ac1/ac′]
∧ acdash2ac ◦ ac2acdash(ac1) ⊆ acdash2ac(ac0)
∧ acdash2ac(ac0) ⊆ ac′




{Transitivity of subset inclusion and Law G.1.3}

=

 ¬ (∃ ac0 • (¬ P f ⇒ P t)[ac0/ac′] ∧ ac0 ⊆ ∅)
`
∃ ac1 • (¬ P f ⇒ P t)[ac1/ac′] ∧ ac1 ⊆ ac′


{Case-analysis on ac0 and definition of sequential composition}

=

 ¬ (¬ P f ⇒ P t)[ac0/ac′][∅/ac0]
`
(¬ P f ⇒ P t) ; ac ⊆ ac′


{Substitution and definition of PBMH}

= (¬ (¬ P f ⇒ P t)[∅/ac′] ` PBMH(¬ P f ⇒ P t))
{Assumption: P is A ◦ H3-healthy}

=

 ¬ (¬ P f ⇒ (PBMH(P t) ∧ ac′ 6= ∅))[∅/ac′]
`
PBMH(¬ P f ⇒ (PBMH(P t) ∧ ac′ 6= ∅))


{Substitution under assumption that ac′ is not free in P f }

=

 ¬ (¬ P f ⇒ (PBMH(P t) ∧ ∅ 6= ∅))
`
PBMH(¬ P f ⇒ (PBMH(P t) ∧ ac′ 6= ∅))


{Property of sets and predicate calculus}

= (¬ P f ` PBMH(P f ∨ (PBMH(P t) ∧ ac′ 6= ∅))) {Law D.2.1}
= (¬ P f ` PBMH(P f ) ∨ PBMH(PBMH(P t) ∧ ac′ 6= ∅))

{Lemma D.4.5 and Law D.2.2}
= (¬ P f ` PBMH(P f ) ∨ PBMH ◦ PBMH(P t) ∧ ac′ 6= ∅)

{Law D.1.1 and Lemma D.4.6}
= (¬ P f ` P f ∨ PBMH(P t) ∧ ac′ 6= ∅)

{Property of sets and predicate calculus}
= (¬ P f ∧ (¬ P f ∨ ¬ ok ′) ` PBMH(P t) ∧ ac′ 6= ∅)

{Predicate calculus: absorption law}
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= (¬ P f ` PBMH(P t) ∧ ac′ 6= ∅) {Definition of A ◦ H3}
= A ◦ H3(P) {Assumption: P is A ◦ H3-healthy}
= P

Theorem 5.7.4 Provided P is PBMH-healthy.

d2pbmh ◦ pbmh2d(P) = P

Proof.

d2pbmh ◦ pbmh2d(P) {Definition of pbmh2d}

= d2pbmh

 ¬ P[∅/ac′][s/inα]
`
∃ ac0 • P[ac0/ac′][s/inα] ∧ acdash2ac(ac0) ⊆ ac′


{Definition of d2pbmh}

=

 ∃ ac0 •


¬ P[∅/ac′][s/inα]
⇒(
∃ ac0 • P[ac0/ac′][s/inα]
∧ acdash2ac(ac0) ⊆ ac′

)
 [ac0/ac′][inα/s]

∧ ac2acdash(ac0) ⊆ ac′


{Variable renaming}

=

 ∃ ac0 •


¬ P[∅/ac′][s/inα]
⇒(
∃ ac1 • P[ac1/ac′][s/inα]
∧ acdash2ac(ac1) ⊆ ac′

)
 [ac0/ac′][inα/s]

∧ ac2acdash(ac0) ⊆ ac′


{Predicate calculus and substitution}

=


∃ ac0 • P[∅/ac′][s/inα][ac1/ac′][inα/s] ∧ ac2acdash(ac0) ⊆ ac′
∨ ∃ ac0, ac1 • P[ac1/ac′][s/inα][ac0/ac′][inα/s]
∧ acdash2ac(ac1) ⊆ ac0
∧ ac2acdash(ac0) ⊆ ac′




{Substitution}
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=


P[∅/ac′] ∧ ∃ ac0 • ac2acdash(ac0) ⊆ ac′
∨(
∃ ac0, ac1 • P[ac1/ac′] ∧ acdash2ac(ac1) ⊆ ac0
∧ ac2acdash(ac0) ⊆ ac′

)


{Property of ac2acdash and acdash2ac}

=


P[∅/ac′] ∧ ∃ ac0 • ac2acdash(ac0) ⊆ ac′
∨(
∃ ac0, ac1 • P[ac1/ac′] ∧ ac2acdash ◦ acdash2ac(ac1) ⊆ ac2acdash(ac0)
∧ ac2acdash(ac0) ⊆ ac′

)


{Property of ac2acdash and transitivity of subset inclusion}

=

 P[∅/ac′] ∧ ∃ ac0 • ac2acdash(ac0) ⊆ ac′
∨
∃ ac1 • P[ac1/ac′] ∧ ac1 ⊆ ac′

 {Case-analysis on ac0}

= P[∅/ac′] ∨ (∃ ac1 • P[ac1/ac′] ∧ ac1 ⊆ ac′)
{Instantiation of ac1 for ac1 = ∅}

= ∃ ac1 • P[ac1/ac′] ∧ ac1 ⊆ ac′)
{Definition of PBMH and assumption that P satisfies PBMH}

= P

While this is an expected result, it is reassuring that the subset of our theory
that is H3-healthy is in exact correspondence with the UTP theory of [14].

We observe that the subset of the binary multirelational model of Chapter 4
that is BMH3-healthy is isomorphic to the original theory of binary multire-
lations. Since binary multirelations are also isomorphic to the UTP theory
of [14], the result presented in this section is also in agreement. This result
completes the relationships depicted in Figure 1.1.

5.8 Final considerations
In this chapter we have presented a new UTP theory of designs that is capable
of modelling angelic and demonic nondeterminism. The novel contribution
lies in the use of the variables ok and ok ′, as in every theory of designs, and
the capability to express non-H3-designs as well as both demonic and angelic
choice. While all known existing models for program correctness restrict
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their attention to necessarily terminating programs, we relax this constraint
in order to pave the way for the development of a theory of reactive designs
with angelic nondeterminism.

The healthiness conditions of the theory have been presented and their
properties proved, including idempotency and monotonicity. Through the
co-development of the binary multirelational model in Chapter 4, and its
subsequent isomorphism, we have been able to justify and explore the defin-
ition of the operators and the refinement ordering. It is reassuring to know
that the refinement order as given by universal reverse implication corres-
ponds to subset inclusion in the binary multirelational model.

Perhaps the most challenging aspect of the theory is that it is non-
homogeneous. As a consequence sequential composition cannot be defined as
relational composition. While the definition for sequential composition is not
immediately obvious, it is more intuitive when considered in the equivalent
binary multirelational model.

Finally, we have also linked a subset of this model with the UTP theory
of [14]. This is a complementary result to the link between the binary mul-
tirelational model of BM⊥ relations and that of the original theory of binary
multirelations. This gives us further assurance as to the capability to express
the existing theories as a subset of our own correctly.
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Chapter 6

Conclusions

In this chapter we present a summary of our findings in Section 6.1. This is
followed by the discussion of future work in Section 6.2.

6.1 Summary
The concept of angelic nondeterminism is useful in the context of formal spe-
cifications. It has traditionally been studied in the context of the refinement
calculus [11–13]. However, as far as we know, it has not been characterised
in a relational setting capable of modelling reactive programs.

In this work we have presented a new UTP theory of designs with an-
gelic nondeterminism that can cope with non-H3 designs, a first step in the
definition of a theory of reactive designs with angelic nondeterminism. The
healthiness conditions and the main operators have been defined and their
properties proved.

In order to motivate our predicative model, we developed an equivalent
extended binary multirelational model. This provides an insight into the
definition of some of the operators, such as sequential composition. Its defin-
ition in the binary multirelational model is based on our understanding of
the original theory of designs [1] and the theory of binary multirelations [15].

Unfortunately, in the model we propose sequential composition cannot
be defined as relational composition as we use non-homogenenous relations.
Instead, we provide an alternative definition that is partially based on sub-
stitution as proposed by Cavalanti et al. [14]. We extend that notion for
non-H3 designs and justify its definition with the isomorphism between the
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models. It is pleasing that our definition resembles that of the theory of
designs.

For both of the models that we have developed, we have studied the
relationship between their subsets of interest and the existing theories. The
fact that we have been able to prove that they are equivalent is reassuring.
These results consolidate our understanding of the models.

6.2 Future work
As already mentioned, the theory proposed in this work is the first step to-
wards the definition of a theory of reactive designs with angelic nondetermin-
ism. Although the results we have obtained are consistent with a theory of
designs, it remains to be seen what are the implications with respect to a
theory of reactive programs.

In addition, since there is a collection of different binary multirelational
models as pointed out by Rewitzky [15], it would be interesting to explore
whether other isomorphisms can be established. In fact, exploring the re-
lationship between our model and any other existing theories would further
help validate the model and consolidate our understanding of it.

Since it is our goal to provide a mathematically rigorous theory for soft-
ware engineering, it is only recommended that, in the future, further valida-
tion of all applicable theorems and lemmas is carried out by mechanising the
theory with the help of a theorem prover.

Finally, due to the foundational importance of our contribution, it would
be desirable if this model could be exploited in practice, perhaps even in the
context of unforeseen domains.
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Acronyms

CSP Communicating Sequential Processes

ZRC Z Refinement Calculus

VDM Vienna Development Method

ASM Abstract State Machine

FSM Finite State Machines

CCS Calculus of Concurrent Systems

JCSP Java Communicating Sequential Processes

FDR Failures-Divergence Refinement

UTP Unifying Theories of Programming

BNF Backus-Naur Normal Form
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Appendix A

Theory of designs

A.1 Healthiness conditions

H2A
Definition 67

H2A(P) =̂ ¬ P f ⇒ (P t ∧ ok ′)

Law A.1.1 (H2A⇔ H2) The definition of H2A implies that the fixpoints
are the same as those of H2.

Proof for implication. The following proof is based on [29].

P {Introduce fresh variable and substitution}
= ∃ ok0 • P ∧ ok ′ = ok0 {Case-split on ok0}
= (¬ ok ′ ∧ P f ) ∨ (ok ′ ∧ P t) {Assumption: P is H2-healthy}
= (¬ ok ′ ∧ P f ∧ P t) ∨ (ok ′ ∧ P t) {Propositional calculus}
= (((¬ ok ′ ∧ P f ) ∨ ok ′) ∧ P t) {Propositional calculus}
= ((P f ∨ ok ′) ∧ P t) {Propositional calculus}
= (P f ∧ P t) ∨ (ok ′ ∧ P t) {Assumption: P is H2-healthy}
= P f ∨ (ok ′ ∧ P t) {Propositional calculus}
= ¬ P f ⇒ (P t ∧ ok ′)
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Proof for reverse implication.

[(H2A(P))f ⇒ (H2A(P))t ] {Definition of H2A}
= [(¬ P f ⇒ (P t ∧ ok ′))f ⇒ (¬ P f ⇒ (P t ∧ ok ′))t ] {Substitution}
= [(P f ⇒ (¬ P f ⇒ P t)] {Propositional calculus}
= [¬ P f ∨ P f ∨ P t ] {Propositional calculus}
= true

A.2 Lemmas
Law A.2.1 (design-true-ok ′) Provided ok ∧ P and ok ′ is not free in P.

(P ` Q)t = Q

Proof. As stated and proved in [30] (Lemma 4.2).

Law A.2.2 (design-false-ok ′) Provided ok ′ is not free in P.

ok ∧ ¬ (P ` Q)f = ok ∧ P

Proof. As stated and proved in [30] (Lemma 4.3).

Law A.2.3 (design-exists-ok ′)

∃ ok ′ • (P ` Q) = (ok ∧ P)⇒ Q

Proof.

∃ ok ′ • (P ` Q) {Definition of design}
= ∃ ok ′ • (ok ∧ P)⇒ (Q ∧ ok ′) {Case-split on ok ′}
= ((ok ∧ P)⇒ Q) ∨ ¬ (ok ∧ P) {Propositional calculus}
= (ok ∧ P)⇒ Q
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Law A.2.4 (design-t)

(¬ P f ` P t) t (¬ Qf ` Qt)

=

(¬ P f ∨ ¬ Qf ` (¬ P f ⇒ P t) ∧ (¬ Qf ⇒ Qt))

Proof.

(¬ P f ` P t) t (¬ Qf ` Qt) {Definition of design}
= ((ok ∧ ¬ P f )⇒ (P t ∧ ok ′)) t ((ok ∧ ¬ Qf )⇒ (Qt ∧ ok ′))

{Definition of t}
= ((ok ∧ ¬ P f )⇒ (P t ∧ ok ′)) ∧ ((ok ∧ ¬ Qf )⇒ (Qt ∧ ok ′))

{Propositional calculus}
= ok ⇒ ((P t ∧ ok ′) ∨ P f ) ∧ ((Qt ∧ ok ′) ∨ Qf ) {Propositional calculus}
= ok ⇒ (P t ∨ P f ) ∧ (ok ′ ∨ P f ) ∧ (Qt ∨ Qf ) ∧ (ok ′ ∨ Qf )

{Propositional calculus}
= ok ⇒ (P t ∨ P f ) ∧ (Qt ∨ Qf ) ∧ (ok ′ ∨ (P f ∧ Qf ))

{Propositional calculus: absorption law}
= ok ⇒ ((P f ∧ Qf ) ∨ P t ∨ P f ) ∧ ((P f ∧ Qf ) ∨ Qt ∨ Qf ) ∧ (ok ′ ∨ (P f ∧ Qf ))

{Propositional calculus}
= ok ⇒ (P f ∧ Qf ) ∨ ((P t ∨ P f ) ∧ (Qt ∨ Qf ) ∧ ok ′)

{Propositional calculus}
= (ok ∧ ¬ (P f ∧ Qf ))⇒ ((¬ P f ⇒ P t) ∧ (¬ Qf ⇒ Qt) ∧ ok ′)

{Definition of design}
= (¬ P f ∨ ¬ Qf ` (¬ P f ⇒ P t) ∧ (¬ Qf ⇒ Qt))

Law A.2.5 (design-exists-ok’-t) Provided P and Q are designs.

∃ ok ′ • (P ∧ Q) = (∃ ok ′ • P) ∧ (∃ ok ′ • Q)

Proof.

(∃ ok ′ • P) ∧ (∃ ok ′ • Q) {Assumption: P and Q are designs}
= (∃ ok ′ • (¬ P f ` P t)) ∧ (∃ ok ′ • (¬ Qf ` Qt)) {Law A.2.3}
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= ((ok ∧ ¬ P f )⇒ P t) ∧ ((ok ∧ ¬ Qf )⇒ Qt) {Propositional calculus}
= (ok ⇒ (P t ∨ P f )) ∧ (ok ⇒ (Qt ∨ Qf )) {Propositional calculus}
= ok ⇒ ((P t ∨ P f ) ∧ (Qt ∨ Qf ))

{Propositional calculus: absorption law}
= ok ⇒ (((P f ∧ Qf ) ∨ P t ∨ P f ) ∧ ((P f ∧ Qf ) ∨ Qt ∨ Qf ))

{Propositional calculus}
= ok ⇒ ((P f ∧ Qf ) ∨ ((P t ∨ P f ) ∧ (Qt ∨ Qf ))) {Propositional calculus}
= (ok ∧ ¬ (P f ∧ Qf ))⇒ ((¬ P f ⇒ P t) ∧ (¬ Qf ⇒ Qt)) {Law A.2.3}
= ∃ ok ′ • (¬ (P f ∧ Qf ) ` (¬ P f ⇒ P t) ∧ (¬ Qf ⇒ Qt))

{Conjunction of designs}
= ∃ ok ′ • (¬ P f ` P t) ∧ (¬ Qf ` Qt)

{Assumption: P and Q are designs}
= ∃ ok ′ • (P ∧ Q)

Law A.2.6

(¬ P f ` P t) t (¬ Qf ` Qt)

=

(¬ P f ∨ ¬ Qf ` (P f ∧ Qt) ∨ (P t ∧ Qf ) ∨ (P t ∧ Qt))

Proof.

(¬ P f ` P t) t (¬ Qf ` Qt) {Conjunction of designs}
= (¬ P f ∨ ¬ Qf ` (¬ P f ⇒ P t) ∧ (¬ Qf ⇒ Qt))

{Propositional calculus}
= (¬ P f ∨ ¬ Qf ` (P f ∨ P t) ∧ (Qf ∨ Qt)) {Predicate calculus}
= (¬ (P f ∧ Qf ) ` (P f ∧ Qf ) ∨ (P f ∧ Qt) ∨ (P t ∧ Qf ) ∨ (P t ∧ Qt))

{Definition of design}

=

 (ok ∧ ¬ (P f ∧ Qf ))
⇒
(((P f ∧ Qf ) ∨ (P f ∧ Qt) ∨ (P t ∧ Qf ) ∨ (P t ∧ Qt)) ∧ ok ′)


{Predicate calculus}
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=

 (ok ∧ ¬ (P f ∧ Qf ) ∧ (¬ (P f ∧ Qf ) ∨ ¬ ok ′))
⇒
(((P f ∧ Qt) ∨ (P t ∧ Qf ) ∨ (P t ∧ Qt)) ∧ ok ′)


{Predicate calculus: absorption law}

= (ok ∧ ¬ (P f ∧ Qf ))⇒ (((P f ∧ Qt) ∨ (P t ∧ Qf ) ∨ (P t ∧ Qt)) ∧ ok ′)
{Definition of design}

= (¬ (P f ∧ Qf ) ` (P f ∧ Qt) ∨ (P t ∧ Qf ) ∨ (P t ∧ Qt))
{Predicate calculus}

= (¬ P f ∨ ¬ Qf ` (P f ∧ Qt) ∨ (P t ∧ Qf ) ∨ (P t ∧ Qt))
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Appendix B

Binary multirelational model

B.1 Healthiness conditions

bmh0

Lemma B.1.1 (bmh0-idempotent)

bmh0 ◦ bmh0(B) = bmh0(B)

Proof.
bmh0 ◦ bmh0(B) {Definition of bmh0}

=

{
s : State, ss : P State⊥
| ∃ ss0 • (s, ss0) ∈ bmh0(B) ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)

}
{Definition of bmh0}

=


s : State, ss : P State⊥∣∣∣∣∣∣∣∣
∃ ss0 • (s, ss0) ∈


s : State, ss : P State⊥∣∣∣∣ ∃ ss0 • (s, ss0) ∈ B
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


{Variable renaming}

=


s : State, ss : P State⊥∣∣∣∣∣∣∣∣
∃ ss0 • (s, ss0) ∈


s : State, ss : P State⊥∣∣∣∣ ∃ ss1 • (s, ss1) ∈ B
∧ ss1 ⊆ ss ∧ (⊥ ∈ ss1 ⇔ ⊥ ∈ ss)


∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


{Property of sets}
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=


s : State, ss : P State⊥∣∣∣∣∣∣
∃ ss0, ss1 • (s, ss1) ∈ B
∧ ss1 ⊆ ss0 ∧ (⊥ ∈ ss1 ⇔ ⊥ ∈ ss0)
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


{Predicate calculus and transitivity of subset inclusion}

=

{
s : State, ss : P State⊥∣∣ ∃ ss1 • (s, ss1) ∈ B ∧ ss1 ⊆ ss ∧ (⊥ ∈ ss1 ⇔ ⊥ ∈ ss)

}
{Definition of bmh0}

= bmh0(B)

bmh1

Lemma B.1.2 (bmh1-idempotent)

bmh1 ◦ bmh1(B) = bmh1(B)

Proof.

bmh1 ◦ bmh1(B) {Definition of bmh1}
= {s : State, ss : P State⊥ | (s, ss ∪ {⊥}) ∈ bmh1(B) ∨ (s, ss) ∈ bmh1(B)}

{Definition of bmh1}

=


s : State, ss : P State⊥∣∣∣∣∣∣∣∣
(s, ss ∪ {⊥}) ∈

{
s : State, ss : P State⊥
| (s, ss ∪ {⊥}) ∈ B ∨ (s, ss) ∈ B

}
∨
(s, ss) ∈ {s : State, ss : P State⊥ | (s, ss ∪ {⊥}) ∈ B ∨ (s, ss) ∈ B}


{Property of sets}

=


s : State, ss : P State⊥∣∣∣∣∣∣
(s, ss ∪ {⊥} ∪ {⊥}) ∈ B ∨ (s, ss ∪ {⊥}) ∈ B
∨
(s, ss ∪ {⊥}) ∈ B ∨ (s, ss) ∈ B


{Property of sets and predicate calculus}

= {s : State, ss : P State⊥ | (s, ss ∪ {⊥}) ∈ B ∨ (s, ss) ∈ B}
{Definition of bmh1}

= bmh1(B)

Revision: 704f887 (2014-02-04 11:14:10 +0000) 169



bmh2

Lemma B.1.3 (bmh2-idempotent)

bmh2 ◦ bmh2(B) = bmh2(B)

Proof.

bmh2 ◦ bmh2(B) {Definition of bmh2}

=


s : State, ss : P State⊥∣∣∣∣∣∣
(s, ss) ∈ bmh2(B)
∧
((s, {⊥}) ∈ bmh2(B)⇔ (s, ∅) ∈ bmh2(B))


{Definition of bmh2}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(s, ss) ∈
{

s : State, ss : P State⊥
| (s, ss) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)

}

∧


(s, {⊥}) ∈

{
s : State, ss : P State⊥
| (s, ss) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)

}
⇔

(s, ∅) ∈
{

s : State, ss : P State⊥
| (s, ss) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)

}



{Property of sets}

=


s : State, ss : P State⊥∣∣∣∣∣∣∣∣
(s, ss) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)

∧

 ((s, {⊥}) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B))
⇔
((s, ∅) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B))




{Predicate calculus}

=


s : State, ss : P State⊥∣∣∣∣ (s, ss) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ (((s, {⊥}) ∈ B ∧ (s, ∅) ∈ B)⇔ ((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B))


{Predicate calculus}

=

{
s : State, ss : P State⊥
| (s, ss) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)

}
{Definition of bmh2}
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= bmh2(B)

bmh3

Lemma B.1.4 (bmh3-idempotent)

bmh3 ◦ bmh3(B) = B

Proof.

bmh3 ◦ bmh3(B) {Definition of bmh3}

=

{
s : State, ss : P State⊥∣∣ ((s, ∅) ∈ bmh3(B) ∨ ⊥ /∈ ss) ∧ (s, ss) ∈ bmh3(B)

}
{Definition of bmh3}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣

(
(s, ∅) ∈

{
s : State, ss : P State⊥
| ((s, ∅) ∈ B ∨ ⊥ /∈ ss) ∧ (s, ss) ∈ B

}
∨ ⊥ /∈ ss

)
∧

(s, ss) ∈
{

s : State, ss : P State⊥
| ((s, ∅) ∈ B ∨ ⊥ /∈ ss) ∧ (s, ss) ∈ B

}


{Property of sets}

=


s : State, ss : P State⊥∣∣∣∣∣∣
((((s, ∅) ∈ B ∨ ⊥ /∈ ∅) ∧ (s, ∅) ∈ B) ∨ ⊥ /∈ ss)
∧
(((s, ∅) ∈ B ∨ ⊥ /∈ ss) ∧ (s, ss) ∈ B)


{Predicate calculus: absorption law}

=

{
s : State, ss : P State⊥∣∣ ((s, ∅) ∈ B ∨ ⊥ /∈ ss) ∧ ((s, ∅) ∈ B ∨ ⊥ /∈ ss) ∧ (s, ss) ∈ B

}
{Predicate calculus and definition of bmh3}

= bmh3(B)
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bmh0 and bmh1

Lemma B.1.5
bmh0 ◦ bmh1(B)

=
s : State, ss : P State⊥∣∣∣∣ ∃ ss0 • ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss))


Proof.
bmh0 ◦ bmh1(B) {Definition of bmh0}

=

{
s : State, ss : P State⊥
| ∃ ss0 • (s, ss0) ∈ bmh1(B) ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)

}
{Definition of bmh1}

=


s : State, ss : P State⊥∣∣∣∣ ∃ ss0 • (s, ss0) ∈ {s : State, ss : P State⊥ | (s, ss ∪ {⊥}) ∈ B ∨ (s, ss) ∈ B}
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


{Property of sets}

=


s : State, ss : P State⊥∣∣∣∣ ∃ ss0 • ((s, ss0 ∪ {⊥}) ∈ B ∨ (s, ss0) ∈ B)
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


{Predicate calculus}

=


s : State, ss : P State⊥∣∣∣∣∣∣
∃ ss0 • ((s, ss0 ∪ {⊥}) ∈ B ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss))
∨
∃ ss0 • ((s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss))


{Predicate calculus}

=


s : State, ss : P State⊥∣∣∣∣ ∃ ss0 • ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss))


Properties

Lemma B.1.6 (bmh0 ◦ bmh1-commutative)
bmh0 ◦ bmh1(B) = bmh1 ◦ bmh0(B)
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Proof.

bmh1 ◦ bmh0(B) {Definition of bmh1}
=
{

s : State, ss : P State⊥ | (s, ss ∪ {⊥}) ∈ bmh0(B) ∨ (s, ss) ∈ bmh0(B)
}

{Definition of bmh0}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
(s, ss ∪ {⊥}) ∈

{
s : State, ss : P State⊥
| ∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)

}
∨

(s, ss) ∈
{

s : State, ss : P State⊥
| ∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)

}


{Property of sets}

=


s : State, ss : P State⊥∣∣∣∣∣∣
∃ ss0 • ((s, ss0) ∈ B ∧ ss0 ⊆ (ss ∪ {⊥}) ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ (ss ∪ {⊥})))
∨
∃ ss0 • ((s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss))


{Property of sets and predicate calculus}

=


s : State, ss : P State⊥∣∣∣∣∣∣
∃ ss0 • ((s, ss0) ∈ B ∧ ss0 ⊆ (ss ∪ {⊥}) ∧ ⊥ ∈ ss0)
∨
∃ ss0 • ((s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss))


{Lemma B.3.1}

=


s : State, ss : P State⊥∣∣∣∣∣∣
∃ ss0 • ((s, ss0 ∪ {⊥}) ∈ B ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss))
∨
∃ ss0 • ((s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss))


{Predicate calculus}

=


s : State, ss : P State⊥∣∣∣∣ ∃ ss0 • ((s, ss0 ∪ {⊥}) ∈ B ∨ (s, ss0) ∈ B)
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)

 {Lemma B.1.5}

= bmh0 ◦ bmh1(B)
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bmh1 and bmh2

Lemma B.1.7

bmh1 ◦ bmh2(B)

=

{
s : State, ss : P State⊥∣∣ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B) ∧ ((s, ss ∪ {⊥}) ∈ B ∨ (s, ss) ∈ B)

}
Proof.

bmh1 ◦ bmh2(B) {Definition of bmh1}
= {s : State, ss : P State⊥ | (s, ss ∪ {⊥}) ∈ bmh2(B) ∨ (s, ss) ∈ bmh2(B)}

{Definition of bmh2}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
(s, ss ∪ {⊥}) ∈

{
s : State, ss : P State⊥
| (s, ss) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)

}
∨

(s, ss) ∈
{

s : State, ss : P State⊥
| (s, ss) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)

}


{Property of sets}

=


s : State, ss : P State⊥∣∣∣∣∣∣
((s, ss ∪ {⊥}) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B))
∨
((s, ss) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B))


{Predicate calculus}

=

{
s : State, ss : P State⊥∣∣ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B) ∧ ((s, ss ∪ {⊥}) ∈ B ∨ (s, ss) ∈ B)

}

Lemma B.1.8

bmh2 ◦ bmh1(B)

=

{
s : State, ss : P State⊥∣∣ ((s, ss ∪ {⊥}) ∈ B ∨ (s, ss) ∈ B) ∧ ((s, ∅) ∈ B)⇒ (s, {⊥}) ∈ B)

}
Proof.

bmh2 ◦ bmh1(B) {Definition of bmh2}
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=

{
s : State, ss : P State⊥
| (s, ss) ∈ bmh1(B) ∧ ((s, {⊥}) ∈ bmh1(B)⇔ (s, ∅) ∈ bmh1(B))

}
{Definition of bmh1}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
(s, ss) ∈ {s : State, ss : P State⊥ | (s, ss ∪ {⊥}) ∈ B ∨ (s, ss) ∈ B}
∧ (s, {⊥}) ∈ {s : State, ss : P State⊥ | (s, ss ∪ {⊥}) ∈ B ∨ (s, ss) ∈ B}
⇔
(s, ∅) ∈ {s : State, ss : P State⊥ | (s, ss ∪ {⊥}) ∈ B ∨ (s, ss) ∈ B}




{Property of sets}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, ss ∪ {⊥}) ∈ B ∨ (s, ss) ∈ B)
∧ ((s, {⊥} ∪ {⊥}) ∈ B ∨ (s, {⊥}) ∈ B)
⇔
((s, ∅ ∪ {⊥}) ∈ B ∨ (s, ∅) ∈ B)




{Property of sets and predicate calculus}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, ss ∪ {⊥}) ∈ B ∨ (s, ss) ∈ B)
∧ (s, {⊥}) ∈ B
⇔
((s, {⊥}) ∈ B ∨ (s, ∅) ∈ B)




{Predicate calculus}

=

{
s : State, ss : P State⊥∣∣ ((s, ss ∪ {⊥}) ∈ B ∨ (s, ss) ∈ B) ∧ ((s, ∅) ∈ B)⇒ (s, {⊥}) ∈ B)

}

It can be conclued from Lemma B.1.8 and Lemma B.1.7 that the func-
tional application of bmh1 ◦ bmh2 is stronger than that of bmh2 ◦ bmh1.
The order in which these two healthiness conditions are functionally com-
posed is important, since they are not necessarily commutative. The follow-
ing counter-example illustrates the issue for a relation that is not BMH2-
healthy.

Counter-example 4

bmh2 ◦ bmh1({s : State, ss : P State⊥ | ss = {⊥}}) {Lemma B.1.8}
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= {s : State, ss : P State⊥ | ss = {⊥} ∨ ss = ∅}

bmh1 ◦ bmh2({s : State, ss : P State⊥ | ss = {⊥}}) {Lemma B.1.7}
= ∅

bmh2 and bmh3

Lemma B.1.9

bmh2 ◦ bmh3(B)

={
s : State, ss : P State⊥∣∣ ((s, ∅) ∈ B ∨ ⊥ /∈ ss) ∧ (s, ss) ∈ B ∧ ((s, ∅) ∈ B ⇒ (s, {⊥}) ∈ B)

}
Proof.

bmh2 ◦ bmh3(B) {Definition of bmh2}

=

{
s : State, ss : P State⊥∣∣ (s, ss) ∈ bmh3(B) ∧ ((s, {⊥}) ∈ bmh3(B)⇔ (s, ∅) ∈ bmh3(B))

}
{Definition of bmh3}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
(s, ss) ∈ {s : State, ss : P State⊥ | ((s, ∅) ∈ B ∨ ⊥ /∈ ss) ∧ (s, ss) ∈ B}
∧ (s, {⊥}) ∈ {s : State, ss : P State⊥ | ((s, ∅) ∈ B ∨ ⊥ /∈ ss) ∧ (s, ss) ∈ B}
⇔
(s, ∅) ∈ {s : State, ss : P State⊥ | ((s, ∅) ∈ B ∨ ⊥ /∈ ss) ∧ (s, ss) ∈ B}




{Property of sets}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
(((s, ∅) ∈ B ∨ ⊥ /∈ ss) ∧ (s, ss) ∈ B)
∧ (((s, ∅) ∈ B ∨ ⊥ /∈ {⊥}) ∧ (s, {⊥}) ∈ B)
⇔
(((s, ∅) ∈ B ∨ ⊥ /∈ ∅) ∧ (s, ∅) ∈ B)




{Property of sets and predicate calculus}
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=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
(((s, ∅) ∈ B ∨ ⊥ /∈ ss) ∧ (s, ss) ∈ B)
∧ ((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
⇔
((s, ∅) ∈ B)




{Predicate calculus}

=

{
s : State, ss : P State⊥∣∣ ((s, ∅) ∈ B ∨ ⊥ /∈ ss) ∧ (s, ss) ∈ B ∧ ((s, ∅) ∈ B ⇒ (s, {⊥}) ∈ B)

}

Lemma B.1.10

bmh3 ◦ bmh2(B)

={
s : State, ss : P State⊥∣∣ ((s, ∅) ∈ B ∨ ⊥ /∈ ss) ∧ (s, ss) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)

}
Proof.

bmh3 ◦ bmh2(B) {Definition of bmh3}

=

{
s : State, ss : P State⊥∣∣ ((s, ∅) ∈ bmh2(B) ∨ ⊥ /∈ ss) ∧ (s, ss) ∈ bmh2(B)

}
{Definition of bmh2(B)}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣

 (s, ∅) ∈
{

s : State, ss : P State⊥
| (s, ss) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)

}
∨ ⊥ /∈ ss


∧

(s, ss) ∈
{

s : State, ss : P State⊥
| (s, ss) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)

}


{Property of sets}

=


s : State, ss : P State⊥∣∣∣∣∣∣
(((s, ∅) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)) ∨ ⊥ /∈ ss)
∧
(s, ss) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)


{Predicate calculus}
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=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, ∅) ∈ B ∨ ⊥ /∈ ss)
∧
(((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B) ∨ ⊥ /∈ ss)
∧
(s, ss) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)


{Predicate calculus: absorption law}

=

{
s : State, ss : P State⊥∣∣ ((s, ∅) ∈ B ∨ ⊥ /∈ ss) ∧ (s, ss) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)

}

The functions bmh2 and bmh3 are not in general commutative. The fol-
lowing counter-example illustrates the issue for a relation that is not BMH2-
healthy.

Counter-example 5

bmh2 ◦ bmh3({s : State, ss : P State⊥ | ss = {⊥} ∨ ss = {s}})
{Lemma B.1.9}

= {s : State, ss : P State⊥ | ss = {s}}

bmh3 ◦ bmh2({s : State, ss : P State⊥ | ss = {⊥} ∨ ss = {s}})
{Lemma B.1.10}

= ∅

bmh1 and bmh3

Lemma B.1.11

bmh3 ◦ bmh1(B)

=
s : State, ss : P State⊥∣∣∣∣∣∣
((s, {⊥}) ∈ B ∨ (s, ∅) ∈ B ∨ ⊥ /∈ ss)
∧
((s, ss ∪ {⊥}) ∈ B ∨ (s, ss) ∈ B)
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Proof.

bmh3 ◦ bmh1(B) {Definition of bmh3}
= {s : State, ss : P State⊥ | ((s, ∅) ∈ bmh1(B) ∨ ⊥ /∈ ss) ∧ (s, ss) ∈ bmh1(B)}

{Definition of bmh1}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣

 (s, ∅) ∈ {s : State, ss : P State⊥ | (s, ss ∪ {⊥}) ∈ B ∨ (s, ss) ∈ B}
∨
⊥ /∈ ss


∧
(s, ss) ∈ {s : State, ss : P State⊥ | (s, ss ∪ {⊥}) ∈ B ∨ (s, ss) ∈ B}


{Property of sets}

=


s : State, ss : P State⊥∣∣∣∣∣∣
((s, {⊥}) ∈ B ∨ (s, ∅) ∈ B ∨ ⊥ /∈ ss)
∧
((s, ss ∪ {⊥}) ∈ B ∨ (s, ss) ∈ B)



Lemma B.1.12

bmh1 ◦ bmh3(B)

=
s : State, ss : P State⊥∣∣∣∣∣∣
((s, ∅) ∈ B ∧ ((s, ss ∪ {⊥}) ∈ B ∨ (s, ss) ∈ B))
∨
(⊥ /∈ ss ∧ (s, ss) ∈ B)


Proof.

bmh1 ◦ bmh3(B) {Definition of bmh1}
= {s : State, ss : P State⊥ | (s, ss ∪ {⊥}) ∈ bmh3(B) ∨ (s, ss) ∈ bmh3(B)}

{Definition of bmh3}
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=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
(s, ss ∪ {⊥}) ∈

{
s : State, ss : P State⊥
| ((s, ∅) ∈ B ∨ ⊥ /∈ ss) ∧ (s, ss) ∈ B

}
∨

(s, ss) ∈
{

s : State, ss : P State⊥
| ((s, ∅) ∈ B ∨ ⊥ /∈ ss) ∧ (s, ss) ∈ B

}


{Property of sets}

=


s : State, ss : P State⊥∣∣∣∣∣∣
(((s, ∅) ∈ B ∨ ⊥ /∈ (ss ∪ {⊥})) ∧ (s, ss ∪ {⊥}) ∈ B)
∨
(((s, ∅) ∈ B ∨ ⊥ /∈ ss) ∧ (s, ss) ∈ B)


{Property of sets and predicate calculus}

=


s : State, ss : P State⊥∣∣∣∣∣∣
((s, ∅) ∈ B ∧ ((s, ss ∪ {⊥}) ∈ B ∨ (s, ss) ∈ B))
∨
(⊥ /∈ ss ∧ (s, ss) ∈ B)


The functions bmh3 and bmh1 do not necessarily commute. The follow-

ing counter-example shows this for a relation that is not BMH3-healthy. In
fact, the functional application bmh3 ◦ bmh1 is not suitable as the counter-
example shows that we have a fixed point.

Counter-example 6
bmh3 ◦ bmh1({s : State, ss : P State⊥ | ss = {⊥, s} ∨ ss = {⊥}})

{Lemma B.1.11}
= {s : State, ss : P State⊥ | ss = {⊥, s} ∨ ss = {⊥}}

bmh1 ◦ bmh3({s : State, ss : P State⊥ | ss = {⊥, s} ∨ ss = {⊥}})
{Lemma B.1.12}

= ∅

bmh0,1,3,2

Lemma B.1.13 (bmh0,1,3,2-idempotent)
bmh0,1,3,2 ◦ bmh0,1,3,2(B) = bmh0,1,3,2(B)
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Proof.

bmh0,1,3,2 ◦ bmh0,1,3,2(B) {Definition of bmh0,1,3,2}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, ∅) ∈ bmh0,1,3,2(B) ∧ (s, {⊥}) ∈ bmh0,1,3,2(B))
∨ (s, {⊥}) /∈ bmh0,1,3,2(B) ∧ (s, ∅) /∈ bmh0,1,3,2(B)
∧
∃ ss0 •

(
(s, ss0) ∈ bmh0,1,3,2(B) ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)



{Law B.2.13 and Law B.2.14}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B ∧ (s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨ ¬ ((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B) ∧ ¬ ((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∧
∃ ss0 •

(
(s, ss0) ∈ bmh0,1,3,2(B) ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)



{Predicate calculus and definition of bmh0,1,3,2}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨

¬ ((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∧
∃ ss0 •

(s, ss0) ∈



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 •

(
(s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)



∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss






{Variable renaming and property of sets}
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=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨

¬ ((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∧
∃ ss0 •

((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss1 •

(
(s, ss1) ∈ B ∧ ss1 ⊆ ss0 ∧ ⊥ /∈ ss1 ∧ ⊥ /∈ ss0

)



∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss




{Predicate calculus}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨

(∃ ss0 • ((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B) ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss)
∨

∃ ss0 •


(s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss1 •

(
(s, ss1) ∈ B ∧ ss1 ⊆ ss0 ∧ ⊥ /∈ ss1 ∧ ⊥ /∈ ss0

)
∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss






{Predicate calculus: quantifier scope}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨

(((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B) ∧ ∃ ss0 • ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss)
∨

(s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧

∃ ss1, ss0 •
(

(s, ss1) ∈ B ∧ ss1 ⊆ ss0 ∧ ⊥ /∈ ss1 ∧ ⊥ /∈ ss0
∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)





{Predicate calculus: absorption law}
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=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣

((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨

(s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧

∃ ss1, ss0 •
(

(s, ss1) ∈ B ∧ ss1 ⊆ ss0 ∧ ⊥ /∈ ss1 ∧ ⊥ /∈ ss0
∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)



{Predicate calculus}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss1 •

(
(s, ss1) ∈ B ∧ ss1 ⊆ ss ∧ ⊥ /∈ ss1 ∧ ⊥ /∈ ss

)



{Definition of bmh0,1,3,2}

= bmh0,1,3,2(B)

Lemma B.1.14

bmh0,1,2 ◦ bmh0,1,3,2(B) = bmh0,1,3,2(B)

Proof.

bmh0,1,2 ◦ bmh0,1,3,2(B) {Definition of bmh0,1,2}

=


s : State, ss : P State⊥∣∣∣∣∣∣∣∣
∃ ss0 : P State⊥ •
((s, ss0) ∈ bmh0,1,3,2(B) ∨ (s, ss0 ∪ {⊥}) ∈ bmh0,1,3,2(B))
∧ ((s, {⊥}) ∈ bmh0,1,3,2(B)⇔ (s, ∅) ∈ bmh0,1,3,2(B))
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


{Law B.2.13 and Law B.2.14 and predicate calculus}

=


s : State, ss : P State⊥∣∣∣∣∣∣
∃ ss0 : P State⊥ •
((s, ss0) ∈ bmh0,1,3,2(B) ∨ (s, ss0 ∪ {⊥}) ∈ bmh0,1,3,2(B))
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


{Predicate calculus}
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=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
∃ ss0 : P State⊥ •

(
(s, ss0) ∈ bmh0,1,3,2(B)
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)

)
∨

∃ ss0 : P State⊥ •
(

(s, ss0 ∪ {⊥}) ∈ bmh0,1,3,2(B)
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)

)


{Law B.2.11 and Law B.2.12}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 : P State⊥ • (s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss


∨
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)


{Predicate calculus}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 : P State⊥ • (s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss




{Definition of bmh0,1,3,2(B)}

= bmh0,1,3,2(B)

B.2 Auxiliary lemmas
Lemma B.2.1 Provided B0 and B1 are BMH0 and BMH1-healthy.

(B0 ; BM⊥ B2) tBM⊥ (B1 ; BM⊥ B2) vBM⊥ ((B0 tBM⊥ B1) ; BM⊥ B2)
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Proof.

((B0 tBM⊥ B1) ; BM⊥ B2)

{Assumption: B0 and B1 are BMH0-healthy and Law 4.5.7}

=


{s0 : State, ss0 : P State⊥ | (s0, State⊥) ∈ (B0 tBM⊥ B1)}
∪{

s0 : State, ss0 : P State⊥
| (s0, {s1 : State | (s1, ss0) ∈ B2}) ∈ (B0 tBM⊥ B1)

}


{Definition of tBM⊥}

=


{s0 : State, ss0 : P State⊥ | (s0, State⊥) ∈ (B0 ∩ B1)}
∪{

s0 : State, ss0 : P State⊥
| (s0, {s1 : State | (s1, ss0) ∈ B2}) ∈ (B0 ∩ B1)

}

{Property of sets}

=


{s0 : State, ss0 : P State⊥ | (s0, State⊥) ∈ B0 ∧ (s0, State⊥) ∈ B1}
∪s0 : State, ss0 : P State⊥

∣∣∣∣∣∣
(s0, {s1 : State | (s1, ss0) ∈ B2}) ∈ B0

∧
(s0, {s1 : State | (s1, ss0) ∈ B2}) ∈ B1




{Property of sets}

=



s0 : State, ss0 : P State⊥∣∣∣∣∣∣∣∣∣∣
((s0, State⊥) ∈ B0 ∧ (s0, State⊥) ∈ B1)
∨ (s0, {s1 : State | (s1, ss0) ∈ B2}) ∈ B0

∧
(s0, {s1 : State | (s1, ss0) ∈ B2}) ∈ B1




{Predicate calculus}
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=



s0 : State, ss0 : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

 (s0, State⊥) ∈ B0

∨
(s0, {s1 : State | (s1, ss0) ∈ B2}) ∈ B0


∧ (s0, State⊥) ∈ B0

∨
(s0, {s1 : State | (s1, ss0) ∈ B2}) ∈ B1


∧ (s0, State⊥) ∈ B1

∨
(s0, {s1 : State | (s1, ss0) ∈ B2}) ∈ B0


∧ (s0, State⊥) ∈ B1

∨
(s0, {s1 : State | (s1, ss0) ∈ B2}) ∈ B1




{Assumption: B0 and B1 are BMH1-healthy and BMH0-healthy}

=



s0 : State, ss0 : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

 ((s0, State⊥) ∈ B0 ∧ (s0, State) ∈ B0)
∨
((s0, {s1 : State | (s1, ss0) ∈ B2}) ∈ B0 ∧ (s0, State) ∈ B0)


∧ ((s0, State⊥) ∈ B0 ∧ (s0, State) ∈ B0)
∨
((s0, {s1 : State | (s1, ss0) ∈ B2}) ∈ B1 ∧ (s0, State) ∈ B1)


∧ ((s0, State⊥) ∈ B1 ∧ (s0, State) ∈ B1)
∨
((s0, {s1 : State | (s1, ss0) ∈ B2}) ∈ B0 ∧ (s0, State) ∈ B0)


∧ ((s0, State⊥) ∈ B1 ∧ (s0, State) ∈ B1)
∨
((s0, {s1 : State | (s1, ss0) ∈ B2}) ∈ B1 ∧ (s0, State) ∈ B1)




{Predicate calculus}
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=



s0 : State, ss0 : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(s0, State) ∈ B0 ∧ (s0, State) ∈ B1

∧
((s0, State⊥) ∈ B0 ∨ (s0, {s1 : State | (s1, ss0) ∈ B2}) ∈ B0)
∧ ((s0, State⊥) ∈ B0 ∧ (s0, State) ∈ B0)
∨
((s0, {s1 : State | (s1, ss0) ∈ B2}) ∈ B1 ∧ (s0, State) ∈ B1)


∧ ((s0, State⊥) ∈ B1 ∧ (s0, State) ∈ B1)
∨
((s0, {s1 : State | (s1, ss0) ∈ B2}) ∈ B0 ∧ (s0, State) ∈ B0)


∧
((s0, State⊥) ∈ B1 ∨ (s0, {s1 : State | (s1, ss0) ∈ B2}) ∈ B1)


{Property of sets and predicate calculus}

wBM⊥


s0 : State, ss0 : P State⊥∣∣∣∣∣∣
((s0, State⊥) ∈ B0 ∨ (s0, {s1 : State | (s1, ss0) ∈ B2}) ∈ B0)
∧
((s0, State⊥) ∈ B1 ∨ (s0, {s1 : State | (s1, ss0) ∈ B2}) ∈ B1)


{Property of sets}

=


{

s0 : State, ss0 : P State⊥∣∣ ((s0, State⊥) ∈ B0 ∨ (s0, {s1 : State | (s1, ss0) ∈ B2}) ∈ B0)

}
∩{

s0 : State, ss0 : P State⊥∣∣ ((s0, State⊥) ∈ B1 ∨ (s0, {s1 : State | (s1, ss0) ∈ B2}) ∈ B1)

}


{Assumption: B0 and B1 are BMH0-healthy and Law 4.5.7}
= (B0 ; BM⊥ B2) ∩ (B1 ; BM⊥ B2) {Definition of tBM⊥}
= (B0 ; BM⊥ B2) tBM⊥ (B1 ; BM⊥ B2)

BMH0
Law B.2.1 Provided B is BMH0-healthy.(

∃ s0 : State, ss0, ss1 : P State⊥
• ((s0, ss0) ∈ B ∧ ss0 ⊆ ss1 ∧ ⊥ ∈ ss0 ∧ ⊥ ∈ ss1)

)
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=

(∃ s0 : State, ss1 : P State⊥ • (s0, ss1) ∈ B ∧ ⊥ ∈ ss1)

Proof. (Implication)(
∃ s0 : State, ss0, ss1 : P State⊥
• ((s0, ss0) ∈ B ∧ ss0 ⊆ ss1 ∧ ⊥ ∈ ss0 ∧ ⊥ ∈ ss1)

)
{Assumption: B is BMH0-healthy}

=

(
∃ s0 : State, ss0, ss1 : P State⊥
• ((s0, ss0) ∈ B ∧ ss0 ⊆ ss1 ∧ ⊥ ∈ ss0 ∧ ⊥ ∈ ss1 ∧ (s0, ss1) ∈ B)

)
{Propositional calculus}

⇒ ∃ s0 : State, ss1 : P State⊥ • (⊥ ∈ ss1 ∧ (s0, ss1) ∈ B)

Proof. (Reverse implication)

∃ s0 : State, ss1 : P State⊥ • (⊥ ∈ ss1 ∧ (s0, ss1) ∈ B)

{Propositional calculus: introduce fresh variable}

=

(
∃ s0 : State, ss0, ss1 : P State⊥ •
(⊥ ∈ ss1 ∧ (s0, ss1) ∈ B ∧ ss0 = ss1 ∧ (s0, ss0) ∈ B ∧ ⊥ ∈ ss0)

)
{Propositional calculus: weaken predicate}

⇒
(
∃ s0 : State, ss0, ss1 : P State⊥ •
(⊥ ∈ ss1 ∧ (s0, ss1) ∈ B ∧ ss0 ⊆ ss1 ∧ (s0, ss0) ∈ B ∧ ⊥ ∈ ss0)

)

bmh0,1,2

Law B.2.2

bmh0,1,2(B)

=
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s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((s, {⊥}) ∈ B ∧ (s, ∅) ∈ B)
∨

((s, {⊥}) /∈ B ∧ (s, ∅) /∈ B)
∧ (((s, ac′) ∈ B ; ac ⊆ ss) ∧ ⊥ /∈ ss)
∨
((s, ac′ ∪ {⊥}) ; ac ⊆ ss)





Proof.

bmh0,1,2(B) {Definition of bmh0,1,2}

=


s : State, ss : P State⊥∣∣∣∣∣∣
∃ ss0 • ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


{Predicate calculus}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧

(
∃ ss0 • (s, ss0) ∈ B
∧ ss0 ⊆ ss ∧ ⊥ ∈ ss0 ∧ ⊥ ∈ ss

)
∨(
∃ ss0 • (s, ss0) ∈ B
∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)
∨(
∃ ss0 • (s, ss0 ∪ {⊥}) ∈ B
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)

)





{Lemma B.3.1}
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=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧

(
∃ ss0 • (s, ss0) ∈ B
∧ ss0 ⊆ ss ∧ ⊥ ∈ ss0 ∧ ⊥ ∈ ss

)
∨(
∃ ss0 • (s, ss0) ∈ B
∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)
∨(
∃ ss0 • (s, ss0) ∈ B
∧ ss0 ⊆ (ss ∪ {⊥}) ∧ ⊥ ∈ ss0

)





{Property of sets}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧

(
∃ ss0 • (s, ss0) ∈ B
∧ ss0 ⊆ (ss ∪ {⊥}) ∧ ⊥ ∈ ss0 ∧ ⊥ ∈ ss

)
∨(
∃ ss0 • (s, ss0) ∈ B
∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)
∨(
∃ ss0 • (s, ss0) ∈ B
∧ ss0 ⊆ (ss ∪ {⊥}) ∧ ⊥ ∈ ss0

)




{Predicate calculus: absorption law}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧
(
∃ ss0 • (s, ss0) ∈ B
∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)
∨(
∃ ss0 • (s, ss0) ∈ B
∧ ss0 ⊆ (ss ∪ {⊥}) ∧ ⊥ ∈ ss0

)



{Property of sets}
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=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧
(
∃ ss0 • (s, ss0) ∈ B
∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)
∨(
∃ ss0 • (s, ss0) ∈ B
∧ (ss0 \ {⊥}) ⊆ ss ∧ ⊥ ∈ ss0

)



{Introduce fresh variable}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧
(
∃ ss0 • (s, ss0) ∈ B
∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)
∨(
∃ t, ss0 • (s, ss0) ∈ B
∧ t = (ss0 \ {⊥}) ∧ t ⊆ ss ∧ ⊥ ∈ ss0

)



{Lemma B.3.2}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧
(
∃ ss0 • (s, ss0) ∈ B
∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)
∨(
∃ t, ss0 • (s, ss0) ∈ B
∧ (t ∪ {⊥}) = ss0 ∧ t ⊆ ss ∧ ⊥ /∈ t

)



{One-point rule}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ (

∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss
)

∨(
∃ t • (s, t ∪ {⊥}) ∈ B ∧ t ⊆ ss ∧ ⊥ /∈ t

)



{Type: ⊥ /∈ ss0, t}
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=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ (∃ ss0 : P State • (s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss)
∨
(∃ t : P State • (s, t ∪ {⊥}) ∈ B ∧ t ⊆ ss)




{Variable renaming and substitution}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ (∃ ss0 : P State • (s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss)
∨
(∃ t : P State • (s, t ∪ {⊥}) ∈ B ∧ t ⊆ ss)




{Predicate calculus}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣

 ((s, {⊥}) ∈ B ∧ (s, ∅) ∈ B)
∨
((s, {⊥}) /∈ B ∧ (s, ∅) /∈ B)


∧ (∃ ss0 : P State • (s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss)
∨
(∃ t : P State • (s, t ∪ {⊥}) ∈ B ∧ t ⊆ ss)




{Instatiation: consider case where t = ∅}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

 ((s, {⊥}) ∈ B ∧ (s, ∅) ∈ B)
∨
((s, {⊥}) /∈ B ∧ (s, ∅) /∈ B)


∧

(∃ ss0 : P State • (s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss)
∨
(∃ t : P State • (s, t ∪ {⊥}) ∈ B ∧ t ⊆ ss)
∨
(s, ∅) ∈ B




{Predicate calculus: absorption law and distribution}
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=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((s, {⊥}) ∈ B ∧ (s, ∅) ∈ B)
∨

((s, {⊥}) /∈ B ∧ (s, ∅) /∈ B)
∧

(∃ ss0 : P State • (s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss)
∨
(∃ t : P State • (s, t ∪ {⊥}) ∈ B ∧ t ⊆ ss)
∨
(s, ∅) ∈ B






{Instatiation: consider case where t = ∅}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((s, {⊥}) ∈ B ∧ (s, ∅) ∈ B)
∨

((s, {⊥}) /∈ B ∧ (s, ∅) /∈ B)
∧ (∃ ss0 : P State • (s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss)
∨
(∃ t : P State • (s, t ∪ {⊥}) ∈ B ∧ t ⊆ ss)





{Variable renaming and definition of sequential composition}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((s, {⊥}) ∈ B ∧ (s, ∅) ∈ B)
∨

((s, {⊥}) /∈ B ∧ (s, ∅) /∈ B)
∧ (((s, ac′) ∈ B ; ac ⊆ ss) ∧ ⊥ /∈ ss)
∨
((s, ac′ ∪ {⊥}) ; ac ⊆ ss)






Law B.2.3

(s, ss) ∈ bmh0,1,2(B) =

Proof.

(s, ss) ∈ bmh0,1,2(B) {Definition of bmh0,1,2(B)}
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= (s, ss) ∈


s : State, ss : P State⊥∣∣∣∣∣∣
∃ ss0 • ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


{Property of sets}

=


((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧

∃ ss0 •
(

((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)

)


Law B.2.4

∃ ss1 • (s, ss1) ∈ bmh0,1,2(B) ∧ ss1 ⊆ ss ∧ (⊥ ∈ ss1 ⇔ ⊥ ∈ ss)
= ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧
∃ ss0 • ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B) ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


Proof.

∃ ss1 • (s, ss1) ∈ bmh0,1,2(B) ∧ ss1 ⊆ ss ∧ (⊥ ∈ ss1 ⇔ ⊥ ∈ ss)

{Definition of bmh0,1,2}

= ∃ ss1 •

 (s, ss1) ∈


s : State, ss : P State⊥∣∣∣∣∣∣
∃ ss0 • ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


∧ ss1 ⊆ ss ∧ (⊥ ∈ ss1 ⇔ ⊥ ∈ ss)


{Property of sets}

= ∃ ss1 •


 ∃ ss0 • ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ ss0 ⊆ ss1 ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss1)


∧ ss1 ⊆ ss ∧ (⊥ ∈ ss1 ⇔ ⊥ ∈ ss)


{Predicate calculus: quantifier scope}
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=


((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧

∃ ss1 •

 (
∃ ss0 • ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧ ss0 ⊆ ss1 ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss1)

)
∧ ss1 ⊆ ss ∧ (⊥ ∈ ss1 ⇔ ⊥ ∈ ss)




{Predicate calculus}

=



((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧
∃ ss0, ss1 •

 (s, ss0) ∈ B
∧ ss0 ⊆ ss1 ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss1)
∧ ss1 ⊆ ss ∧ (⊥ ∈ ss1 ⇔ ⊥ ∈ ss)


∨

∃ ss0, ss1 •

 (s, ss0 ∪ {⊥}) ∈ B
∧ ss0 ⊆ ss1 ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss1)
∧ ss1 ⊆ ss ∧ (⊥ ∈ ss1 ⇔ ⊥ ∈ ss)






{Predicate calculus}

=


((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ ∃ ss0 • ((s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss))
∨
∃ ss0 • ((s, ss0 ∪ {⊥}) ∈ B ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss))




{Predicate calculus}

=

 ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧
∃ ss0 • ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B) ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)



Law B.2.5

(s, ∅) ∈ bmh0,1,2(B) = (s, ∅) ∈ B ∧ (s, {⊥}) ∈ B

Proof.

(s, ∅) ∈ bmh0,1,2(B) {Definition of bmh0,1,2}
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= (s, ∅) ∈


s : State, ss : P State⊥∣∣∣∣∣∣
∃ ss0 • ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


{Property of sets}

=

 ∃ ss0 • ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ ss0 ⊆ ∅ ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ∅)

 {Predicate calculus}

=

 ∃ ss0 • ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ ss0 ⊆ ∅ ∧ ⊥ /∈ ss0


{Case analysis on ss0 and one-point rule}

= ((s, ∅) ∈ B ∨ (s, ∅ ∪ {⊥}) ∈ B) ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
{Property of sets and predicate calculus}

= (s, {⊥}) ∈ B ∧ (s, ∅) ∈ B

Law B.2.6

(s, {⊥}) ∈ bmh0,1,2(B) = (s, ∅) ∈ B ∧ (s, {⊥}) ∈ B

Proof.

(s, {⊥}) ∈ bmh0,1,2(B) {Definition of bmh0,1,2}

= (s, {⊥}) ∈


s : State, ss : P State⊥∣∣∣∣∣∣
∃ ss0 • ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


{Property of sets}

=

 ∃ ss0 • ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ ss0 ⊆ {⊥} ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ {⊥})

 {Predicate calculus}

=

 ∃ ss0 • ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ ss0 ⊆ {⊥} ∧ ⊥ ∈ ss0


{Case analysis on ss0 and one-point rule}
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= ((s, {⊥}) ∈ B ∨ (s, {⊥} ∪ {⊥}) ∈ B) ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
{Property of sets and predicate calculus}

= (s, {⊥}) ∈ B ∧ (s, ∅) ∈ B

Law B.2.7

B1 ⊆ B0

⇔

∀ s : State, ss : P State •

 (s, ss) ∈ B1 ⇒ (s, ss) ∈ B0

∧
(s, ss ∪ {⊥}) ∈ B1 ⇒ (s, ss ∪ {⊥}) ∈ B0


Proof.

B1 ⊆ B0 {Definition of subset inclusion}
⇔ ∀ s : State, ss : P State⊥ • (s, ss) ∈ B1 ⇒ (s, ss) ∈ B0

{Predicate calculus}
⇔ ∀ s : State, ss : P State⊥ • ((s, ss) ∈ B1 ⇒ (s, ss) ∈ B0) ∧ (⊥ ∈ ss ∨ ⊥ /∈ ss)

{Predicate calculus}

⇔ ∀ s : State, ss : P State⊥ •

 (⊥ ∈ ss ⇒ ((s, ss) ∈ B1 ⇒ (s, ss) ∈ B0))
∧
(⊥ /∈ ss ⇒ ((s, ss) ∈ B1 ⇒ (s, ss) ∈ B0))


{Introduce fresh variable}

⇔


∀ s : State, ss : P State⊥ •
 (∃ t : P State⊥ • ⊥ ∈ ss ∧ t = ss \ {⊥})
⇒
((s, ss) ∈ B1 ⇒ (s, ss) ∈ B0)


∧
(⊥ /∈ ss ⇒ ((s, ss) ∈ B1 ⇒ (s, ss) ∈ B0))




{Lemma B.3.2}
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⇔


∀ s : State, ss : P State⊥ •
 (∃ t : P State⊥ • ⊥ /∈ t ∧ ss = t ∪ {⊥})
⇒
((s, ss) ∈ B1 ⇒ (s, ss) ∈ B0)


∧
(⊥ /∈ ss ⇒ ((s, ss) ∈ B1 ⇒ (s, ss) ∈ B0))




{Predicate calculus: quantifier scope}

⇔


∀ s : State; ss, t : P State⊥ • ((⊥ /∈ t ∧ ss = t ∪ {⊥})⇒ ((s, ss) ∈ B1 ⇒ (s, ss) ∈ B0))
∧
(⊥ /∈ ss ⇒ ((s, ss) ∈ B1 ⇒ (s, ss) ∈ B0))




{Predicate calculus}

⇔


∀ s : State; ss, t : P State⊥ • (⊥ /∈ t ⇒ (ss = t ∪ {⊥} ⇒ ((s, ss) ∈ B1 ⇒ (s, ss) ∈ B0))
∧
(⊥ /∈ ss ⇒ ((s, ss) ∈ B1 ⇒ (s, ss) ∈ B0))




{Variable renaming}

⇔


∀ s : State; ss, t : P State⊥ • (⊥ /∈ t ⇒ (ss = t ∪ {⊥} ⇒ ((s, ss) ∈ B1 ⇒ (s, ss) ∈ B0))
∧
(⊥ /∈ t ⇒ ((s, t) ∈ B1 ⇒ (s, t) ∈ B0))




{Predicate calculus: quantifier scope}

⇔


∀ s : State, t : P State⊥ •

(⊥ /∈ t ⇒ ∀ ss : P State⊥ •

 (ss = t ∪ {⊥})
⇒
((s, ss) ∈ B1 ⇒ (s, ss) ∈ B0)


∧
(⊥ /∈ t ⇒ ((s, t) ∈ B1 ⇒ (s, t) ∈ B0))




{Predicate calculus}

⇔


∀ s : State, t : P State⊥ • (⊥ /∈ t ⇒ ((s, t ∪ {⊥}) ∈ B1 ⇒ (s, t ∪ {⊥}) ∈ B0))
∧
(⊥ /∈ t ⇒ ((s, t) ∈ B1 ⇒ (s, t) ∈ B0))




{Predicate calculus}
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⇔ ∀ s : State, t : P State •

 (s, t ∪ {⊥}) ∈ B1 ⇒ (s, t ∪ {⊥}) ∈ B0

∧
(s, t) ∈ B1 ⇒ (s, t) ∈ B0



bmh0,1,3

Law B.2.8

bmh0 ◦ bmh1 ◦ bmh3(B)

=

s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
∃ ss0 •

 ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧
(s, ∅) ∈ B ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


∨
∃ ss0 • ((s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss)


Proof.

bmh0 ◦ bmh1 ◦ bmh3(B) {Definition of bmh0 ◦ bmh1}

=


s : State, ss : P State⊥∣∣∣∣ ∃ ss0 • ((s, ss0) ∈ bmh3(B) ∨ (s, ss0 ∪ {⊥}) ∈ bmh3(B))
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


{Definition of bmh3}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣
∃ ss0 •


(s, ss0) ∈

{
s : State, ss : P State⊥
| ((s, ∅) ∈ B ∨ ⊥ /∈ ss) ∧ (s, ss) ∈ B

}
∨

(s, ss0 ∪ {⊥}) ∈
{

s : State, ss : P State⊥
| ((s, ∅) ∈ B ∨ ⊥ /∈ ss) ∧ (s, ss) ∈ B

}


∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


{Property of sets}
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=


s : State, ss : P State⊥∣∣∣∣∣∣∣∣
∃ ss0 •

 (((s, ∅) ∈ B ∨ ⊥ /∈ ss0) ∧ (s, ss0) ∈ B)
∨
(((s, ∅) ∈ B ∨ ⊥ /∈ (ss0 ∪ {⊥})) ∧ (s, ss0 ∪ {⊥}) ∈ B)


∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


{Property of sets and predicate calculus}

=


s : State, ss : P State⊥∣∣∣∣∣∣∣∣
∃ ss0 •

 (((s, ∅) ∈ B ∨ ⊥ /∈ ss0) ∧ (s, ss0) ∈ B)
∨
(((s, ∅) ∈ B ∨ false) ∧ (s, ss0 ∪ {⊥}) ∈ B)


∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


{Predicate calculus}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣
∃ ss0 •


((s, ∅) ∈ B ∧ (s, ss0) ∈ B)
∨
(⊥ /∈ ss0 ∧ (s, ss0) ∈ B)
∨
((s, ∅) ∈ B ∧ (s, ss0 ∪ {⊥}) ∈ B)


∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


{Predicate calculus}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
∃ ss0 •

 ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧
(s, ∅) ∈ B ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


∨
∃ ss0 • (⊥ /∈ ss0 ∧ (s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss))


{Predicate calculus}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
∃ ss0 •

 ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧
(s, ∅) ∈ B ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


∨
∃ ss0 • ((s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss)
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Law B.2.9

∃ ss0 •

 ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧
ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


=

∃ ss0 •

 ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧
ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)

 ∨ (s, {⊥}) ∈ B

Proof.

∃ ss0 •

 ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧
ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)

 {Predicate calculus}

=

 ∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)
∨
∃ ss0 • (s, ss0 ∪ {⊥}) ∈ B ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


{Instantiation of existential quantification for ss0 = {⊥} and ss0 = ∅}

=



∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)
∨
∃ ss0 • (s, ss0 ∪ {⊥}) ∈ B ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)
∨
((s, {⊥} ∪ {⊥}) ∈ B ∧ {⊥} ⊆ ss ∧ (⊥ ∈ {⊥} ⇔ ⊥ ∈ ss))
∨
((s, ∅ ∪ {⊥}) ∈ B ∧ ∅ ⊆ ss ∧ (⊥ ∈ ∅ ⇔ ⊥ ∈ ss))


{Property of sets}

=



∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)
∨
∃ ss0 • (s, ss0 ∪ {⊥}) ∈ B ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)
∨
((s, {⊥}) ∈ B ∧ {⊥} ⊆ ss ∧ ⊥ ∈ ss)
∨
((s, {⊥}) ∈ B ∧ ⊥ /∈ ss)


{Lemma B.3.3 and predicate calculus}
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=



∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)
∨
∃ ss0 • (s, ss0 ∪ {⊥}) ∈ B ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)
∨
((s, {⊥}) ∈ B ∧ ⊥ ∈ ss)
∨
((s, {⊥}) ∈ B ∧ ⊥ /∈ ss)


{Predicate calculus}

= ∃ ss0 •

 ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧
ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)

 ∨ (s, {⊥}) ∈ B

bmh0,1,3,2

Law B.2.10

(s, ss) ∈ bmh0,1,3,2(B)

=
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 • ((s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss)




Proof.

(s, ss) ∈ bmh0,1,3,2(B) {Definition of bmh0,1,3,2}

= (s, ss) ∈



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 • ((s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss)




{Property of sets}
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=


((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 • ((s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss)




Law B.2.11

∃ ss1 : P State⊥ • (s, ss1 ∪ {⊥}) ∈ bmh0,1,3,2(B) ∧ ss1 ⊆ ss ∧ (⊥ ∈ ss1 ⇔ ⊥ ∈ ss)
⇔
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)

Proof.

∃ ss1 : P State⊥ • (s, ss1 ∪ {⊥}) ∈ bmh0,1,3,2(B) ∧ ss1 ⊆ ss ∧ (⊥ ∈ ss1 ⇔ ⊥ ∈ ss)
{Definition of bmh0,1,3,2}

⇔



∃ ss1 : P State⊥ •

(s, ss1 ∪ {⊥}) ∈



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 • ((s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss)




∧
ss1 ⊆ ss ∧ (⊥ ∈ ss1 ⇔ ⊥ ∈ ss)


{Property of sets}

⇔



∃ ss1 : P State⊥ •
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨

(s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧

∃ ss0 : P State⊥ •
(

(s, ss0) ∈ B ∧ ss0 ⊆ (ss1 ∪ {⊥})
∧ ⊥ /∈ ss0 ∧ ⊥ /∈ (ss1 ∪ {⊥})

)



∧
ss1 ⊆ ss ∧ (⊥ ∈ ss1 ⇔ ⊥ ∈ ss)


{Property of sets and predicate calculus}
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⇔
(
∃ ss1 : P State⊥ •
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B) ∧ ss1 ⊆ ss ∧ (⊥ ∈ ss1 ⇔ ⊥ ∈ ss)

)
{Predicate calculus: instatiation of existential quantifier for ss1 = ss}

⇔ ((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)

Law B.2.12

∃ ss1 : P State⊥ • (s, ss1) ∈ bmh0,1,3,2(B) ∧ ss1 ⊆ ss ∧ (⊥ ∈ ss1 ⇔ ⊥ ∈ ss)
⇔

((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 : P State⊥ • (s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss




Proof.

∃ ss1 : P State⊥ • (s, ss1) ∈ bmh0,1,3,2(B) ∧ ss1 ⊆ ss ∧ (⊥ ∈ ss1 ⇔ ⊥ ∈ ss)

{Definition of bmh0,1,3,2}

⇔



∃ ss1 : P State⊥ •

(s, ss1) ∈



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 • ((s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss)




∧
ss1 ⊆ ss ∧ (⊥ ∈ ss1 ⇔ ⊥ ∈ ss)


{Property of sets}
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⇔



∃ ss1 : P State⊥ •
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 • ((s, ss0) ∈ B ∧ ss0 ⊆ ss1 ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss1)




∧
ss1 ⊆ ss ∧ (⊥ ∈ ss1 ⇔ ⊥ ∈ ss)


{Predicate calculus}

⇔



(
∃ ss1 : P State⊥ • ((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∧ ss1 ⊆ ss ∧ (⊥ ∈ ss1 ⇔ ⊥ ∈ ss)

)
∨

(s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧ ∃ ss0, ss1 : P State⊥ • (s, ss0) ∈ B ∧ ss0 ⊆ ss1
∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss1
∧ ss1 ⊆ ss ∧ (⊥ ∈ ss1 ⇔ ⊥ ∈ ss)





{Predicate calculus}

⇔



(
∃ ss1 : P State⊥ • ((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∧ ss1 ⊆ ss ∧ (⊥ ∈ ss1 ⇔ ⊥ ∈ ss)

)
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 : P State⊥ • (s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss




{Predicate calculus: instatiation of existential quantifier for ss1 = ss}

⇔


((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 : P State⊥ • (s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss




Law B.2.13

(s, ∅) ∈ bmh0,1,3,2(B) = (s, ∅) ∈ B ∧ (s, {⊥}) ∈ B
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Proof.

(s, ∅) ∈ bmh0,1,3,2(B) {Definition of bmh0,1,3,2}

= (s, ∅) ∈



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 •

(
(s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)



{Property of sets}

=


((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 •

(
(s, ss0) ∈ B ∧ ss0 ⊆ ∅ ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ∅

)



{Property of sets and one-point rule}

=

 ((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨
((s, {⊥}) /∈ B ∧ (s, ∅) /∈ B ∧ (s, ∅) ∈ B)

 {Predicate calculus}

= (s, ∅) ∈ B ∧ (s, {⊥}) ∈ B

Law B.2.14

(s, {⊥}) ∈ bmh0,1,3,2(B) = (s, ∅) ∈ B ∧ (s, {⊥}) ∈ B

Proof.

(s, {⊥}) ∈ bmh0,1,3,2(B) {Definition of bmh0,1,3,2}

= (s, {⊥}) ∈



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 •

(
(s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)



{Property of sets}
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=


((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 •

(
(s, ss0) ∈ B ∧ ss0 ⊆ {⊥} ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ {⊥}

)



{Property of sets}

=

 ((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨
((s, {⊥}) /∈ B ∧ (s, ∅) /∈ B ∧ false)

 {Predicate calculus}

= (s, ∅) ∈ B ∧ (s, {⊥}) ∈ B

Law B.2.15 Provided B is BMH0 and BMH2-healthy.

B = (B −B {ss : P State⊥ | ⊥ ∈ ss}) ∪ {s0 : State, ss : P State⊥ | (s0, ∅) ∈ B}
⇔
BMH3

Proof.

B = (B −B {ss : P State⊥ | ⊥ ∈ ss}) ∪ {s0 : State, ss : P State⊥ | (s0, ∅) ∈ B}

{Property of sets}
⇔ (B = {s : State, ss : State⊥ | ((s, ss) ∈ B ∧ ⊥ /∈ ss) ∨ (s, ∅) ∈ B})

{Property of sets}

⇔ ∀ s, ss •

 (s, ss) ∈ B ⇒ (((s, ss) ∈ B ∧ ⊥ /∈ ss) ∨ (s, ∅) ∈ B)
∧
((((s, ss) ∈ B ∧ ⊥ /∈ ss) ∨ (s, ∅) ∈ B)⇒ (s, ss) ∈ B)


{Propositional calculus}

⇔ ∀ s, ss •

 ((s, ∅) /∈ B ⇒ ((s, ss) /∈ B ∨ ((s, ss) ∈ B ∧ ⊥ /∈ ss)))
∧
((((s, ss) /∈ B ∨ ⊥ ∈ ss) ∧ (s, ∅) /∈ B) ∨ (s, ss) ∈ B)


{Propositional calculus: absorption law}
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⇔ ∀ s, ss •

 ((s, ∅) /∈ B ⇒ ((s, ss) /∈ B ∨ ⊥ /∈ ss))
∧
((s, ∅) /∈ B ∨ (s, ss) ∈ B)


{Propositional calculus}

⇔

 ∀ s, ss • (s, ∅) /∈ B ⇒ ((s, ss) ∈ B ⇒ ⊥ /∈ ss)
∧
∀ s, ss • (s, ∅) ∈ B ⇒ (s, ss) ∈ B


{Propositional calculus: introduce term}

⇔

 ∀ s, ss • (s, ∅) /∈ B ⇒ ((s, ss) ∈ B ⇒ ⊥ /∈ ss)
∧
∀ s, ss • (s, ∅) ∈ B ⇒ ((s, ss) ∈ B ∨ (⊥ ∈ ss ∧ ⊥ /∈ ss))


{Propositional calculus}

⇔


∀ s, ss • (s, ∅) /∈ B ⇒ ((s, ss) ∈ B ⇒ ⊥ /∈ ss)
∧
∀ s, ss • (s, ∅) ∈ B ⇒ ((s, ss) ∈ B ∨ ⊥ ∈ ss)
∧
∀ s, ss • (s, ∅) ∈ B ⇒ ((s, ss) ∈ B ∨ ⊥ /∈ ss)


{Propositional calculus}

⇔


∀ s, ss • (s, ∅) /∈ B ⇒ ((s, ss) ∈ B ⇒ ⊥ /∈ ss)
∧
∀ s, ss • ((s, ∅) ∈ B ∧ ⊥ /∈ ss)⇒ (s, ss) ∈ B
∧
∀ s, ss • ((s, ∅) ∈ B ∧ ⊥ ∈ ss)⇒ (s, ss) ∈ B

 {Property of sets}

⇔


∀ s, ss • (s, ∅) /∈ B ⇒ ((s, ss) ∈ B ⇒ ⊥ /∈ ss)
∧
∀ s, ss • ((s, ∅) ∈ B ∧ ∅ ⊆ ss ∧ ⊥ /∈ ∅ ∧ ⊥ /∈ ss)⇒ (s, ss) ∈ B
∧
∀ s, ss • ((s, ∅) ∈ B ∧ ⊥ ∈ ss)⇒ (s, ss) ∈ B


{Assumption: B is BMH2-healthy and Lemma B.3.3}
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⇔


∀ s, ss • (s, ∅) /∈ B ⇒ ((s, ss) ∈ B ⇒ ⊥ /∈ ss)
∧
∀ s, ss • ((s, ∅) ∈ B ∧ ∅ ⊆ ss ∧ ⊥ /∈ ∅ ∧ ⊥ /∈ ss)⇒ (s, ss) ∈ B
∧
∀ s, ss • ((s, {⊥}) ∈ B ∧ {⊥} ⊆ ss ∧ ⊥ ∈ {⊥} ∧ ⊥ ∈ ss)⇒ (s, ss) ∈ B


{Assumption: B is BMH0-healthy}

⇔ ∀ s, ss • (s, ∅) /∈ B ⇒ ((s, ss) ∈ B ⇒ ⊥ /∈ ss)
{Propositional calculus: move quantifier}

⇔ ∀ s • (s, ∅) /∈ B ⇒ ∀ ss • ((s, ss) ∈ B ⇒ ⊥ /∈ ss)
{Definition of BMH3}

⇔ BMH3

bmb2bm
Law B.2.16

bm2bmb(bmhupclosed(B))

=
s : State, ss : P State⊥∣∣∣∣∣∣
∃ ss0 • (s, ss0) ∈ B ∧ ⊥ /∈ ss0 ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss
∨
(s, ∅) ∈ B


Proof.

bm2bmb(bmhupclosed(B)) {Definition of bm2bmb}

=

{
s : State, ss : P State⊥
| ((s, ss) ∈ bmhupclosed(B) ∧ ⊥ /∈ ss) ∨ (s, ∅) ∈ bmhupclosed(B)

}
{Definition of bmhupclosed}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣

(
(s, ss) ∈

{
s : State, ss : P State⊥∣∣ ∃ ss0 • (s, ss0) ∈ B ∧ ⊥ /∈ ss0 ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss

}
∧ ⊥ /∈ ss

)
∨

(s, ∅) ∈
{

s : State, ss : P State⊥∣∣ ∃ ss0 • (s, ss0) ∈ B ∧ ⊥ /∈ ss0 ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss

}


{Property of sets and predicate calculus}
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=


s : State, ss : P State⊥∣∣∣∣∣∣
∃ ss0 • (s, ss0) ∈ B ∧ ⊥ /∈ ss0 ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss
∨
∃ ss0 • (s, ss0) ∈ B ∧ ⊥ /∈ ss0 ∧ ss0 ⊆ ∅


{Case-analysis on ss0 and one-point rule}

=


s : State, ss : P State⊥∣∣∣∣∣∣
∃ ss0 • (s, ss0) ∈ B ∧ ⊥ /∈ ss0 ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss
∨
(s, ∅) ∈ B



Theorem B.2.1

bmh0,1,3,2 ◦ bm2bmb(bmhupclosed(B)) = bm2bmb(bmhupclosed(B))

Proof.

bmh0,1,3,2 ◦ bm2bmb(bmhupclosed(B)) {Definition of bmh0,1,3,2}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣

((s, ∅) ∈ bm2bmb(bmhupclosed(B)) ∧ (s, {⊥}) ∈ bm2bmb(bmhupclosed(B)))
∨

(s, {⊥}) /∈ bm2bmb(bmhupclosed(B)) ∧ (s, ∅) /∈ bm2bmb(bmhupclosed(B))
∧

∃ ss0 •
(

(s, ss0) ∈ bm2bmb(bmhupclosed(B))
∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)



{Law B.2.19 and Law B.2.18}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣

((s, ∅) ∈ B ∧ (s, ∅) ∈ B)
∨

((s, ∅) /∈ B ∧ (s, ∅) /∈ B)
∧

∃ ss0 •
(

(s, ss0) ∈ bm2bmb(bmhupclosed(B))
∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)



{Predicate calculus and definition of bm2bmb(bmhupclosed(B)) (Law B.2.16)}
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=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(s, ∅) ∈ B
∨

∃ ss0 •

 (s, ss0) ∈


s : State, ss : P State⊥∣∣∣∣∣∣
∃ ss0 • (s, ss0) ∈ B ∧ ⊥ /∈ ss0 ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss
∨
(s, ∅) ∈ B


∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss




{Variable renaming and property of sets}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣

(s, ∅) ∈ B
∨

∃ ss0 •


 ∃ ss1 • (s, ss1) ∈ B ∧ ⊥ /∈ ss1 ∧ ss1 ⊆ ss0 ∧ ⊥ /∈ ss0
∨
(s, ∅) ∈ B


∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss




{Predicate calculus}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣

(s, ∅) ∈ B
∨(
∃ ss0, ss1 • (s, ss1) ∈ B ∧ ⊥ /∈ ss1 ∧ ss1 ⊆ ss0 ∧ ⊥ /∈ ss0
∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)
∨(
∃ ss0 • (s, ∅) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)


{Predicate calculus}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
(s, ∅) ∈ B
∨
(∃ ss1 • (s, ss1) ∈ B ∧ ⊥ /∈ ss1 ∧ ss1 ⊆ ss ∧ ⊥ /∈ ss)
∨
((s, ∅) ∈ B ∧ ∃ ss0 • ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss)


{Predicate calculus: absorption law}
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=


s : State, ss : P State⊥∣∣∣∣∣∣
(s, ∅) ∈ B
∨
(∃ ss1 • (s, ss1) ∈ B ∧ ⊥ /∈ ss1 ∧ ss1 ⊆ ss ∧ ⊥ /∈ ss)


{Law B.2.16}

= bm2bmb(bmhupclosed(B))

Law B.2.17

bmb2bm(bmh0,1,3,2(B))

=

s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B) ∧ ⊥ /∈ ss
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 •

(
(s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)



Proof.

bmb2bm(bmh0,1,3,2(B)) {Definition of bmb2bm}
= {s : State, ss : P State⊥ | ((s, ss) ∈ bmh0,1,3,2(B) ∧ ⊥ /∈ ss)}

{Definition of bmh0,1,3,2}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(s, ss) ∈



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 •

(
(s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)



∧ ⊥ /∈ ss


{Property of sets}
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=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣


((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 •

(
(s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)



∧ ⊥ /∈ ss


{Predicate calculus}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B) ∧ ⊥ /∈ ss
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 •

(
(s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)




Theorem B.2.2 (bmb2bm-is-bmhupclosed)

bmhupclosed ◦ bmb2bm(bmh0,1,3,2(B)) = bmb2bm(bmh0,1,3,2(B))

Proof.

bmhupclosed ◦ bmb2bm(bmh0,1,3,2(B)) {Definition of bmhupclosed}

=

{
s : State, ss : P State⊥∣∣ ∃ ss0 • (s, ss0) ∈ bmb2bm(bmh0,1,3,2(B)) ∧ ⊥ /∈ ss0 ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss

}
{Law B.2.17}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ ss0 • (s, ss0) ∈



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B) ∧ ⊥ /∈ ss
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 •

(
(s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)



∧
⊥ /∈ ss0 ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss


{Variable renaming and property of sets}
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=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∃ ss0 •


((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B) ∧ ⊥ /∈ ss0
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss1 •

(
(s, ss1) ∈ B ∧ ss1 ⊆ ss0 ∧ ⊥ /∈ ss1 ∧ ⊥ /∈ ss0

)



∧
⊥ /∈ ss0 ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss


{Predicate calculus: distributivity and quantifier scope}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B) ∧ ⊥ /∈ ss ∧ ∃ ss0 • ⊥ /∈ ss0 ∧ ss0 ⊆ ss
∨

(s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧

∃ ss1, ss0 •

 (s, ss1) ∈ B ∧ ss1 ⊆ ss0 ∧ ⊥ /∈ ss1 ∧ ⊥ /∈ ss0
∧
⊥ /∈ ss0 ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss





{Predicate calculus: case-analysis on ss0}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B) ∧ ⊥ /∈ ss
∨

(s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧

∃ ss1, ss0 •

 (s, ss1) ∈ B ∧ ss1 ⊆ ss0 ∧ ⊥ /∈ ss1 ∧ ⊥ /∈ ss0
∧
⊥ /∈ ss0 ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss





{Predicate calculus}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B) ∧ ⊥ /∈ ss
∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss1 •

(
(s, ss1) ∈ B ∧ ss1 ⊆ ss ∧ ⊥ /∈ ss1 ∧ ⊥ /∈ ss

)



{Law B.2.17}

= bmb2bm(bmh0,1,3,2(B))
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Law B.2.18

(s, ∅) ∈ bmb2bm(bmhupclosed) = (s, ∅) ∈ B

Proof.

(s, ∅) ∈ bmb2bm(bmhupclosed)

{Definition of bmb2bm(bmhupclosed) (Law B.2.16)}

= (s, ∅) ∈


s : State, ss : P State⊥∣∣∣∣∣∣
∃ ss0 • (s, ss0) ∈ B ∧ ⊥ /∈ ss0 ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss
∨
(s, ∅) ∈ B


{Property of sets}

=

 ∃ ss0 • (s, ss0) ∈ B ∧ ⊥ /∈ ss0 ∧ ss0 ⊆ ∅ ∧ ⊥ /∈ ∅
∨
(s, ∅) ∈ B


{Predicate calculus and one-point rule}

= (s, ∅) ∈ B

Law B.2.19

(s, {⊥}) ∈ bmb2bm(bmhupclosed) = (s, ∅) ∈ B

Proof.

(s, {⊥}) ∈ bmb2bm(bmhupclosed)

{Definition of bmb2bm(bmhupclosed) (Law B.2.16)}

= (s, {⊥}) ∈


s : State, ss : P State⊥∣∣∣∣∣∣
∃ ss0 • (s, ss0) ∈ B ∧ ⊥ /∈ ss0 ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss
∨
(s, ∅) ∈ B


{Property of sets}
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=

 ∃ ss0 • (s, ss0) ∈ B ∧ ⊥ /∈ ss0 ∧ ss0 ⊆ {⊥} ∧ ⊥ /∈ {⊥}
∨
(s, ∅) ∈ B


{Property of sets and predicate calculus}

= (s, ∅) ∈ B

B.3 Set theory
Lemma B.3.1

∃ ss0 • (s, ss0 ∪ {⊥}) ∈ B ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)
⇔
∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ (ss ∪ {⊥}) ∧ ⊥ ∈ ss0

Proof.

∃ ss0 • (s, ss0 ∪ {⊥}) ∈ B ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)

{Predicate calculus}

= ∃ ss0 •

 (s, ss0 ∪ {⊥}) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ ∈ ss0 ∧ ⊥ ∈ ss
∨
(s, ss0 ∪ {⊥}) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss


{Predicate calculus and property of sets}

=

 ∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ (ss ∪ {⊥}) ∧ ⊥ ∈ ss0 ∧ ⊥ ∈ ss
∨
∃ ss0 • (s, ss0 ∪ {⊥}) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss


{Introduce fresh variable t and substitution}

=

 ∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ (ss ∪ {⊥}) ∧ ⊥ ∈ ss0 ∧ ⊥ ∈ ss
∨
∃ t, ss0 • (s, t) ∈ B ∧ t = ss0 ∪ {⊥} ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss


{Property of sets (Lemma B.3.2)}

=

 ∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ (ss ∪ {⊥}) ∧ ⊥ ∈ ss0 ∧ ⊥ ∈ ss
∨
∃ t, ss0 • (s, t) ∈ B ∧ t \ {⊥} = ss0 ∧ ss0 ⊆ ss ∧ ⊥ ∈ t ∧ ⊥ /∈ ss


{One-point rule and subsitutiton}
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=

 ∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ (ss ∪ {⊥}) ∧ ⊥ ∈ ss0 ∧ ⊥ ∈ ss
∨
∃ t • (s, t) ∈ B ∧ (t \ {⊥}) ⊆ ss ∧ ⊥ ∈ t ∧ ⊥ /∈ ss


{Property of sets}

=

 ∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ (ss ∪ {⊥}) ∧ ⊥ ∈ ss0 ∧ ⊥ ∈ ss
∨
∃ t • (s, t) ∈ B ∧ t ⊆ (ss ∪ {⊥}) ∧ ⊥ ∈ t ∧ ⊥ /∈ ss


{Rename variables}

=

 ∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ (ss ∪ {⊥}) ∧ ⊥ ∈ ss0 ∧ ⊥ ∈ ss
∨
∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ (ss ∪ {⊥}) ∧ ⊥ ∈ ss0 ∧ ⊥ /∈ ss


{Predicate calculus}

= ∃ ss0 • ((s, ss0) ∈ B ∧ ss0 ⊆ (ss ∪ {⊥}) ∧ ⊥ ∈ ss0) ∧ (⊥ ∈ ss ∨ ⊥ /∈ ss)
{Propositional calculus}

= ∃ ss0 • ((s, ss0) ∈ B ∧ ss0 ⊆ (ss ∪ {⊥}) ∧ ⊥ ∈ ss0)

Lemma B.3.2 (A-setminus-x)

(A = B ∪ {x} ∧ x /∈ B)⇔ (A \ {x} = B ∧ x ∈ A)

Proof.
A = B ∪ {x} ∧ x /∈ B {Set equality}
= (∀ y • y ∈ A⇔ y ∈ (B ∪ {x})) ∧ x /∈ B {Propositional calculus}
= (∀ y • (y ∈ A⇒ y ∈ (B ∪ {x})) ∧ (y ∈ (B ∪ {x}))⇒ y ∈ A) ∧ x /∈ B

{Property of sets}

=

(
(∀ y • (y ∈ A⇒ (y ∈ B ∨ y ∈ {x})) ∧ ((y ∈ B ∨ y ∈ {x})⇒ y ∈ A))
∧ x /∈ B

)
{Propositional calculus}

=

 ∀ y •
(

((y ∈ A ∧ y /∈ {x})⇒ y ∈ B)
∧ (y ∈ B ⇒ y ∈ A) ∧ (y ∈ {x} ⇒ y ∈ A)

)
∧ x /∈ B


{Lemma B.3.4 and propositional calculus}

=

(
∀ y •

(
((y ∈ A ∧ y /∈ {x})⇒ y ∈ B)
∧ (y ∈ B ⇒ y ∈ A) ∧ (y ∈ {x} ⇒ y ∈ A) ∧ (y ∈ B ⇒ y /∈ {x})

) )
{Propositional calculus}
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=
(
∀ y • ((y ∈ A ∧ y /∈ {x})⇔ (y ∈ B)) ∧ (y ∈ {x} ⇒ y ∈ A)

)
{Property of sets}

= (A \ {x} = B ∧ {x} ⊆ A) {Lemma B.3.3 and propositional calculus}
= (A \ {x} = B ∧ x ∈ A)

Lemma B.3.3 (set-membership-subset-1)

{x} ⊆ A⇔ x ∈ A

Proof.

{x} ⊆ A {Definition of subset inclusion}
= ∀ y • y ∈ {x} ⇒ y ∈ A {Propositional calculus}
= ∀ y • ¬ (y ∈ {x} ∧ y /∈ A) {Propositional calculus}
= ¬ ∃ y • y = x ∧ y /∈ A {One-point rule}
= ¬ (x /∈ A) {Propositional calculus}
= x ∈ A

Lemma B.3.4 (set-membership-subset-2)

x /∈ A⇔ (∀ y • y ∈ A⇒ y /∈ {x})

Proof.

x /∈ A {Propositional calculus}
= ¬ (x ∈ A) {Introduce fresh variable}
= ¬ (∃ y • y = x ∧ y ∈ A) {Property of sets}
= ¬ (∃ y • y ∈ {x} ∧ y ∈ A) {Propositional cauclus}
= ∀ y • y ∈ A⇒ y /∈ {x}

Lemma B.3.5

(A = (B ∪ {x}) ∧ x ∈ B)⇔ (A = B ∧ x ∈ B)
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Proof. (Implication)

A = B ∪ {x} ∧ x ∈ B {Property of sets}
= (A ⊆ (B ∪ {x}) ∧ (B ∪ {x}) ⊆ A ∧ x ∈ B) {Lemma B.3.3}
= (A ⊆ (B ∪ {x}) ∧ (B ∪ {x}) ⊆ A ∧ {x} ⊆ B) {Property of sets}
= (A ⊆ (B ∪ {x}) ∧ B ⊆ A ∧ {x} ⊆ A ∧ {x} ⊆ B) {Property of sets}
= (A ⊆ (B ∪ {x}) ∧ B ⊆ A ∧ {x} ⊆ A ∧ ({x} ∪ B = B))

{Propositional calculus}
= (A ⊆ (B ∪ {x}) ∧ B ⊆ A ∧ {x} ⊆ A ∧ ({x} ∪ B) ⊆ B) ∧ B ⊆ ({x} ∪ B)

{Transitivity of subset inclusion and propositional calculus}
= (A ⊆ (B ∪ {x}) ∧ B ⊆ A ∧ {x} ⊆ A ∧ ({x} ∪ B) ⊆ B ∧ A ⊆ B ∧ B ⊆ ({x} ∪ B))

{Propositional calculus}
⇒ B ⊆ A ∧ A ⊆ B ∧ ({x} ∪ B) ⊆ B ∧ B ⊆ ({x} ∪ B) {Property of sets}
= (B = A ∧ {x} ∪ B) {Lemma B.3.3}
= (B = A ∧ x ∈ B)

Proof. (Reverse implication)

(B = A ∧ x ∈ B) {Lemma B.3.3}
(B = A ∧ {x} ⊆ B) {Property of sets}
= (A ⊆ B ∧ B ⊆ A ∧ {x} ⊆ B)

{Transitivity of subset inclusion and propositional calculus}
= (A ⊆ B ∧ B ⊆ A ∧ {x} ⊆ B ∧ {x} ⊆ A) {Property of sets}
= (A ⊆ B ∧ B ⊆ A ∧ {x} ⊆ B ∧ {x} ⊆ A ∧ (B ∪ {x}) ⊆ A ∧ (A ∪ {x}) ⊆ B

{Property of sets}
= (A ⊆ B ∧ B ⊆ A ∧ {x} ⊆ B ∧ ({x} ∪ B = B) ∧ {x} ⊆ A ∧ (B ∪ {x}) ⊆ A ∧ (A ∪ {x}) ⊆ B

{Property of sets and weaken predicate}
⇒ (A ⊆ B ∧ B ⊆ A ∧ {x} ⊆ B ∧ B ⊆ ({x} ∪ B) ∧ {x} ⊆ A ∧ (B ∪ {x}) ⊆ A ∧ (A ∪ {x}) ⊆ B

{Transitivity of subset inclusion and propositional calculus}
⇒ (A ⊆ B ∧ B ⊆ A ∧ {x} ⊆ B ∧ B ⊆ ({x} ∪ B) ∧ A ⊆ ({x} ∪ B) ∧ {x} ⊆ A ∧ (B ∪ {x}) ⊆ A

{Property of sets}
= (A = B ∧ B ⊆ ({x} ∪ B) ∧ {x} ⊆ B ∧ {x} ⊆ A ∧ (B ∪ {x}) = A

{Propositional calculus}
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⇒ ({x} ⊆ B ∧ (B ∪ {x}) = A) {Lemma B.3.3}
= ((B ∪ {x}) = A ∧ x ∈ B)

Lemma B.3.6

((A ∪ {x}) ⊆ (B ∪ {x}) ∧ x /∈ A ∧ x /∈ B)⇔ (A ⊆ B ∧ x /∈ A ∧ x /∈ B)

Proof.

(A ∪ {x}) ⊆ (B ∪ {x}) ∧ x /∈ A ∧ x /∈ B {Definition of subset inclusion}
= ∀ y • y ∈ (A ∪ {x})⇒ y ∈ (B ∪ {x}) ∧ x /∈ A ∧ x /∈ B

{Property of sets}
= ∀ y • (y ∈ A ∨ y ∈ {x})⇒ (y ∈ B ∨ y ∈ {x}) ∧ x /∈ A ∧ x /∈ B

{Propositional calculus}
= ∀ y • y ∈ A⇒ (y ∈ B ∨ y ∈ {x}) ∧ x /∈ A ∧ x /∈ B {Lemma B.3.4}

=


∀ y • y ∈ A⇒ (y ∈ B ∨ y ∈ {x})
∧
∀ y • y ∈ A⇒ y /∈ {x}
∧
∀ y • y ∈ B ⇒ y /∈ {x}

 {Propositional calculus}

= ∀ y •

 y ∈ A⇒ (y ∈ B ∧ y /∈ {x})
∧
y ∈ B ⇒ y /∈ {x}

 {Propositional calculus}

= ∀ y • (y ∈ A⇒ y ∈ B) ∧ ((y ∈ A ∨ y ∈ B)⇒ (y /∈ {x}))
{Propositional calculus and definition of subset inclusion}

= A ⊆ B ∧ ∀ y • ((y ∈ A ∨ y ∈ B)⇒ (y /∈ {x}))
{Property of sets and Lemma B.3.4}

= A ⊆ B ∧ x /∈ (A ∪ B) {Propositional calculus and property of sets}
= A ⊆ B ∧ x /∈ A ∧ x /∈ B
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Appendix C

Predicative model

C.1 d2bmb
Lemma C.1.1 (d2bmb-A-healthy)

d2bmb(A(P))

=
s : State, ss : P State⊥∣∣∣∣ ( ∃ ac0 : P State •

(P f [ac0/ac′] ∨ (P t [ac0/ac′] ∧ ⊥ /∈ ss ∧ ss 6= ∅)) ∧ ac0 ⊆ ss

) 
Proof.

d2bmb(A(P)) {Definition of A}
= d2bmb(¬ PBMH1(P f ) ` PBMH1(P t) ∧ ac′ 6= ∅)

{Definition of PBMH1}
= d2bmb(¬ (P f ; ac ⊆ ac′) ` (P t ; ac ⊆ ac′) ∧ ac′ 6= ∅)

{Definition of d2bmb (Definition 55)}

=


s : State, ss : P State⊥∣∣∣∣∣∣
((¬ (P f ; ac ⊆ ac′)⇒ ((P t ; ac ⊆ ac′) ∧ ac′ 6= ∅))[ss/ac′] ∧ ⊥ /∈ ss)
∨
((P f ; ac ⊆ ac′)[ss \ {⊥}/ac′] ∧ ⊥ ∈ ss)


{Definition of sequential composition}
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=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣


 ¬ (∃ ac0 : P State • P f [ac0/ac′] ∧ ac0 ⊆ ac′)
⇒
(∃ ac0 : P State • P t [ac0/ac′] ∧ ac0 ⊆ ac′ ∧ ac′ 6= ∅)

 [ss/ac′]

∧ ⊥ /∈ ss


∨
((∃ ac0 : P State • P f [ac0/ac′] ∧ ac0 ⊆ ac′)[ss \ {⊥}/ac′] ∧ ⊥ ∈ ss)


{Type: ⊥ /∈ ac′}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣




¬
(
∃ ac0 : P State⊥ • P f [ac0/ac′] ∧ ac0 ⊆ ac′
∧ ⊥ /∈ ac0 ∧ ⊥ /∈ ac′

)
⇒(
∃ ac0 : P State⊥ • P t [ac0/ac′] ∧ ac0 ⊆ ac′
∧ ⊥ /∈ ac0 ∧ ⊥ /∈ ac′ ∧ ac′ 6= ∅

)
 [ss/ac′]

∧ ⊥ /∈ ss


∨ (

∃ ac0 : P State⊥ • P f [ac0/ac′] ∧ ac0 ⊆ ac′
∧ ⊥ /∈ ac0 ∧ ⊥ /∈ ac′

)
[ss \ {⊥}/ac′]

∧ ⊥ ∈ ss




{Substitution}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣




¬
(
∃ ac0 : P State⊥ • P f [ac0/ac′] ∧ ac0 ⊆ ss
∧ ⊥ /∈ ac0 ∧ ⊥ /∈ ss

)
⇒(
∃ ac0 : P State⊥ • P t [ac0/ac′] ∧ ac0 ⊆ ss
∧ ⊥ /∈ ac0 ∧ ⊥ /∈ ss ∧ ss 6= ∅

)


∧ ⊥ /∈ ss


∨ (

∃ ac0 : P State⊥ • P f [ac0/ac′] ∧ ac0 ⊆ (ss \ {⊥})
∧ ⊥ /∈ ac0 ∧ ⊥ /∈ (ss \ {⊥})

)
∧ ⊥ ∈ ss




{Propositional calculus and property of sets}
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=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
∃ ac0 : P State⊥ • P f [ac0/ac′] ∧ ac0 ⊆ ss
∧ ⊥ /∈ ac0 ∧ ⊥ /∈ ss

)
∨(
∃ ac0 : P State⊥ • P t [ac0/ac′] ∧ ac0 ⊆ ss
∧ ⊥ /∈ ac0 ∧ ⊥ /∈ ss ∧ ss 6= ∅

)
∨(
∃ ac0 : P State⊥ • P f [ac0/ac′] ∧ ac0 ⊆ (ss \ {⊥})
∧ ⊥ /∈ ac0 ∧ ⊥ ∈ ss

)


{Property of sets}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
∃ ac0 : P State⊥ • P f [ac0/ac′] ∧ ac0 ⊆ ss
∧ ⊥ /∈ ac0 ∧ ⊥ /∈ ss

)
∨(
∃ ac0 : P State⊥ • P t [ac0/ac′] ∧ ac0 ⊆ ss
∧ ⊥ /∈ ac0 ∧ ⊥ /∈ ss ∧ ss 6= ∅

)
∨
∃ ac0 : P State⊥ • P f [ac0/ac′] ∧
(∀ x : P State⊥ • x ∈ ac0 ⇒ x ∈ ss) ∧
(∀ x : P State⊥ • x ∈ ac0 ⇒ x /∈ {⊥})
∧ ⊥ /∈ ac0 ∧ ⊥ ∈ ss




{Propositional calculus, property of sets and Lemma B.3.4}

=



s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣
(∃ ac0 : P State⊥ • P f [ac0/ac′] ∧ ac0 ⊆ ss ∧ ⊥ /∈ ac0 ∧ ⊥ /∈ ss)
∨
(∃ ac0 : P State⊥ • P t [ac0/ac′] ∧ ac0 ⊆ ss ∧ ⊥ /∈ ac0 ∧ ⊥ /∈ ss ∧ ss 6= ∅)
∨
(∃ ac0 : P State⊥ • P f [ac0/ac′] ∧ ac0 ⊆ ss ∧ ⊥ /∈ ac0 ∧ ⊥ ∈ ss)


{Propositional calculus}

=


s : State, ss : P State⊥∣∣∣∣∣∣
(∃ ac0 : P State⊥ • P f [ac0/ac′] ∧ ac0 ⊆ ss ∧ ⊥ /∈ ac0)
∨
(∃ ac0 : P State⊥ • P t [ac0/ac′] ∧ ac0 ⊆ ss ∧ ⊥ /∈ ac0 ∧ ⊥ /∈ ss ∧ ss 6= ∅)


{Propositional calculus}
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=


s : State, ss : P State⊥∣∣∣∣ ( ∃ ac0 : P State⊥ • (P f [ac0/ac′] ∨ (P t [ac0/ac′] ∧ ⊥ /∈ ss ∧ ss 6= ∅))
∧ ac0 ⊆ ss ∧ ⊥ /∈ ac0

) 
{Type restriction: ⊥ /∈ ac0}

=


s : State, ss : P State⊥∣∣∣∣ ( ∃ ac0 : P State •

(P f [ac0/ac′] ∨ (P t [ac0/ac′] ∧ ⊥ /∈ ss ∧ ss 6= ∅)) ∧ ac0 ⊆ ss

) 

Lemma C.1.2

∃ ss0 : P State⊥ • (s, ss0 ∪ {⊥}) ∈ d2bmb(A(P)) ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)
=

∃ ac0 : P State • P f [ac0/ac′] ∧ ac0 ⊆ ss

Proof.

∃ ss0 : P State⊥ • (s, ss0 ∪ {⊥}) ∈ d2bmb(A(P)) ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)

{Definition of d2bmb(A(P))}

=


∃ ss0 : P State⊥

• (s, ss0 ∪ {⊥}) ∈


s : State, ss : P State⊥∣∣∣∣∣∣
∃ ac0 : P State •
(P f [ac0/ac′] ∨ (P t [ac0/ac′] ∧ ss 6= ∅ ∧ ⊥ /∈ ss))
∧ ac0 ⊆ ss


∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


{Property of sets}

=

 ∃ ss0 : P State⊥, ac0 : P State •
(P f [ac0/ac′] ∨ (P t [ac0/ac′] ∧ (ss0 ∪ {⊥}) 6= ∅ ∧ ⊥ /∈ (ss0 ∪ {⊥})))
∧ ac0 ⊆ (ss0 ∪ {⊥}) ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


{Property of sets and predicate calculus}

=

(
∃ ss0 : P State⊥, ac0 : P State •
P f [ac0/ac′] ∧ ac0 ⊆ (ss0 ∪ {⊥}) ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)

)
{Property of sets}
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=

(
∃ ss0 : P State⊥, ac0 : P State •
P f [ac0/ac′] ∧ (ac0 \ {⊥}) ⊆ ss0 ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)

)
{Type of ac′ : ⊥ /∈ ac′, and property of sets}

=

(
∃ ss0 : P State⊥, ac0 : P State •
P f [ac0/ac′] ∧ ac0 ⊆ ss0 ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)

)
{Predicate calculus}

=

 ∃ ss0 : P State⊥, ac0 : P State • P f [ac0/ac′] ∧ ac0 ⊆ ss0 ∧ ss0 ⊆ ss ∧ ⊥ ∈ ss0 ∧ ⊥ ∈ ss
∨
∃ ss0 : P State⊥, ac0 : P State • P f [ac0/ac′] ∧ ac0 ⊆ ss0 ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss


{Predicate calculus}

=

 ∃ ac0 : P State • P f [ac0/ac′] ∧ ac0 ⊆ ss ∧ ⊥ ∈ ss
∨
∃ ac0 : P State • P f [ac0/ac′] ∧ ac0 ⊆ ss ∧ ⊥ /∈ ss


{Predicate calculus}

= ∃ ac0 : P State • P f [ac0/ac′] ∧ ac0 ⊆ ss

Lemma C.1.3

∃ ss0 : P State⊥ • (s, ss0) ∈ d2bmb(A(P)) ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)
=

∃ ac0 : P State • (P f [ac0/ac′] ∨ (P t [ac0/ac′] ∧ ss 6= ∅ ∧ ⊥ /∈ ss)) ∧ ac0 ⊆ ss

Proof.

∃ ss0 : P State⊥ • (s, ss0) ∈ d2bmb(A(P)) ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)

{Definition of d2bmb(A(P))}

=


∃ ss0 •

(s, ss0) ∈


s : State, ss : P State⊥∣∣∣∣∣∣
∃ ac0 : P State •
(P f [ac0/ac′] ∨ (P t [ac0/ac′] ∧ ss 6= ∅ ∧ ⊥ /∈ ss))
∧ ac0 ⊆ ss


∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


{Property of sets}
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=

 ∃ ss0 : P State⊥, ac0 : P State •
(P f [ac0/ac′] ∨ (P t [ac0/ac′] ∧ ss0 6= ∅ ∧ ⊥ /∈ ss0))
∧ ac0 ⊆ ss0 ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


{Predicate calculus}

=


(∃ ss0 : P State⊥, ac0 : P State • P f [ac0/ac′] ∧ ac0 ⊆ ss0 ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)
∨(
∃ ss0 : P State⊥, ac0 : P State • P t [ac0/ac′] ∧ ac0 ⊆ ss0 ∧ ss0 ⊆ ss ∧
(⊥ ∈ ss0 ⇔ ⊥ ∈ ss) ∧ ss0 6= ∅ ∧ ⊥ /∈ ss0

)


{Predicate calculus}

=


(∃ ss0 : P State⊥, ac0 : P State • P f [ac0/ac′] ∧ ac0 ⊆ ss0 ∧ ss0 ⊆ ss ∧ ⊥ ∈ ss0 ∧ ⊥ ∈ ss)
∨
(∃ ss0 : P State⊥, ac0 : P State • P f [ac0/ac′] ∧ ac0 ⊆ ss0 ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss)
∨(
∃ ss0 : P State⊥, ac0 : P State • P t [ac0/ac′] ∧ ac0 ⊆ ss0 ∧ ss0 ⊆ ss ∧
∧ ss0 6= ∅ ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)


{Predicate calculus}

=


(∃ ac0 : P State • P f [ac0/ac′] ∧ ac0 ⊆ ss ∧ ⊥ ∈ ss)
∨
(∃ ac0 : P State • P f [ac0/ac′] ∧ ac0 ⊆ ss ∧ ⊥ /∈ ss)
∨
(∃ ac0 : P State • P t [ac0/ac′] ∧ ac0 ⊆ ss ∧ ss 6= ∅ ∧ ⊥ /∈ ss)


{Predicate calculus}

=
(
∃ ac0 : P State • (P f [ac0/ac′] ∨ (P t [ac0/ac′] ∧ ss 6= ∅ ∧ ⊥ /∈ ss)) ∧ ac0 ⊆ ss

)

Lemma C.1.4

(s, {⊥}) ∈ d2bmb(A(P))⇔ (s, ∅) ∈ d2bmb(A(P))

Proof.

(s, {⊥}) ∈ d2bmb(A(P))⇔ (s, ∅) ∈ d2bmb(A(P))
{Lemma C.1.5 and Lemma C.1.6}

= true
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Lemma C.1.5

(s, {⊥}) ∈ d2bmb(A(P)) = P f [∅/ac′]

Proof.

(s, {⊥}) ∈ d2bmb(A(P)) {Lemma C.1.1}

= (s, {⊥}) ∈


s : State, ss : P State⊥∣∣∣∣∣∣
∃ ac0 : P State •
(P f [ac0/ac′] ∨ (P t [ac0/ac′] ∧ ss 6= ∅ ∧ ⊥ /∈ ss))
∧ ac0 ⊆ ss


{Property of sets}

= ∃ ac0 : P State • (P f [ac0/ac′] ∨ (P t [ac0/ac′] ∧ {⊥} 6= ∅ ∧ ⊥ /∈ {⊥})) ∧ ac0 ⊆ {⊥}
{Property of sets and predicate calculus}

= ∃ ac0 : P State • P f [ac0/ac′] ∧ ac0 ⊆ {⊥}
{Case-analysis on ac0 and one-point rule}

= P f [∅/ac′]

Lemma C.1.6

(s, ∅) ∈ d2bmb(A(P)) = P f [∅/ac′]

Proof.

(s, ∅) ∈ d2bmb(A(P)) {Definition of d2bmb for P that is A-healthy}

= (s, ∅) ∈


s : State, ss : P State⊥∣∣∣∣∣∣
∃ ac0 : P State •
(P f [ac0/ac′] ∨ (P t [ac0/ac′] ∧ ss 6= ∅ ∧ ⊥ /∈ ss))
∧ ac0 ⊆ ss


{Property of sets}

= ∃ ac0 : P State • (P f [ac0/ac′] ∨ (P t [ac0/ac′] ∧ ∅ 6= ∅ ∧ ⊥ /∈ ∅)) ∧ ac0 ⊆ ∅
{Property of sets and predicate calculus}

= ∃ ac0 : P State • P f [ac0/ac′] ∧ ac0 ⊆ ∅
{Property of sets and one-point rule}

= P f [∅/ac′]
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Lemma C.1.7

(s, ∅) ∈ d2bmb(A(P))⇔ (s, {⊥}) ∈ d2bmb(A(P)) = true

Proof.

(s, ∅) ∈ d2bmb(A(P))⇔ (s, {⊥}) ∈ d2bmb(A(P))
{Lemma C.1.6 and Lemma C.1.5}

= true

C.2 bmb2d
Lemma C.2.1

((s, ac′) ∈ B ; ac ⊆ ac′) ∧ (s, ∅) /∈ B
⇔
((s, ac′) ∈ B ; ac ⊆ ac′) ∧ ac′ 6= ∅ ∧ (s, ∅) /∈ B

Proof.

((s, ac′) ∈ B ; ac ⊆ ac′) ∧ (s, ∅) /∈ B

{Definition of sequential composition}
⇔ (∃ ac0 : P State • (s, ac0) ∈ B ∧ ac0 ⊆ ac′) ∧ (s, ∅) /∈ B

{Predicate calculus}

⇔

 (∃ ac0 : P State • (s, ac0) ∈ B ∧ ac0 ⊆ ac′ ∧ (ac′ = ∅ ∨ ac′ 6= ∅))
∧
(s, ∅) /∈ B


{Predicate calculus}

⇔

 (∃ ac0 : P State • (s, ac0) ∈ B ∧ ac0 ⊆ ac′ ∧ ac′ = ∅)
∨
(∃ ac0 : P State • (s, ac0) ∈ B ∧ ac0 ⊆ ac′ ∧ ac′ 6= ∅)

 ∧ (s, ∅) /∈ B

{Property of sets and case analysis on ac0}

⇔

 ((s, ∅) ∈ B ∧ ac′ = ∅)
∨
(∃ ac0 : P State • (s, ac0) ∈ B ∧ ac0 ⊆ ac′ ∧ ac′ 6= ∅)

 ∧ (s, ∅) /∈ B

{Predicate calculus}
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⇔ (∃ ac0 : P State • (s, ac0) ∈ B ∧ ac0 ⊆ ac′ ∧ ac′ 6= ∅) ∧ (s, ∅) /∈ B
{Definition of sequential composition}

⇔ ((s, ac′) ∈ B ; ac ⊆ ac′ ∧ ac′ 6= ∅) ∧ (s, ∅) /∈ B

Lemma C.2.2 Provided B satisfies bmh0,1,2.

bmb2d(B) =

 ¬ ((s, ac′ ∪ {⊥}) ∈ B ; ac ⊆ ac′)
`
((s, ac′) ∈ B ; ac ⊆ ac′) ∧ (s, ∅) /∈ B


Proof.

bmb2d(B) {Assumption: B satisfies bmh0,1,2}
= bmb2d(bmh0,1,2(B)) {Lemma C.2.3}

=




¬ ((s, {⊥}) ∈ B ∧ (s, ∅) ∈ B)
∧

¬

 ((s, ac′ ∪ {⊥}) ∈ B ; ac ⊆ ac′)
∧
(s, {⊥}) /∈ B ∧ (s, ∅) /∈ B




`
((s, ac′) ∈ B ; ac ⊆ ac′) ∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B


{Predicate calculus}

=


¬



 ((s, {⊥}) ∈ B ∧ (s, ∅) ∈ B)
∨
((s, ac′ ∪ {⊥}) ∈ B ; ac ⊆ ac′)


∧ ((s, {⊥}) ∈ B ∧ (s, ∅) ∈ B)
∨
((s, {⊥}) /∈ B ∧ (s, ∅) /∈ B)




`
((s, ac′) ∈ B ; ac ⊆ ac′) ∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B


{Predicate calculus}
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=


¬


 ((s, {⊥}) ∈ B ∧ (s, ∅) ∈ B)
∨
((s, ac′ ∪ {⊥}) ∈ B ; ac ⊆ ac′)


∧
((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)


`
((s, ac′) ∈ B ; ac ⊆ ac′) ∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B


{B is BMH2-healthy, as B satisfies bmh0,1,2 and Theorem 4.3.1}

=


¬

 (s, {⊥}) ∈ B
∨
((s, ac′ ∪ {⊥}) ∈ B ; ac ⊆ ac′)


`
((s, ac′) ∈ B ; ac ⊆ ac′) ∧ (s, ∅) /∈ B


{Definition of sequential composition}

=


¬

 (s, {⊥}) ∈ B
∨
(∃ ac0 : P State • (s, ac0 ∪ {⊥}) ∈ B ∧ ac0 ⊆ ac′)


`
((s, ac′) ∈ B ; ac ⊆ ac′) ∧ (s, ∅) /∈ B


{Instantiation of existential quantifier for ac0 = ∅}

=

 ¬ (∃ ac0 : P State • (s, ac0 ∪ {⊥}) ∈ B ∧ ac0 ⊆ ac′)
`
((s, ac′) ∈ B ; ac ⊆ ac′) ∧ (s, ∅) /∈ B


{Definition of sequential composition}

=

 ¬ ((s, ac′ ∪ {⊥}) ∈ B ; ac ⊆ ac′)
`
((s, ac′) ∈ B ; ac ⊆ ac′) ∧ (s, ∅) /∈ B



Lemma C.2.3

bmb2d(bmh0,1,2(B))

=
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 ¬ ((s, {⊥}) ∈ B ∧ (s, ∅) ∈ B)
∧
¬ (((s, ac′ ∪ {⊥}) ∈ B ; ac ⊆ ac′) ∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B)


`
((s, ac′) ∈ B ; ac ⊆ ac′) ∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B


Proof.

bmb2d(bmh0,1,2(B)) {Definitifon of bmb2d}

= ok ⇒

 ((s, ac′) ∈ bmh0,1,2(B) ∧ ⊥ /∈ ac′ ∧ ok ′)
∨
((s, ac′ ∪ {⊥}) ∈ bmh0,1,2(B) ∧ ⊥ /∈ ac′)


{Definition of bmh0,1,2(B)}

= ok ⇒




(s, ac′) ∈


s : State, ss : P State⊥∣∣∣∣∣∣
∃ ss0 • ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


∧
⊥ /∈ ac′ ∧ ok ′


∨ (s, ac′ ∪ {⊥}) ∈


s : State, ss : P State⊥∣∣∣∣∣∣
∃ ss0 • ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


∧ ⊥ /∈ ac′




{Property of sets and predicate calculus}

= ok ⇒




∃ ss0 • ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ ss0 ⊆ ac′ ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ac′)
∧ ⊥ /∈ ac′ ∧ ok ′


∨
∃ ss0 • ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ ss0 ⊆ (ac′ ∪ {⊥}) ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ (ac′ ∪ {⊥}))
∧ ⊥ /∈ ac′




{Predicate calculus}
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= ok ⇒



 ∃ ss0 • ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ ss0 ⊆ ac′ ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ac′ ∧ ok ′


∨ ∃ ss0 • ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)
∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ ss0 ⊆ (ac′ ∪ {⊥}) ∧ ⊥ ∈ ss0 ∧ ⊥ /∈ ac′




{Predicate calculus}

= ok ⇒



((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧

(
∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ ac′ ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ac′ ∧ ok ′

)
∨(
∃ ss0 • (s, ss0 ∪ {⊥}) ∈ B ∧ ss0 ⊆ ac′ ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ac′ ∧ ok ′

)
∨(
∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ (ac′ ∪ {⊥}) ∧ ⊥ ∈ ss0 ∧ ⊥ /∈ ac′

)
∨(
∃ ss0 • (s, ss0 ∪ {⊥}) ∈ B ∧ ss0 ⊆ (ac′ ∪ {⊥}) ∧ ⊥ ∈ ss0 ∧ ⊥ /∈ ac′

)




{Property of sets}

= ok ⇒



((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧

(
∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ ac′ ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ac′ ∧ ok ′

)
∨(
∃ ss0 • (s, ss0 ∪ {⊥}) ∈ B ∧ ss0 ⊆ ac′ ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ac′ ∧ ok ′

)
∨(
∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ (ac′ ∪ {⊥}) ∧ ⊥ ∈ ss0 ∧ ⊥ /∈ ac′

)
∨(
∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ (ac′ ∪ {⊥}) ∧ ⊥ ∈ ss0 ∧ ⊥ /∈ ac′

)




{Predicate calculus}

= ok ⇒



((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧
(
∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ ac′ ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ac′ ∧ ok ′

)
∨(
∃ ss0 • (s, ss0 ∪ {⊥}) ∈ B ∧ ss0 ⊆ ac′ ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ac′ ∧ ok ′

)
∨(
∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ (ac′ ∪ {⊥}) ∧ ⊥ ∈ ss0 ∧ ⊥ /∈ ac′

)




{Predicate calculus: introduce fresh variable}

Revision: 704f887 (2014-02-04 11:14:10 +0000) 232



= ok ⇒



((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧
(
∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ ac′ ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ac′ ∧ ok ′

)
∨(
∃ t, ss0 • (s, t) ∈ B ∧ t = ss0 ∪ {⊥} ∧ ss0 ⊆ ac′ ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ac′ ∧ ok ′

)
∨(
∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ (ac′ ∪ {⊥}) ∧ ⊥ ∈ ss0 ∧ ⊥ /∈ ac′

)




{Lemma B.3.2}

= ok ⇒



((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧
(
∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ ac′ ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ac′ ∧ ok ′

)
∨(
∃ t, ss0 • (s, t) ∈ B ∧ t \ {⊥} = ss0 ∧ ss0 ⊆ ac′ ∧ ⊥ ∈ t ∧ ⊥ /∈ ac′ ∧ ok ′

)
∨(
∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ (ac′ ∪ {⊥}) ∧ ⊥ ∈ ss0 ∧ ⊥ /∈ ac′

)




{One-point rule and substitution}

= ok ⇒



((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧
(
∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ ac′ ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ac′ ∧ ok ′

)
∨(
∃ t • (s, t) ∈ B ∧ (t \ {⊥}) ⊆ ac′ ∧ ⊥ ∈ t ∧ ⊥ /∈ ac′ ∧ ok ′

)
∨(
∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ (ac′ ∪ {⊥}) ∧ ⊥ ∈ ss0 ∧ ⊥ /∈ ac′

)




{Property of sets and variable renaming}

= ok ⇒



((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧
(
∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ ac′ ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ac′ ∧ ok ′

)
∨(
∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ (ac′ ∪ {⊥}) ∧ ⊥ ∈ ss0 ∧ ⊥ /∈ ac′ ∧ ok ′

)
∨(
∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ (ac′ ∪ {⊥}) ∧ ⊥ ∈ ss0 ∧ ⊥ /∈ ac′

)




{Predicate calculus: absorption law}
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= ok ⇒


((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ (

∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ ac′ ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ac′ ∧ ok ′
)

∨(
∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ (ac′ ∪ {⊥}) ∧ ⊥ ∈ ss0 ∧ ⊥ /∈ ac′

)



{Lemma B.3.1}

= ok ⇒


((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ (

∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ ac′ ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ac′ ∧ ok ′
)

∨(
∃ ss0 • (s, ss0 ∪ {⊥}) ∈ B ∧ ss0 ⊆ ac′ ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ac′) ∧ ⊥ /∈ ac′

)



{Predicate calculus}

= ok ⇒


((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)
∧ (

∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ ac′ ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ac′ ∧ ok ′
)

∨(
∃ ss0 • (s, ss0 ∪ {⊥}) ∈ B ∧ ss0 ⊆ ac′ ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ac′

)



{Predicate calculus}

= ok ⇒


(((s, {⊥}) ∈ B ∧ (s, ∅) ∈ B) ∨ ((s, {⊥}) /∈ B ∧ (s, ∅) /∈ B))
∧ (

∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ ac′ ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ac′ ∧ ok ′
)

∨(
∃ ss0 • (s, ss0 ∪ {⊥}) ∈ B ∧ ss0 ⊆ ac′ ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ac′

)



{Instantiation: consider case where ss0 = ∅}

= ok ⇒



(((s, {⊥}) ∈ B ∧ (s, ∅) ∈ B) ∨ ((s, {⊥}) /∈ B ∧ (s, ∅) /∈ B))
∧

 (s, ∅)
∨
∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ ac′ ∧ ⊥ /∈ ss0

 ∧ ⊥ /∈ ac′ ∧ ok ′

∨ (s, {⊥})
∨
∃ ss0 • (s, ss0 ∪ {⊥}) ∈ B ∧ ss0 ⊆ ac′ ∧ ⊥ /∈ ss0

 ∧ ⊥ /∈ ac′




{Predicate calculus: distribution}
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= ok ⇒




 (s, ∅)
∨
∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ ac′ ∧ ⊥ /∈ ss0


∧ ⊥ /∈ ac′ ∧ ok ′ ∧ (s, {⊥}) ∈ B ∧ (s, ∅) ∈ B


∨
 (s, ∅)
∨
∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ ac′ ∧ ⊥ /∈ ss0


∧ ⊥ /∈ ac′ ∧ ok ′ ∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B


∨
 (s, {⊥})
∨
∃ ss0 • (s, ss0 ∪ {⊥}) ∈ B ∧ ss0 ⊆ ac′ ∧ ⊥ /∈ ss0


∧ ⊥ /∈ ac′ ∧ (s, {⊥}) ∈ B ∧ (s, ∅) ∈ B


∨
 (s, {⊥})
∨
∃ ss0 • (s, ss0 ∪ {⊥}) ∈ B ∧ ss0 ⊆ ac′ ∧ ⊥ /∈ ss0


∧ ⊥ /∈ ac′ ∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B




{Predicate calculus: absorption law}

= ok ⇒



(
⊥ /∈ ac′ ∧ ok ′ ∧ (s, {⊥}) ∈ B ∧ (s, ∅) ∈ B

)
∨
 (s, ∅)
∨
∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ ac′ ∧ ⊥ /∈ ss0


∧ ⊥ /∈ ac′ ∧ ok ′ ∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B


∨(
⊥ /∈ ac′ ∧ (s, {⊥}) ∈ B ∧ (s, ∅) ∈ B

)
∨
 (s, {⊥})
∨
∃ ss0 • (s, ss0 ∪ {⊥}) ∈ B ∧ ss0 ⊆ ac′ ∧ ⊥ /∈ ss0


∧ ⊥ /∈ ac′ ∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B




{Instantiation: consider case where ss0 = ∅}
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= ok ⇒



(
⊥ /∈ ac′ ∧ ok ′ ∧ (s, {⊥}) ∈ B ∧ (s, ∅) ∈ B

)
∨ ∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ ac′ ∧ ⊥ /∈ ss0
∧ ⊥ /∈ ac′ ∧ ok ′
∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B


∨(
⊥ /∈ ac′ ∧ (s, {⊥}) ∈ B ∧ (s, ∅) ∈ B

)
∨ ∃ ss0 • (s, ss0 ∪ {⊥}) ∈ B ∧ ss0 ⊆ ac′ ∧ ⊥ /∈ ss0
∧ ⊥ /∈ ac′
∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B




{Predicate calculus: absorption law}

= ok ⇒



 ∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ ac′ ∧ ⊥ /∈ ss0
∧ ⊥ /∈ ac′ ∧ ok ′
∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B


∨(
⊥ /∈ ac′ ∧ (s, {⊥}) ∈ B ∧ (s, ∅) ∈ B

)
∨ ∃ ss0 • (s, ss0 ∪ {⊥}) ∈ B ∧ ss0 ⊆ ac′ ∧ ⊥ /∈ ss0
∧ ⊥ /∈ ac′
∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B




{Predicate calculus}

=





ok
∧
¬ (⊥ /∈ ac′ ∧ (s, {⊥}) ∈ B ∧ (s, ∅) ∈ B)
∧

¬

 ∃ ss0 • (s, ss0 ∪ {⊥}) ∈ B ∧ ss0 ⊆ ac′ ∧ ⊥ /∈ ss0
∧ ⊥ /∈ ac′
∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B




⇒ ∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ ac′ ∧ ⊥ /∈ ss0
∧ ⊥ /∈ ac′ ∧ ok ′
∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B




{Variable renaming and substitution}
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=





ok
∧
¬ (⊥ /∈ ac′ ∧ (s, {⊥}) ∈ B ∧ (s, ∅) ∈ B)
∧

¬

 ∃ ss0 • ((s, ac′ ∪ {⊥}) ∈ B ∧ ⊥ /∈ ac′)[ss0/ac′] ∧ (ac ⊆ ac′)[ss0/ac]
∧ ⊥ /∈ ac′
∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B




⇒ ∃ ss0 • ((s, ac′) ∈ B ∧ ⊥ /∈ ac′)[ss0/ac′] ∧ (ac ⊆ ac′)[ss0/ac]
∧ ⊥ /∈ ac′ ∧ ok ′
∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B




{Definition of sequential composition and type of ac′ : ⊥ /∈ ac′}

=




ok
∧
¬ ((s, {⊥}) ∈ B ∧ (s, ∅) ∈ B)
∧

¬
(

((s, ac′ ∪ {⊥}) ∈ B ; ac ⊆ ac′)
∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B

)


⇒(

((s, ac′) ∈ B ; ac ⊆ ac′) ∧ ok ′
∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B

)


{Definition of design}

=


 ¬ ((s, {⊥}) ∈ B ∧ (s, ∅) ∈ B)
∧
¬ (((s, ac′ ∪ {⊥}) ∈ B ; ac ⊆ ac′) ∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B)


`
((s, ac′) ∈ B ; ac ⊆ ac′) ∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B



Lemma C.2.4

(s, {s1 : State⊥ | true}) ∈ d2bmb(P) = P f [{s1 : State | true}/ac′]

Proof.

(s, {s1 : State⊥ | true}) ∈ d2bmb(P) {Definition of d2bmb}
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=

 (s, {s1 : State⊥ | true}) ∈


s : State, ss : P State⊥∣∣∣∣∣∣
((¬ P f ⇒ P t)[ss/ac′] ∧ ⊥ /∈ ss)
∨
(P f [ss \ {⊥}/ac′] ∧ ⊥ ∈ ss)




{Property of sets}

=


(

(¬ P f ⇒ P t)[ss/ac′][{s1 : State⊥ | true}/ss]
∧ ⊥ /∈ {s1 : State⊥ | true}

)
∨(

P f [ss \ {⊥}/ac′][{s1 : State⊥ | true}/ss]
∧ ⊥ ∈ {s1 : State⊥ | true}

)


{Property of sets and propositional calculus}
= P f [ss \ {⊥}/ac′][{s1 : State⊥ | true}/ss] {Substitution}
= P f [{s1 : State⊥ | true} \ {⊥}/ac′] {Property of sets}
= P f [{s1 : State | true}/ac′]

Lemma C.2.5 Provided ⊥ /∈ ac′.

{s : State | (s, ac′ ∪ {⊥}) ∈ d2bmb(P)} = {s : State | P f }

Proof.

{s : State | (s, ac′ ∪ {⊥}) ∈ d2bmb(P)} {Definition of d2bmb}

=

 s : State

∣∣∣∣∣∣∣∣ (s, ac′ ∪ {⊥}) ∈


s : State, ss : P State⊥∣∣∣∣∣∣
(¬ P f ⇒ P t)[ss/ac′] ∧ ⊥ /∈ ss)
∨
(P f [ss \ {⊥}/ac′] ∧ ⊥ ∈ ss)




{Property of sets}

=

 s : State

∣∣∣∣∣∣
(¬ P f ⇒ P t)[ss/ac′][ac′ ∪ {⊥}/ss] ∧ ⊥ /∈ (ac′ ∪ {⊥}))
∨
(P f [ss \ {⊥}/ac′][ac′ ∪ {⊥}/ss] ∧ ⊥ ∈ (ac′ ∪ {⊥}))


{Property of sets}

=
{

s : State
∣∣ (P f [ss \ {⊥}/ac′][ac′ ∪ {⊥}/ss])

}
{Substitution}

=
{

s : State
∣∣ (P f [ac′ ∪ {⊥} \ {⊥}/ac′])

}
{Property of sets, and assumption that ⊥ /∈ ac′}

= {s : State | P f }
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Lemma C.2.6 Provided ⊥ /∈ ac′.

{s : State | (s, ac′) ∈ d2bmb(P)} = {s : State | (¬ P f ⇒ P t)}

Proof.

{s : State | (s, ac′) ∈ d2bmb(P)} {Definition of d2bmb}

=

 s : State

∣∣∣∣∣∣∣∣ (s, ac′) ∈


s : State, ss : P State⊥∣∣∣∣∣∣
(¬ P f ⇒ P t)[ss/ac′] ∧ ⊥ /∈ ss)
∨
(P f [ss \ {⊥}/ac′] ∧ ⊥ ∈ ss)




{Property of sets}

=

 s : State

∣∣∣∣∣∣
(¬ P f ⇒ P t)[ss/ac′][ac′/ss] ∧ ⊥ /∈ ac′)
∨
(P f [ss \ {⊥}/ac′][ac′/ss] ∧ ⊥ ∈ ac′)


{Subsitutiton}

=

 s : State

∣∣∣∣∣∣
(¬ P f ⇒ P t) ∧ ⊥ /∈ ac′)
∨
(P f [ac′ \ {⊥}/ac′] ∧ ⊥ ∈ ac′)


{Assumption: ⊥ /∈ ac′}

= {s : State | (¬ P f ⇒ P t)}

Lemma C.2.7

(s, {s : State | (s, ac′ ∪ {⊥}) ∈ d2bmb(P)}) ∈ d2bmb(Q)

=

(¬ Qf ⇒ Qt)[{s : State | P f }/ac′]

Proof.

(s, {s : State | (s, ac′ ∪ {⊥}) ∈ d2bmb(P)}) ∈ d2bmb(Q) {Lemma C.2.5}
= (s, {s : State | P f }) ∈ d2bmb(Q) {Definition of d2bmb}
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= (s, {s : State | P f }) ∈


s : State, ss : P State⊥∣∣∣∣∣∣
(¬ Qf ⇒ Qt)[ss/ac′] ∧ ⊥ /∈ ss)
∨
(Qf [ss \ {⊥}/ac′] ∧ ⊥ ∈ ss)


{Property of sets}

=

 ((¬ Qf ⇒ Qt)[ss/ac′][{s : State | P f }/ss] ∧ ⊥ /∈ {s : State | P f })
∨
(Qf [ss \ {⊥}/ac′][{s : State | P f }/ss] ∧ ⊥ ∈ {s : State | P f })


{Property of sets}

= (¬ Qf ⇒ Qt)[ss/ac′][{s : State | P f }/ss] {Substitution}
= (¬ Qf ⇒ Qt)[{s : State | P f }/ac′]

Lemma C.2.8

(s, {s : State | (s, ac′) ∈ d2bmb(P)}) ∈ d2bmb(Q)

=

(¬ Qf ⇒ Qt)[{s : State | (¬ P f ⇒ P t)}/ac′]

Proof.

(s, {s : State | (s, ac′) ∈ d2bmb(P)}) ∈ d2bmb(Q) {Lemma C.2.6}
= (s, {s : State | (¬ P f ⇒ P t)}) ∈ d2bmb(Q) {Definition of d2bmb}

= (s, {s : State | (¬ P f ⇒ P t)}) ∈


s : State, ss : P State⊥∣∣∣∣∣∣
(¬ Qf ⇒ Qt)[ss/ac′] ∧ ⊥ /∈ ss)
∨
(Qf [ss \ {⊥}/ac′] ∧ ⊥ ∈ ss)


{Property of sets}

=


(

(¬ Qf ⇒ Qt)[ss/ac′][{s : State | (¬ P f ⇒ P t)}/ss]
∧ ⊥ /∈ {s : State | (¬ P f ⇒ P t)}

)
∨(

Qf [ss \ {⊥}/ac′][{s : State | (¬ P f ⇒ P t)}/ss]
∧ ⊥ ∈ {s : State | (¬ P f ⇒ P t)}

)


{Property of sets and propositional calculus}
= (¬ Qf ⇒ Qt)[ss/ac′][{s : State | (¬ P f ⇒ P t)}/ss] {Substitution}
= (¬ Qf ⇒ Qt)[{s : State | (¬ P f ⇒ P t)}/ac′]
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Lemma C.2.9

bmb2d(B0 ; B1)

=

ok ⇒


((s, {s1 : State | (s1, ac′) ∈ B1}) ∈ B0 ∧ ⊥ /∈ ac′ ∧ ok ′)
∨
((s, {s1 : State⊥ | true}) ∈ B0 ∧ ⊥ /∈ ac′)
∨
((s, {s1 : State | (s1, ac′ ∪ {⊥}) ∈ B1}) ∈ B0 ∧ ⊥ /∈ ac′)


Proof.

bmb2d(B0 ; B1) {Definition of bmb2d}

= ok ⇒

 ((s, ac′) ∈ (B0 ; B1) ∧ ⊥ /∈ ac′ ∧ ok ′)
∨
((s, ac′ ∪ {⊥}) ∈ (B0 ; B1) ∧ ⊥ /∈ ac′)


{Definition of sequential composition}

= ok ⇒



 (s, ac′) ∈

 {s : State, ss : P State⊥ |(s, {s1 : State⊥ | true}) ∈ B0}
∪
{s : State, ss : P State⊥ |(s, {s1 : State | (s1, ss) ∈ B1}) ∈ B0}


∧ ⊥ /∈ ac′ ∧ ok ′


∨ (s, ac′ ∪ {⊥}) ∈

 {s : State, ss : P State⊥ |(s, {s1 : State⊥ | true}) ∈ B0}
∪
{s : State, ss : P State⊥ |(s, {s1 : State | (s1, ss) ∈ B1}) ∈ B0}


∧ ⊥ /∈ ac′




{Property of sets and propositional calculus}

= ok ⇒



((s, {s1 : State⊥ | true}) ∈ B0 ∧ ⊥ /∈ ac′ ∧ ok ′)
∨
((s, {s1 : State | (s1, ac′) ∈ B1}) ∈ B0 ∧ ⊥ /∈ ac′ ∧ ok ′)
∨
((s, {s1 : State⊥ | true}) ∈ B0 ∧ ⊥ /∈ ac′)
∨
((s, {s1 : State | (s1, ac′ ∪ {⊥}) ∈ B1}) ∈ B0 ∧ ⊥ /∈ ac′)


{Propositional calculus: absorption law}
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= ok ⇒


((s, {s1 : State | (s1, ac′) ∈ B1}) ∈ B0 ∧ ⊥ /∈ ac′ ∧ ok ′)
∨
((s, {s1 : State⊥ | true}) ∈ B0 ∧ ⊥ /∈ ac′)
∨
((s, {s1 : State | (s1, ac′ ∪ {⊥}) ∈ B1}) ∈ B0 ∧ ⊥ /∈ ac′)



C.3 Other lemmas
Lemma C.3.1

[(∃ ac′ • P f ) = P f ]⇔ [(∃ ac′ • ¬ P f ) = ¬ P f ]

Proof.

[(∃ ac′ • ¬ P f ) = ¬ P f ] {Universal quantification}

⇔

 (∀ ok, ok ′, ac′, s • (∃ ac′ • ¬ P f )⇒ ¬ P f )
∧
(∀ ok, ok ′, ac′, s • ¬ P f ⇒ (∃ ac′ • ¬ P f ))

 {Predicate calculus}

⇔ ∀ ok, ok ′, ac′, s • (∃ ac′ • ¬ P f )⇒ ¬ P f {Predicate calculus}
⇔ ∀ ok, s • (∃ ac′ • ¬ P f )⇒ (∀ ac′ • ¬ P f ) {Predicate calculus}
⇔ ∀ ok, s • ¬ (∀ ac′ • ¬ P f )⇒ ¬ (∃ ac′ • ¬ P f ) {Predicate calculus}
⇔ ∀ ok, s • (∃ ac′ • P f )⇒ (∀ ac′ • P f ) {Predicate calculus}
⇔ ∀ ok, s, ac′, ok ′ • (∃ ac′ • P f )⇒ P f {Predicate calculus}

⇔

 ⇔ ∀ ok, s, ac′, ok ′ • (∃ ac′ • P f )⇒ P f

∧
⇔ ∀ ok, s, ac′, ok ′ • P f ⇒ (∃ ac′ • P f )


{Universal quantification}

= [(∃ ac′ • P f ) = P f ]

Lemma C.3.2 Provided B0 and B1 are of type BM⊥. (s, ac′) ∈ B1 ⇒ (s, ac′) ∈ B0

∧
(s, ac′ ∪ {⊥}) ∈ B1 ⇒ (s, ac′ ∪ {⊥}) ∈ B0

⇔ B1 ⊆ B0
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Proof.

B1 ⊆ B0 {Definition of subset inclusion}
⇔ ∀ s : State, ss : P State⊥ • (s, ss) ∈ B1 ⇒ (s, ss) ∈ B0

{Predicate calculus}

⇔
(
∀ s : State, ss : P State⊥ •
((s, ss) ∈ B1 ⇒ (s, ss) ∈ B0) ∧ (⊥ ∈ ss ∨ ⊥ /∈ ss)

)
{Predicate calculus}

⇔


(
∀ s : State, ss : P State⊥ •
⊥ ∈ ss ⇒ ((s, ss) ∈ B1 ⇒ (s, ss) ∈ B0)

)
∧(
∀ s : State, ss : P State⊥ •
⊥ /∈ ss ⇒ ((s, ss) ∈ B1 ⇒ (s, ss) ∈ B0)

)


{Predicate calculus}

⇔




∀ s : State, ss : P State⊥ •
(∃ t : State, ss : P State • t = ss \ {⊥} ∧ ⊥ ∈ ss)
⇒
((s, ss) ∈ B1 ⇒ (s, ss) ∈ B0)


∧(
∀ s : State, ss : P State⊥ •
⊥ /∈ ss ⇒ ((s, ss) ∈ B1 ⇒ (s, ss) ∈ B0)

)


{Lemma B.3.2}

⇔




∀ s : State, ss : P State⊥ •
(∃ t : State, ss : P State • ⊥ /∈ t ∧ t ∪ {⊥} = ss)
⇒
((s, ss) ∈ B1 ⇒ (s, ss) ∈ B0)


∧(
∀ s : State, ss : P State⊥ •
⊥ /∈ ss ⇒ ((s, ss) ∈ B1 ⇒ (s, ss) ∈ B0)

)


{Type: ⊥ /∈ t}
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⇔




∀ s : State, ss : P State⊥ •
(∃ t : State, ss : P State • t ∪ {⊥} = ss)
⇒
((s, ss) ∈ B1 ⇒ (s, ss) ∈ B0)


∧(
∀ s : State, ss : P State⊥ •
⊥ /∈ ss ⇒ ((s, ss) ∈ B1 ⇒ (s, ss) ∈ B0)

)


{Predicate calculus}

⇔




∀ s : State, ss : P State⊥, t : P State •
(t ∪ {⊥} = ss)
⇒
((s, ss) ∈ B1 ⇒ (s, ss) ∈ B0)


∧(
∀ s : State, ss : P State⊥ •
⊥ /∈ ss ⇒ ((s, ss) ∈ B1 ⇒ (s, ss) ∈ B0)

)


{Predicate calculus: one-point rule}

⇔


(
∀ s : State, t : P State •
((s, t ∪ {⊥}) ∈ B1 ⇒ (s, t ∪ {⊥}) ∈ B0)

)
∧(
∀ s : State, ss : P State •
((s, ss) ∈ B1 ⇒ (s, ss) ∈ B0)

)


{Variable renaming and predicate calculus}

⇔ ∀ s : State, ac′ : P State •

 ((s, ac′ ∪ {⊥}) ∈ B1 ⇒ (s, ac′ ∪ {⊥}) ∈ B0)
∧
((s, ac′) ∈ B1 ⇒ (s, ac′) ∈ B0)


{Universal quantification}

⇔

 ((s, ac′ ∪ {⊥}) ∈ B1 ⇒ (s, ac′ ∪ {⊥}) ∈ B0)
∧
((s, ac′) ∈ B1 ⇒ (s, ac′) ∈ B0)
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Appendix D

PBMH

D.1 Properties
Law D.1.1 (PBMH-idempotent)

PBMH ◦ PBMH(P) = PBMH(P)

Proof.

PBMH ◦ PBMH(P) {Definition of PBMH}
= PBMH(P ; ac ⊆ ac′) {Definition of PBMH}
= ((P ; ac ⊆ ac′) ; ac ⊆ ac′) {Associativity of sequential composition}
= (P ; (ac ⊆ ac′ ; ac ⊆ ac′)) {Definition of sequential composition}
= (P ; (∃ ac0 • ac ⊆ ac0 ∧ ac0 ⊆ ac′)) {Transitivity of subset inclusion}
= (P ; ac ⊆ ac′) {Definition of PBMH}
= PBMH(P)

Lemma D.1.1

PBMH(P) = ∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ ac′

Proof.

PBMH(P) {Definition of PBMH}
= P ; ac ⊆ ac′ {Definition of sequential composition}
= ∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ ac′
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D.2 Distribution properties
Law D.2.1 (PBMH-distribute-disjunction)

PBMH(P ∨ Q) = PBMH(P) ∨ PBMH(Q)

Proof.

PBMH(P ∨ Q) {Definition of PBMH}
= (P ∨ Q) ; ac ⊆ ac′ {Definition of sequential composition}
= ∃ ac0 • (P[ac0/ac′] ∨ Q[ac0/ac′]) ∧ ac0 ⊆ ac′ {Predicate calculus}
= ∃ ac0 • (P[ac0/ac′] ∧ ac0 ⊆ ac′) ∨ (Q[ac0/ac′] ∧ ac0 ⊆ ac′)

{Predicate calculus}
= ∃ ac0 • (P[ac0/ac′] ∧ ac0 ⊆ ac′) ∨ ∃ ac0 • (Q[ac0/ac′] ∧ ac0 ⊆ ac′)

{Definition of sequential composition}
= (P ; ac ⊆ ac′) ∨ (Q ; ac ⊆ ac′) {Definition of PBMH}
= PBMH(P) ∨ PBMH(Q)

Law D.2.2 (PBMH-distribute-conjunction) Provided P and Q satisfy
PBMH.

PBMH(P ∧ Q) = PBMH(P) ∧ PBMH(Q)

Proof.

PBMH(P ∧ Q) {Assumption: P and Q satisfy PBMH}
= PBMH((PBMH(P) ∧ PBMH(Q))) {Definition of PBMH}
= ((P ; ac ⊆ ac′) ∧ (Q ; ac ⊆ ac′)) ; ac ⊆ ac′

{Definition of sequential composition}

= ∃ ac0 •

 ∃ ac1 • (P[ac1/ac′] ∧ ac1 ⊆ ac′)
∧
∃ ac2 • (Q[ac2/ac′] ∧ ac2 ⊆ ac′)

 [ac0/ac′] ∧ ac0 ⊆ ac′

{Substitution}
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= ∃ ac0 •

 ∃ ac1 • (P[ac1/ac′] ∧ ac1 ⊆ ac0)
∧
∃ ac2 • (Q[ac2/ac′] ∧ ac2 ⊆ ac0)

 ∧ ac0 ⊆ ac′

{Transitivity of subset inclusion}

=

 ∃ ac1 • (P[ac1/ac′] ∧ ac1 ⊆ ac′)
∧
∃ ac2 • (Q[ac2/ac′] ∧ ac2 ⊆ ac′)


{Definition of sequential composition}

= (P ; ac ⊆ ac′) ∧ (Q ; ac ⊆ ac′) {Definition of PBMH}
= PBMH(P) ∧ PBMH(Q)

D.3 Closure properties
Law D.3.1 (PBMH-disjunction-closure) Provided P and Q satisfy

PBMH.

PBMH(P ∨ Q) = P ∨ Q

Proof.

PBMH(P ∨ Q) {Law D.2.1}
= PBMH(P) ∨ PBMH(Q) {Assumption: P and Q satisfy PBMH}
= P ∨ Q

Law D.3.2 (PBMH-conjunction-closure) Provided P and Q satisfy
PBMH.

PBMH(P ∧ Q) = P ∧ Q

Proof.

PBMH(P ∧ Q) {Assumption: P and Q satisfy PBMH and Law D.2.2}
= PBMH(P) ∧ PBMH(Q) {Assumption: P and Q satisfy PBMH}
= P ∧ Q
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D.4 Lemmas
Lemma D.4.1

PBMH(true) = true

Proof.

PBMH(true) {Definition of PBMH}
= true ; ac ⊆ ac′ {Definition of sequential composition}
= ∃ ac0 • true[ac0/ac′] ∧ ac0 ⊆ ac′

{Property of substitution and predicate calculus}
= true

Lemma D.4.2

PBMH(false) = false

Proof.

PBMH(false) {Definition of PBMH}
= false ; ac ⊆ ac′ {Definition of sequential composition}
= ∃ ac0 • false[ac0/ac′] ∧ ac0 ⊆ ac′

{Property of substitution and predicate calculus}
= false

Lemma D.4.3

PBMH(s ∈ ac′) = s ∈ ac′

Proof.

PBMH(s ∈ ac′) {Definition of PBMH}
= s ∈ ac′ ; ac ⊆ ac′ {Definition of sequential composition}
= ∃ ac0 • s ∈ ac0 ∧ ac0 ⊆ ac′ {Property of sets}
= s ∈ ac′
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Lemma D.4.4

(P ∧ ac′ 6= ∅) ; A (Q ∧ ac′ 6= ∅)
=

(P ∧ ac′ 6= ∅) ; A (Q ∧ ac′ 6= ∅)) ∧ ac′ 6= ∅

Proof.

(P ∧ ac′ 6= ∅) ; A (Q ∧ ac′ 6= ∅)
{Definition of ; A}

= (P ∧ ac′ 6= ∅)[{z | Q ∧ ac′ 6= ∅)[z/s]}/ac′] {Substitution}
= (P ∧ ac′ 6= ∅)[{z | Q[z/s] ∧ ac′ 6= ∅}/ac′] {Substitution}

=

 P[{z | Q[z/s] ∧ ac′ 6= ∅}/ac′]
∧
{z | Q[z/s] ∧ ac′ 6= ∅} 6= ∅

 {Propositional calculus}

=

 P[{z | Q[z/s] ∧ ac′ 6= ∅}/ac′]
∧
∃ z • z ∈ {z | Q[z/s] ∧ ac′ 6= ∅}

 {Property of sets}

=

 P[{z | Q[z/s] ∧ ac′ 6= ∅}/ac′]
∧
∃ z • Q[z/s] ∧ ac′ 6= ∅


{Predicate calculus: quantifier scope and duplicate term}

=

 P[{z | Q[z/s] ∧ ac′ 6= ∅}/ac′]
∧
(∃ z • Q[z/s] ∧ ac′ 6= ∅)

 ∧ ac′ 6= ∅ {Property of sets}

=

 P[{z | Q[z/s] ∧ ac′ 6= ∅}/ac′]
∧
{z | Q[z/s] ∧ ac′ 6= ∅} 6= ∅

 ∧ ac′ 6= ∅

{Re-introduce ac′ and substitution}
= ((P ∧ ac′ 6= ∅)[{z | Q[z/s] ∧ ac′ 6= ∅}/ac′]) ∧ ac′ 6= ∅ {Substitution}
= ((P ∧ ac′ 6= ∅)[{z | (Q ∧ ac′ 6= ∅)[z/s]}/ac′]) ∧ ac′ 6= ∅

{Definition of ; A}
= ((P ∧ ac′ 6= ∅) ; A (Q ∧ ac′ 6= ∅)) ∧ ac′ 6= ∅
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Lemma D.4.5

PBMH(ac′ 6= ∅) = ac′ 6= ∅

Proof.

PBMH(ac′ 6= ∅) {Definition of PBMH}
= ac′ 6= ∅ ; ac ⊆ ac′ {Definition of sequential composition}
= ∃ ac0 • ac0 6= ∅ ∧ ac0 ⊆ ac′ {Property of sets (Lemma D.5.3)}
= ac′ 6= ∅

Lemma D.4.6 Provided ac′ is not free in P.

PBMH(P) = P

Proof.

PBMH(P) {Definition of PBMH}
= P ; ac ⊆ ac′ {Definition of sequential composition}
= ∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ ac′

{Assumption: ac′ not free in P and predicate calculus}
= P ∧ ∃ ac0 • ac0 ⊆ ac′ {Case-analysis on ac0}
= P

Lemma D.4.7

P ⇒ PBMH(P)

Proof.

P {Introduce fresh variable}
= ∃ ac0 • P[ac0/ac′] ∧ ac0 = ac′

{Property of sets and propositional calculus}
⇒ ∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ ac′ {Definition of sequential composition}
= P ; ac ⊆ ac′ {Definition of PBMH}
= PBMH(P)
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Lemma D.4.8

PBMH(P ; ac = ∅) = P ; ac = ∅

Proof.

PBMH(P ; ac = ∅) {Definition of PBMH}
= (P ; ac = ∅) ; ac ⊆ ac′ {Associativity of sequential composition}
= P ; (ac = ∅ ; ac ⊆ ac′) {Definition of sequential composition}
= P ; (∃ ac0 • ac = ∅ ∧ ac0 ⊆ ac′) {Propositional calculus}
= P ; (ac = ∅ ∧ ∃ ac0 • ac0 ⊆ ac′) {Choose ac0 = ∅}
= P ; (ac = ∅ ∧ true) {Propositional calculus}
= P ; ac = ∅

D.5 Set theory
Lemma D.5.1 (⊆-transitivity-multiple)

∃D • (∃A • P(A) ∧ A ⊆ D) ∧ (∃B • P(B) ∧ B ⊆ D) ∧ D ⊆ E
= (∃A • P(A) ∧ A ⊆ E) ∧ (∃B • P(B) ∧ B ⊆ E)

Proof. (Implication)

∃D • (∃A • P(A) ∧ A ⊆ D) ∧ (∃B • P(B) ∧ B ⊆ D) ∧ D ⊆ E
{Propositional calculus}

⇒ (∃D,A • P(A) ∧ A ⊆ D ∧ D ⊆ E) ∧ (∃D,B • P(B) ∧ B ⊆ D ∧ D ⊆ E)
{Propositional calculus and transitivity of subset inclusion}

= (∃A • P(A) ∧ A ⊆ E) ∧ (∃B • P(B) ∧ B ⊆ E)

Proof. (Reverse implication)(
(∃A • P(A) ∧ A ⊆ E) ∧ (∃B • P(B) ∧ B ⊆ E)
⇒ ∃D • (∃A • P(A) ∧ A ⊆ D) ∧ (∃B • P(B) ∧ B ⊆ D) ∧ D ⊆ E

)
{Set D = E}
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=

(
(∃A • P(A) ∧ A ⊆ E) ∧ (∃B • P(B) ∧ B ⊆ E)
⇒ (∃A • P(A) ∧ A ⊆ E) ∧ (∃B • P(B) ∧ B ⊆ E) ∧ E ⊆ E

)
{Reflexivity of subset inclusion and propositional calculus}

= true

Lemma D.5.2

s ∈ A⇒ A 6= ∅

Proof.

s ∈ A⇒ A 6= ∅ {Property of sets}
= s ∈ A⇒ ∃ z • z ∈ A {Choose z = s}
= s ∈ A⇒ s ∈ A {Propositional calculus}
= true

Lemma D.5.3

∃B • B 6= ∅ ∧ B ⊆ C ⇔ C 6= ∅

Proof. (Implication) By contradiction: Suppose the consequent is false yet
the antecedent is true. Then C = ∅.

∃B • B 6= ∅ ∧ B ⊆ C {Assumption: C = ∅}
= ∃B • B 6= ∅ ∧ B ⊆ ∅ {Property of subset inclusion}
= ∃B • B 6= ∅ ∧ B = ∅ {Propositional calculus}
= false

Proof. (Reverse implication)

C 6= ∅ ⇒ ∃B • B 6= ∅ ∧ B ⊆ C {Choose B = C}
= C 6= ∅ ⇒ C 6= ∅ ∧ C ⊂ C {Reflexivity of subset inclusion}
= C 6= ∅ ⇒ C 6= ∅ {Propositional calculus}
= true
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Lemma D.5.4

∃ ac0 • s ∈ ac0 ∧ ac0 ⊆ ac′ ⇔ s ∈ ac′

Proof. (Implication)

∃ ac0 • s ∈ ac0 ∧ ac0 ⊆ ac′ {Definition of subset inclusion}
= ∃ ac0 • s ∈ ac0 ∧ (∀ z • z ∈ ac0 ⇒ z ∈ ac′)

{Assume s ∈ ac0 then there is a case when z = s}
= ∃ ac0 • s ∈ ac0 ∧ (∀ z • z ∈ ac0 ⇒ z ∈ ac′) ∧ (s ∈ ac0 ⇒ s ∈ ac′)

{Assume s ∈ ac0 and propositional calculus}
⇒ s ∈ ac′

Proof. (Reverse implication)

s ∈ ac′ ⇒ (∃ ac0 • s ∈ ac0 ∧ ac0 ⊆ ac′) {Choose ac0 = ac′}
= (s ∈ ac′)⇒ (s ∈ ac′ ∧ ac′ ⊆ ac′)

{Reflexivity of subset inclusion and propositional calculus}
= true
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Appendix E

Sequential composition (A)

E.1 Algebraic properties
Law E.1.1 ( ; A-ac’-not-free) Provided ac′ is not free in P.

P ; A Q = P

Proof.

P ; A Q {Definition of ; A}
= P[{z : State | Q[z/s]}/ac′] {Assumption: ac′ not free in P}
= P

Law E.1.2 ( ; A-associativity) Provided P and Q satisfy PBMH.

P ; A (Q ; A R) = (P ; A Q) ; A R

Proof.

(P ; A Q) ; A R {Definition of sequential composition, twice}
= (P[{z | Q[z/s]}/ac′])[{z | R[z/s]}/ac′]

{Assumption: P satisfies PBMH}
= (P ; ac ⊆ ac′)[{z | Q[z/s]}/ac′])[{z | R[z/s]}/ac′] {Substitution}
= (P ; ac ⊆ {z | Q[z/s]})[{z | R[z/s]}/ac′]

{Definition of subset inclusion and property of sets}
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= (P ; ∀ z • z ∈ ac ⇒ Q[z/s])[{z | R[z/s]}/ac′]
{Assumption: Q satisfies PBMH}

= (P ; ∀ z • z ∈ ac ⇒ (Q[z/s] ; ac ⊆ ac′))[{z | R[z/s]}/ac′]
{Substitution}

= (P ; ∀ z • z ∈ ac ⇒ (Q[z/s] ; ac ⊆ {z | R[z/s]})) {Re-introduce ac′}
= (P ; ∀ z • z ∈ ac ⇒ (Q[z/s] ; ac ⊆ ac′)[{z | R[z/s]}/ac′]))

{Assumption: Q satisfies PBMH, and definition of sequential composition}
= (P ; ∀ z • z ∈ ac ⇒ (Q[z/s] ; A R)) {Re-introduce ac′}
= (P ; ∀ z • z ∈ ac ⇒ z ∈ ac′)[{z | Q[z/s] ; A R}/ac′]

{Definition of subset inclusion and sequential composition}
= (P ; ac ⊆ ac′) ; A (Q ; A R) {Assumption: P satisfies PBMH}
= P ; A (Q ; A R)

Law E.1.3 ( ; A-negation)

¬ (P ; A Q) = (¬ P ; A Q)

Proof.

¬ (P ; A Q) {Definition of sequential composition}
= ¬ (P[{z | Q[z/s]}/ac′]) {Propositional calculus}
= (¬ P[{z | Q[z/s]}/ac′]) {Definition of sequential composition}
= (¬ P ; A Q)

E.2 Closure properties
Law E.2.1 ( ; A-closure) Provided P and Q satisfy PBMH.

PBMH(P ; A Q) = P ; A Q

Proof. (Implication)

PBMH(P ; A Q) {Definition of PBMH}
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= (P ; A Q) ; ac ⊆ ac′ {Assumption: P satisfies PBMH}
= ((P ; ac ⊆ ac′) ; A Q) ; ac ⊆ ac′

{Definition of sequential composition}
= ((∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ ac′) ; A Q) ; ac ⊆ ac′

{Definition of ; A and substitution}
= (∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ {z | Q[z/s]}) ; ac ⊆ ac′

{Assumption: Q satisfies PBMH}
= (∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ {z | (Q ; ac ⊆ ac′)[z/s]}) ; ac ⊆ ac′

{Definition of subset inclusion}

=

 ∃ ac0 • P[ac0/ac′]
∧
∀ z • z ∈ ac0 ⇒ ((Q ; ac ⊆ ac′)[z/s])

 ; ac ⊆ ac′


{Definition of sequential composition}

= ∃ ac1 •




∃ ac0 • P[ac0/ac′]
∧

∀ z •

 z ∈ ac0
⇒
((∃ ac0 • Q[ac0/ac′] ∧ ac0 ⊆ ac′)[z/s])


 [ac1/ac′]

∧ ac1 ⊆ ac′


{Substitution}

=


∃ ac0, ac1 • P[ac0/ac′]
∧

∀ z •

 z ∈ ac0
⇒
(∃ ac0 • Q[ac0/ac′][z/s] ∧ ac0 ⊆ ac1)

 ∧ ac1 ⊆ ac′


{Predicate calculus: quantifier scope}

=


∃ ac0 • P[ac0/ac′]
∧

∃ ac1 • ∀ z •

 z ∈ ac0
⇒
(∃ ac0 • Q[ac0/ac′][z/s] ∧ ac0 ⊆ ac1)

 ∧ ac1 ⊆ ac′


{Predicate calculus}
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=


∃ ac0 • P[ac0/ac′]
∧

∃ ac1 • ∀ z •

 (z /∈ ac0 ∧ ac1 ⊆ ac′)
∨
(∃ ac0 • Q[ac0/ac′][z/s] ∧ ac0 ⊆ ac1 ∧ ac1 ⊆ ac′)




{Predicate calculus}

⇒


∃ ac0 • P[ac0/ac′]
∧

∀ z • ∃ ac1 •

 (z /∈ ac0 ∧ ac1 ⊆ ac′)
∨
(∃ ac0 • Q[ac0/ac′][z/s] ∧ ac0 ⊆ ac1 ∧ ac1 ⊆ ac′)




{Predicate calculus}

=


∃ ac0 • P[ac0/ac′]
∧

∀ z •

 (∃ ac1 • z /∈ ac0 ∧ ac1 ⊆ ac′)
∨
(∃ ac0, ac1 • Q[ac0/ac′][z/s] ∧ ac0 ⊆ ac1 ∧ ac1 ⊆ ac′)




{Property of sets and predicate calculus}

=


∃ ac0 • P[ac0/ac′]
∧

∀ z •

 (z /∈ ac0)
∨
(∃ ac0 • Q[ac0/ac′][z/s] ∧ ac0 ⊆ ac′)



{Predicate calculus}

=

 ∃ ac0 • P[ac0/ac′]
∧
∀ z • z ∈ ac0 ⇒ (∃ ac0 • Q[ac0/ac′][z/s] ∧ ac0 ⊆ ac′)


{Substitution}

=

 ∃ ac0 • P[ac0/ac′]
∧
∀ z • z ∈ ac0 ⇒ (∃ ac0 • Q[ac0/ac′] ∧ ac0 ⊆ ac′)[z/s]


{Definition of sequential composition}

=

 ∃ ac0 • P[ac0/ac′]
∧
∀ z • z ∈ ac0 ⇒ (Q ; ac ⊆ ac′)[z/s]


{Assumption: Q satisfies PBMH}
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= ∃ ac0 • P[ac0/ac′] ∧ ∀ z • z ∈ ac0 ⇒ Q[z/s]
{Definition of subset inclusion and re-introduce set comprehension}

= ∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ {z | Q[z/s]}
{Re-introduce ac′, definition of ; A and substitution}

= (∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ ac′)[{z | Q[z/s]}/ac′]
{Definition of sequential composition}

= (P ; ac0 ⊆ ac′) ; A Q {Assumption: P satisfies PBMH}
= P seq Q

Proof. (Reverse implication)

P ; A Q {Lemma D.4.7}
⇒ PBMH(P ; A Q)

E.3 Distributivity with respect to disjunction
Law E.3.1 ( ; A-right-distributivity-disjunction)

(P ∨ Q) ; A R = (P ; A R) ∨ (Q ; A R)

Proof.

(P ∨ Q) ; A R {Definition of sequential composition}
= (P ∨ Q)[{z | R[z/s]}/ac′] {Substitution}
= (P[{z | R[z/s]}/ac′] ∨ Q[{z | R[z/s]}/ac′])

{Definition of sequential composition}
= (P ; A R) ∨ (Q ; A R)
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E.4 Distributivity with respect to conjunc-
tion

Law E.4.1 ( ; A-right-distributivity-conjunction)

(P ∧ Q) ; A R = (P ; A R) ∧ (Q ; A R)

Proof.

(P ∧ Q) ; A R {Definition of ; A}
= (P ∧ Q)[{z | R[z/s]}/ac′] {Property of substitution}
= (P[{z | R[z/s]}/ac′] ∧ Q[{z | R[z/s]}/ac′]) {Definition of ; A}
= (P ; A R) ∧ (Q ; A R)

Law E.4.2 Provided P satisfies PBMH2. This property does not neces-
sarily hold in the opposite direction (See Example 19).

P ; A (Q ∧ R)⇒ (P ; A Q) ∧ (P ; A R)

Proof. (Implication) To be revised.

Example 19

((ac′ 6= ∅ ; A s.x = 1) ∧ (ac′ 6= ∅ ; A s.x = 2))⇒ (ac′ 6= ∅ ; A (s.x = 1 ∧ s.x = 2))
{Propositional calculus}

= ((ac′ 6= ∅ ; A s.x = 1) ∧ (ac′ 6= ∅ ; A s.x = 2))⇒ (ac′ 6= ∅ ; A false)
{Definition of sequential composition}

= ((ac′ 6= ∅ ; A s.x = 1) ∧ (ac′ 6= ∅ ; A s.x = 2))⇒ (ac′ 6= ∅[{z | false}/ac′])
{Property of sets, substitution and propositional calculus}

= ((ac′ 6= ∅ ; A s.x = 1) ∧ (ac′ 6= ∅ ; A s.x = 2))⇒ false
{Definition of sequential composition and substitution}

= (({z | z .x = 1} 6= ∅) ∧ ({z | z .x = 2} 6= ∅))⇒ false {Property of sets}
= ((∃ z • z .x = 1) ∧ (∃ z • z .x = 2))⇒ false {One-point}
= true ⇒ false {Propositional calculus}
= false
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E.5 Extreme points
Law E.5.1 ( ; A-P-sequence-false:1) Provided P satisfies PBMH.

P ; A false = P[∅/ac′]
Proof.
P ; A false {Assumption: P satisfies PBMH}
= (P ; ac ⊆ ac′) ; A false {Definition of sequential composition}
= (∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ ac′) ; A false {Definition of ; A}
= ∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ ∅ {Property of sets and one-point rule}
= P[∅/ac′]

Law E.5.2 ( ; A-P-sequence-true) Provided P satisfies PBMH.
P ; A true = ∃ ac′ • P

Proof.
P ; A true {Assumption: P satisfies PBMH}
= (P ; ac ⊆ ac′) ; A true {Definition of sequential composition}
= (∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ ac′) ; A true {Definition of ; A}
= ∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ {z | true} {Property of sets}
= ∃ ac0 • P[ac0/ac′] ∧ (∀ z • z ∈ ac0 ⇒ true) {Propositional calculus}
= ∃ ac0 • P[ac0/ac′] {One-point rule}
= ∃ ac0 • (∃ ac′ • P ∧ ac′ = ac0) {One-point rule: ac0 not free in P}
= ∃ ac′ • P

E.6 Algebraic properties and sequential com-
position

Law E.6.1 ( ; A-sequence-left-associativity) Provided ok and ac are
not free in R.

(P ; Q) ; A R = P ; (Q ; A R)
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Proof.

(P ; Q) ; A R {Definition of sequential composition}
= (∃ ok0, ac0 • P[ok0, ac0/ok, ac′] ∧ Q[ok0, ac0/ok, ac]) ; A R

{Definition of ; A}
= (∃ ok0, ac0 • P[ok0, ac0/ok, ac′] ∧ Q[ok0, ac0/ok, ac])[{z | R[z/s]}/ac′]

{Substitution: ac′ not free in ac0}
= (∃ ok0, ac0 • P[ok0, ac0/ok, ac′] ∧ Q[ok0, ac0/ok, ac][{z | R[z/s]}/ac′])

{Assumption: {ok, ac} not free in R}
= (∃ ok0, ac0 • P[ok0, ac0/ok, ac′] ∧ Q[{z | R[z/s]}/ac′][ok0, ac0/ok, ac])

{Definition of sequential composition}
= P ; Q[{z | R[z/s]}/ac′] {Definition of ; A}
= P ; (Q ; A R)

E.7 Skip
Definition 68

IIA =̂ s ∈ ac′

Law E.7.1 IIA is a fixed point of PBMH.

PBMH(IIA) = IIA

Proof.

PBMH(IIA) {Definition of IIA and PBMH}
= (s ∈ ac′) ; (ac ⊆ ac′)

{Definition of sequential composition and substitution}
= ∃ ac0 • s ∈ ac0 ∧ ac0 ⊆ ac′ {Law D.5.4}
= s ∈ ac′

Law E.7.2 ( ; A-IIA-left-unit)

IIA ; A P
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Proof.

IIA ; A P {Definition of IIA}
= s ∈ ac′ ; A P {Definition of ; A and substitution}
= s ∈ {z | P[z/s]} {Property of sets}
= P[z/s][s/z ] {Substitution}
= P

Law E.7.3 ( ; A-IIA-right-unit) Provided P satisfies PBMH.

P ; A IIA

Proof.

P ; A IIA {Definition of IIA}
= P ; A (s ∈ ac′) {Assumption: P satisfies PBMH}
= (P ; ac ⊆ ac′) ; A (s ∈ ac′) {Definition of sequential composition}
= (∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ ac′) ; A (s ∈ ac′) {Definition of ; A}
= ∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ {z | z ∈ ac′} {Property of sets}
= ∃ ac0 • P[ac0/ac′] ∧ (∀ z • z ∈ ac0 ⇒ z ∈ ac′)

{Definition of subset inclusion}
= ∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ ac′ {Definition of sequential composition}
= P ; ac ⊆ ac′ {Assumption: P satisfies PBMH}
= P

E.8 Other lemmas
Lemma E.8.1 Provided P is PBMH-healthy and s is not free in e.

P ; A (Q ⇒ (R ∧ e)) = (P ; A ¬ Q) ∨ ((P ; A (Q ⇒ R)) ∧ e)
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Proof.

P ; A (Q ⇒ (R ∧ e))

{Assumption: P is PBMH-healthy (Lemma D.1.1)}
= (∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ ac′) ; A (Q ⇒ (R ∧ e))

{Definition of ; A and substitution}
= ∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ {s | Q ⇒ (R ∧ e)}

{Property of sets and s not free in e}
= ∃ ac0 • P[ac0/ac′] ∧ ∀ z • z ∈ ac0 ⇒ (Q[z/s]⇒ (R[z/s] ∧ e))

{Lemma E.8.4}

= ∃ ac0 • P[ac0/ac′] ∧

 (∀ z • z ∈ ac0 ⇒ ¬ Q[z/s])
∨
((∀ z • z ∈ ac0 ⇒ (Q[z/s]⇒ R[z/s])) ∧ e)


{Predicate calculus}

=

 (∃ ac0 • P[ac0/ac′] ∧ (∀ z • z ∈ ac0 ⇒ ¬ Q[z/s]))
∨
(∃ ac0 • P[ac0/ac′] ∧ ((∀ z • z ∈ ac0 ⇒ (Q[z/s]⇒ R[z/s])) ∧ e))


{Property of sets}

=

 (∃ ac0 • P[ac0/ac′] ∧ (∀ z • z ∈ ac0 ⇒ z ∈ {s | ¬ Q}))
∨
(∃ ac0 • P[ac0/ac′] ∧ ((∀ z • z ∈ ac0 ⇒ z ∈ {s | Q ⇒ R}) ∧ e))


{Property of sets}

=

 (∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ {s | ¬ Q})
∨
(∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ {s | Q ⇒ R} ∧ e)


{Predicate calculus}

=

 (∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ {s | ¬ Q})
∨
((∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ {s | Q ⇒ R}) ∧ e)


{Definition of ; A and substitution}

=

 ((∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ ac′) ; A ¬ Q)
∨
(((∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ ac′) ; A (Q ⇒ R)) ∧ e)


{Assumption: P is PBMH-healthy (Lemma D.1.1)}
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= (P ; A ¬ Q) ∨ ((P ; A (Q ⇒ R)) ∧ e)

Lemma E.8.2 Provided P satisfies PBMH.

P ; A (Q ∧ ok ′) = (P ; A false) ∨ ((P ; A Q) ∧ ok ′)

Proof.

P ; A (Q ∧ ok ′) {Assumption: P satisfies PBMH}
= PBMH(P) ; A (Q ∧ ok ′) {Definition of PBMH}
= (P ; ac ⊆ ac′) ; A (Q ∧ ok ′)

{Definition of sequential composition and substitution}
= (∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ ac′) ; A (Q ∧ ok ′)

{Defintiion of ; A and substitution}
= ∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ {z | (Q ∧ ok ′)[z/s]}

{Property of substitution}
= ∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ {z | Q[z/s] ∧ ok ′} = ∃ ac0 • P[ac0/ac′] ∧ (∀ z • z ∈ ac0 ⇒ (Q[z/s] ∧ ok ′))

{Propositional calculus}
= ∃ ac0 • P[ac0/ac′] ∧ (∀ z • z ∈ ac0 ⇒ Q[z/s]) ∧ (∀ z • z ∈ ac0 ⇒ ok ′)

{Propositional calculus}
= ∃ ac0 • P[ac0/ac′] ∧ (∀ z • z ∈ ac0 ⇒ Q[z/s]) ∧ (∀ z • z /∈ ac0 ∨ ok ′)

{Predicate calculus: ok ′ not in z , move quantifier}
= ∃ ac0 • P[ac0/ac′] ∧ (∀ z • z ∈ ac0 ⇒ Q[z/s]) ∧ ((∀ z • z /∈ ac0) ∨ ok ′)

{Predicate calculus: distribution}

= ∃ ac0 • P[ac0/ac′] ∧

 ((∀ z • z ∈ ac0 ⇒ Q[z/s]) ∧ (∀ z • z /∈ ac0))
∨
((∀ z • z ∈ ac0 ⇒ Q[z/s]) ∧ ok ′)


{Propositional calculus}

= ∃ ac0 • P[ac0/ac′] ∧

 (∀ z • (z ∈ ac0 ⇒ Q[z/s]) ∧ z /∈ ac0)
∨
((∀ z • z ∈ ac0 ⇒ Q[z/s]) ∧ ok ′)


{Propositional calculus}

= ∃ ac0 • P[ac0/ac′] ∧ ((∀ z • z /∈ ac0) ∨ ((∀ z • z ∈ ac0 ⇒ Q[z/s]) ∧ ok ′))
{Propositional calculus}
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=

 (∃ ac0 • P[ac0/ac′] ∧ ∀ z • z /∈ ac0)
∨
(∃ ac0 • P[ac0/ac′] ∧ (∀ z • z ∈ ac0 ⇒ Q[z/s]) ∧ ok ′)


{Property of sets and introduce set comprehension}

=

 (∃ ac0 • P[ac0/ac′] ∧ ac0 = ∅)
∨
((∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ {z | Q[z/s]}) ∧ ok ′)


{One-point rule and substitution}

=

 P[∅/ac′]
∨
((∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ {z | Q[z/s]}) ∧ ok ′)


{Re-introduce ac′}

=

 P[∅/ac′]
∨
((∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ ac′)[{z | Q[z/s]}/ac′] ∧ ok ′)


{Definition of ; A}

=

 P[∅/ac′]
∨
(((∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ ac′) ; A Q) ∧ ok ′)


{Definition of sequential composition}

= P[∅/ac′] ∨ (((P ; ac ⊆ ac′) ; A Q) ∧ ok ′)
{Assumption: P satisfies PBMH}

= P[∅/ac′] ∨ ((P ; A Q) ∧ ok ′) {Law E.5.1}
= (P ; A false) ∨ ((P ; A Q) ∧ ok ′)

Lemma E.8.3 Provided P is PBMH-healthy.

P ; A (Q ⇒ (R ∧ ok ′)) = (P ; A ¬ Q) ∨ ((P ; A (Q ⇒ R)) ∧ ok ′)

Proof.

P ; A (Q ⇒ (R ∧ ok ′))

{Assumption: P is PBMH-healthy (Lemma D.1.1)}
= (∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ ac′) ; A (Q ⇒ (R ∧ ok ′))

{Definition of ; A and substitution}
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= ∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ {s | Q ⇒ (R ∧ ok ′)} {Property of sets}
= ∃ ac0 • P[ac0/ac′] ∧ ∀ z • z ∈ ac0 ⇒ (Q[z/s]⇒ (R[z/s] ∧ ok ′))

{Lemma E.8.4}

= ∃ ac0 • P[ac0/ac′] ∧

 (∀ z • z ∈ ac0 ⇒ ¬ Q[z/s])
∨
((∀ z • z ∈ ac0 ⇒ (Q[z/s]⇒ R[z/s])) ∧ ok ′)


{Predicate calculus}

=

 (∃ ac0 • P[ac0/ac′] ∧ (∀ z • z ∈ ac0 ⇒ ¬ Q[z/s]))
∨
(∃ ac0 • P[ac0/ac′] ∧ ((∀ z • z ∈ ac0 ⇒ (Q[z/s]⇒ R[z/s])) ∧ ok ′))


{Property of sets}

=

 (∃ ac0 • P[ac0/ac′] ∧ (∀ z • z ∈ ac0 ⇒ z ∈ {s | ¬ Q}))
∨
(∃ ac0 • P[ac0/ac′] ∧ ((∀ z • z ∈ ac0 ⇒ z ∈ {s | Q ⇒ R}) ∧ ok ′))


{Property of sets}

=

 (∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ {s | ¬ Q})
∨
(∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ {s | Q ⇒ R} ∧ ok ′)


{Predicate calculus}

=

 (∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ {s | ¬ Q})
∨
((∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ {s | Q ⇒ R}) ∧ ok ′)


{Definition of ; A and substitution}

=

 ((∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ ac′) ; A ¬ Q)
∨
(((∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ ac′) ; A (Q ⇒ R)) ∧ ok ′)


{Assumption: P is PBMH-healthy (Lemma D.1.1)}

= (P ; A ¬ Q) ∨ ((P ; A (Q ⇒ R)) ∧ ok ′)

Lemma E.8.4 XP XA Provided x is not free in e

∀ x • P ⇒ (Q ⇒ (R ∧ e))
=

(∀ x • P ⇒ ¬ Q) ∨ ((∀ x • P ⇒ (Q ⇒ R)) ∧ e)
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Proof.

∀ x • P ⇒ (Q ⇒ (R ∧ e)) {Predicate calculus}
= ∀ x • (P ∧ Q)⇒ (R ∧ e) {Predicate calculus}
= ∀ x • ((P ∧ Q)⇒ R) ∧ ((P ∧ Q)⇒ e) {Predicate calculus}
= ∀ x • ((P ∧ Q)⇒ R) ∧ (¬ (P ∧ Q) ∨ e) {Predicate calculus}
= (∀ x • (P ∧ Q)⇒ R) ∧ (∀ x • ¬ (P ∧ Q) ∨ e)

{Predicate calculus: x is not free in e}
= (∀ x • (P ∧ Q)⇒ R) ∧ ((∀ x • ¬ (P ∧ Q)) ∨ e) {Predicate calculus}

=

 ((∀ x • (P ∧ Q)⇒ R) ∧ (∀ x • ¬ (P ∧ Q)))
∨
((∀ x • (P ∧ Q)⇒ R) ∧ e)

 {Predicate calculus}

=

 (∀ x • ((P ∧ Q)⇒ R) ∧ ¬ (P ∧ Q))
∨
((∀ x • ((P ∧ Q)⇒ R)) ∧ e)

 {Predicate calculus}

=

 (∀ x • ¬ (P ∧ Q))
∨
((∀ x • ((P ∧ Q)⇒ R)) ∧ e)

 {Predicate calculus}

= (∀ x • P ⇒ ¬ Q) ∨ ((∀ x • P ⇒ (Q ⇒ R)) ∧ e)

Lemma E.8.5 XP XA Provided P is PBMH-healthy.

(P ; A Q) ∨ (P ; A R)⇒ (P ; A (Q ∨ R))

Proof.

(P ; A Q) ∨ (P ; A R)

{Assumption: P is PBMH-healthy (Lemma D.1.1)}

=

 ((∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ ac′) ; A Q)
∨
((∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ ac′) ; A R)


{Definition of ; A and substitution}

=

 (∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ {s | Q})
∨
(∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ {s | R})

 {Predicate calculus}
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= ∃ ac0 • P[ac0/ac′] ∧ (ac0 ⊆ {s | Q} ∨ ac0 ⊆ {s | R})
{Property of sets and predicate calculus}

⇒ ∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ {s | Q} ∪ {s | R} {Property of sets}
= ∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ {s | Q ∨ R}

{Definition of ; A and substitution}
= (∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ ac′) ; A (Q ∨ R)

{Assumption: P is PBMH-healthy (Lemma D.1.1)}
= P ; A (Q ∨ R)

Theorem E.8.1 Provided P is PBMH-healthy.

(P ; A Q) ∨ (P ; A true) = P ; A true

Proof.

(P ; A Q) ∨ (P ; A true) {Lemma E.8.5}
= ((P ; A Q) ∨ (P ; A true)) ∧ (P ; A (Q ∨ true))

{Predicate calculus}
= ((P ; A Q) ∨ (P ; A true)) ∧ (P ; A true)

{Predicate calculus: absorption law}
= (P ; A true)

Theorem E.8.2 Provided P is PBMH-healthy.

(P ; A Q) ∨ (P ; A false) = P ; A Q

Proof.

(P ; A Q) ∨ (P ; A false) {Lemma E.8.5}
= ((P ; A Q) ∨ (P ; A false)) ∧ (P ; A (Q ∨ false))

{Predicate calculus}
= ((P ; A Q) ∨ (P ; A false)) ∧ (P ; A Q)

{Predicate calculus: absorption law}
= P ; A Q
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Appendix F

Sequential composition ( ; Dac)

F.1 Properties
Law F.1.1 Provided P, Q and R are A-healthy.

(P ; Dac Q) ; Dac R = P ; Dac (Q ; Dac R)

Proof.

(P ; Dac Q) ; Dac R =

{Assumption: P, D and R are designs}
= ((¬ P f ` P t) ; Dac (¬ Qf ` Qt)) ; Dac (¬ Rf ` Rt)

{Definition of sequential composition (via Theorem 5.5.1)}
= ((¬ P f ; A true) ∧ (¬ P t ; A Qf ) ∧ (¬ P t ; A false) ` P t ; A Qt) ; Dac (¬ Rf ` Rt)

{Definition of sequential composition (via Theorem 5.5.1)}

=

 ((¬ P f ; A true) ∧ (¬ P t ; A Qf ) ∧ (¬ P t ; A false)) ; A true
∧ (¬ (P t ; A Qt) ; A Rf ) ∧ (¬ (P t ; A Qt) ; A false)
` (P t ; A Qt) ; A Rt


{Right-distributivity of sequential composition (Law E.4.1)}

=

 (¬ P f ; A true) ; A true ∧ (¬ P t ; A Qf ) ; A true ∧ (¬ P t ; A false) ; A true
∧ (¬ (P t ; A Qt) ; A Rf ) ∧ (¬ (P t ; A Qt) ; A false)
` (P t ; A Qt) ; A Rt


{Negation (Law E.1.3)}
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=

 (¬ P f ; A true) ; A true ∧ ¬ ((P t ; A Qf ) ; A true) ∧ ¬ ((P t ; A false) ; A true)
∧ ¬ ((P t ; A Qt) ; A Rf ) ∧ ¬ ((P t ; A Qt) ; A false)
` (P t ; A Qt) ; A Rt


{Associativity (Law E.1.2)}

=

 (¬ P f ; A (true ; A true)) ∧ ¬ (P t ; A (Qf ; A true)) ∧ ¬ (P t ; A (false ; A true))
∧ ¬ (P t ; A (Qt ; A Rf )) ∧ ¬ (P t ; A (Qt ; A false))
` (P t ; A (Qt ; A Rt))


{Property of ; A}

=

 (¬ P f ; A true) ∧ ¬ (P t ; A (Qf ; A true)) ∧ ¬ (P t ; A (false ; A true))
∧ ¬ (P t ; A (Qt ; A Rf )) ∧ ¬ (P t ; A (Qt ; A false))
` (P t ; A (Qt ; A Rt))


{Propositional calculus}

=

 (¬ P f ; A true) ∧ ¬ (P t ; A false)
∧ ¬

(
(P t ; A (Qf ; A true)) ∨ (P t ; A (Qt ; A Rf )) ∨ (P t ; A (Qt ; A false))

)
` (P t ; A (Qt ; A Rt))


{Distributivity of sequential composition over disjunction (Law ??)}

=

 (¬ P f ; A true) ∧ ¬ (P t ; A false)
∧ ¬

(
P t ; A ((Qf ; A true) ∨ (Qt ; A Rf ) ∨ (Qt ; A false))

)
` (P t ; A (Qt ; A Rt))


{Propositional calculus}

=

 (¬ P f ; A true) ∧ ¬ (P t ; A false)
∧ ¬

(
P t ; A ((¬ Qf ; A true) ∧ (¬ Qt ; A Rf ) ∧ (¬ Qt ; A false))

)
` (P t ; A (Qt ; A Rt))


{Definition of ; Dac}

= (¬ P f ` P t) ; Dac (P t ; A ((¬ Qf ; A true) ∧ (¬ Qt ; A Rf ) ∧ (¬ Qt ; A false)) ` Qt ; A Rt)

{Definition of ; Dac}
= (¬ P f ` P t) ; Dac ((¬ Qf ` Qt) ; Dac (¬ Rf ` Rt))

{Property of designs}
= P ; Dac (Q ; Dac R)
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Appendix G

Linking theories

G.1 acdash2ac and ac2acdash
Law G.1.1 (acdash2ac-subset)

acdash2ac(t) ⊆ acdash2ac(z)⇔ t ⊆ z

Proof. To be established.

Law G.1.2 (ac2acdash-subset)

ac2acdash(t) ⊆ ac2acdash(z)⇔ t ⊆ z

Proof. To be established.

Law G.1.3 (acdash2ac-∅)

acdash2ac(∅) = ∅

Proof.

acdash2ac(∅) {Definition of acdash2ac}

=

{
z0 : SinαP , z1 : SoutαP
| z0 ∈ ∅ ∧ (

∧
x : αP • z0.x = z1.(x ′)) • z1

}
{Property of sets}

= {z0 : SinαP , z1 : SoutαP | false} {Property of sets}
= ∅
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Law G.1.4 (ac2acdash-∅)

ac2acdash(∅) = ∅

Proof. Similar to that of Law G.1.3

G.2 PBMH
Law G.2.1 Provided P satisfies PBMH.

P[∅/ac′] ∨ P = P

Proof.

P[∅/ac′] ∨ P {Assumption: P is PBMH-healthy}
= (P ; ac ⊆ ac′)[∅/ac′] ∨ (P ; ac ⊆ ac′) {Substitution}
= (P ; ac ⊆ ∅) ∨ (P ; ac ⊆ ac′)

{Distributivity of sequential composition w.r.t. disjunction}
= P ; (ac ⊆ ∅ ∨ ac ⊆ ac′) {Property of subset inclusion}
= P ; (ac ⊆ ac′) {Assumption: P is PBMH-healthy}
= P

G.3 Lemmas
Lemma G.3.1

pbmh2d(P) =

 ¬ P[∅/ac′][s/inα]
`
∃ ac0 • P[ac0/ac′][s/inα] ∧ acdash2ac(ac0) ⊆ ac′ ∧ ac′ 6=


Proof.

pbmh2d(P) {Definition of pbmh2d}

=

 ¬ P[∅/ac′][s/inα]
`
∃ ac0 • P[ac0/ac′][s/inα] ∧ acdash2ac(ac0) ⊆ ac′


{Predicate calculus}
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=


¬ P[∅/ac′][s/inα]
`
∃ ac0 • P[ac0/ac′][s/inα] ∧ acdash2ac(ac0) ⊆ ac′
∧ (ac′ = ∅ ∨ ac′ 6= ∅)


{Predicate calculus}

=


¬ P[∅/ac′][s/inα]̀ (∃ ac0 • P[ac0/ac′][s/inα] ∧ acdash2ac(ac0) ⊆ ac′ ∧ ac′ 6= ∅)
∨
(∃ ac0 • P[ac0/ac′][s/inα] ∧ acdash2ac(ac0) ⊆ ac′ ∧ ac′ = ∅)




{Property of sets}

=


¬ P[∅/ac′][s/inα]̀

(∃ ac0 • P[ac0/ac′][s/inα] ∧ acdash2ac(ac0) ⊆ ac′ ∧ ac′ 6= ∅)
∨(
∃ ac0 • P[ac0/ac′][s/inα] ∧
∀ z • (z ∈ acdash2ac(ac0)⇒ z ∈ ac′) ∧ ∀ z • z /∈ ac′

)



{Predicate calculus}

=


¬ P[∅/ac′][s/inα]̀

(∃ ac0 • P[ac0/ac′][s/inα] ∧ acdash2ac(ac0) ⊆ ac′ ∧ ac′ 6= ∅)
∨(
∃ ac0 • P[ac0/ac′][s/inα] ∧
∀ z • (z /∈ acdash2ac(ac0) ∧ z /∈ ac′)

)



{Property of sets}

=


¬ P[∅/ac′][s/inα]̀

(∃ ac0 • P[ac0/ac′][s/inα] ∧ acdash2ac(ac0) ⊆ ac′ ∧ ac′ 6= ∅)
∨(
∃ ac0 • P[ac0/ac′][s/inα] ∧
ac2acdash ◦ acdash2ac(ac0) = ac2acdash(∅) ∧ ac′ = ∅

)



{Law G.1.4 and Law 5.7.1}
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=


¬ P[∅/ac′][s/inα]̀ (∃ ac0 • P[ac0/ac′][s/inα] ∧ acdash2ac(ac0) ⊆ ac′ ∧ ac′ 6= ∅)
∨
(∃ ac0 • P[ac0/ac′][s/inα] ∧ ac0 = ∅ ∧ ac′ = ∅)




{One-point rule}

=


¬ P[∅/ac′][s/inα]̀ (∃ ac0 • P[ac0/ac′][s/inα] ∧ acdash2ac(ac0) ⊆ ac′ ∧ ac′ 6= ∅)
∨
(P[∅/ac′][s/inα] ∧ ac′ = ∅)




{Definition of design}

=


(ok ∧ ¬ P[∅/ac′][s/inα])
⇒ (∃ ac0 • P[ac0/ac′][s/inα] ∧ acdash2ac(ac0) ⊆ ac′ ∧ ac′ 6= ∅ ∧ ok ′)
∨
(P[∅/ac′][s/inα] ∧ ac′ = ∅ ∧ ok ′)




{Predicate calculus}

=


ok ⇒

(∃ ac0 • P[ac0/ac′][s/inα] ∧ acdash2ac(ac0) ⊆ ac′ ∧ ac′ 6= ∅ ∧ ok ′)
∨
(P[∅/ac′][s/inα] ∧ ac′ = ∅ ∧ ok ′)
∨
P[∅/ac′][s/inα]




{Predicate calculus: absorption law}

=


ok ⇒ (∃ ac0 • P[ac0/ac′][s/inα] ∧ acdash2ac(ac0) ⊆ ac′ ∧ ac′ 6= ∅ ∧ ok ′)
∨
P[∅/ac′][s/inα]




{Predicate calculus and definition of design}

=

 ¬ P[∅/ac′][s/inα]
`
∃ ac0 • P[ac0/ac′][s/inα] ∧ acdash2ac(ac0) ⊆ ac′ ∧ ac′ 6= ∅
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